A system and method for determining the orientation of an audio output device relative to a listening device by analyzing orthogonal audio signals emitted by a plurality of transducers integrated or otherwise coupled to the audio output device. Other embodiments are also described.
Audio output devices may include two or more transducers for cooperatively producing sound. Although sound engineers may intend for the audio output devices to be oriented in a particular fashion relative to the listener, this orientation is not always achieved. For example, a listener may be seated off center relative to a linear loudspeaker array. In another example, a circular loudspeaker array may be placed at various angles relative to the listener. By being in a non-ideal position, sounds produced by audio output devices may achieve unintended and poor results.
An embodiment of the invention relates to a method for determining the orientation of a loudspeaker array or any device with multiple transducers relative to a listening device. In one embodiment, the method simultaneously drives each transducer to emit beam patterns corresponding to distinct orthogonal audio signals. The listening device senses sounds produced by the orthogonal audio signal based beam patterns and analyzes the sensed audio signal to determine the spatial orientation of the loudspeaker array relative to the listening device.
In one embodiment, the sensed audio signal is convolved with each orthogonal test signal to produce a set of cross-correlation signals. Peaks in the cross-correlation signals are compared or otherwise analyzed to determine orientation of each transducer, quadrant, or side of the loudspeaker array relative to the listening device. In one embodiment, the size of the peaks and time separation between peaks are used to determine spatial relationships between the transducers, quadrants, or sides of the loudspeaker array relative to the listening device.
The method allows for the simultaneous examination of the orientation of multiple sides or quadrants of a loudspeaker array through the use of orthogonal test signals. By allowing multiple simultaneous analyses, the method allows for a more accurate orientation determination in a greatly reduced period of time in comparison to sequentially driving the transducers. By quickly determining orientation of the loudspeaker array relative to the listening device, immediate and continual adjustment of sound produced by the loudspeaker array may be performed. For example, an audio receiver may adjust one or more beam patterns emitted by the loudspeaker array upon determining that the listening device (and by inference the listener/user) is seated to the left of the loudspeaker array. Driving all of the transducers in the loudspeaker array simultaneously and accordingly taking all of the measurements simultaneously also avoids problems due to the movement of the listening/measurement device between measurements, because all measurements are taken at the same time.
Further, by using orthogonal audio signals, the method for determining orientation of the loudspeaker array is more robust to extraneous sounds. For example, the audio receiver may determine orientation of the loudspeaker array while simultaneously playing an audio track without affecting the orientation determination process.
The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, as well as those disclosed in the Detailed Description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one.
Several embodiments are described with reference to the appended drawings are now explained. While numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known circuits, structures, and techniques have not been shown in detail so as not to obscure the understanding of this description.
Although shown with a single loudspeaker array 3, in other embodiments multiple loudspeaker arrays 3 may be coupled to the audio receiver 2. For example, three loudspeaker arrays 3 may be positioned in the listening area 1 to respectively represent front left, front right, and front center channels of a piece of sound program content (e.g., a musical composition or an audio track for a movie).
As shown in
In
Each transducer 5 may be individually and separately driven to produce sound in response to separate and discrete audio signals received from an audio source (e.g., the audio receiver 2). By allowing the transducers 5 in the loudspeaker array 3 to be individually and separately driven according to different parameters and settings (including delays and energy levels), the loudspeaker array 3 may produce numerous directivity/beam patterns that accurately represent each channel of a piece of sound program content output by the audio receiver 2. Further, these directivity/beam patterns may be used to determine the orientation of the loudspeaker array 3 relative to the listening device 4 as discussed below.
As shown in
In other embodiments, the loudspeaker array 3 is coupled to the audio receiver 2 using wireless protocols such that the array 3 and the audio receiver 2 are not physically joined but maintain a radio-frequency connection. For example, the loudspeaker array 3 may include WiFi or BLUETOOTH receivers for receiving audio signals from a corresponding WiFi and/or BLUETOOTH transmitter in the audio receiver 2. In some embodiments, the loudspeaker array 3 may include integrated amplifiers for driving the transducers 5 using the wireless signals received from the audio receiver 2. Although shown with a single loudspeaker array 3, in other embodiments multiple loudspeaker arrays 3 may be coupled to the audio receiver 2.
In one embodiment, the loudspeaker array 3 is used to represent front left, front right, and front center audio channels of a piece of sound program content. The sound program content may be stored in the audio receiver 2 or on an external device (e.g., a laptop computer, a desktop computer, a tablet computer, a remote streaming system, or a broadcast system) and transmitted or accessible to the audio receiver 2 through a wired or wireless connection
As noted above, the loudspeaker array 3 emits sound into the listening area 1. The listening area 1 is a location in which the loudspeaker array 3 is located and in which a listener is positioned to listen to sound emitted by the loudspeaker array 3. For example, the listening area 1 may be a room within a house or commercial establishment or an outdoor area (e.g., an amphitheater). The listener may be holding the listening device 4 such that the listening device 4 is able to sense similar or identical sounds from the loudspeaker array 3, including level, pitch and timbre, perceivable by the listener.
Although described in relation to dedicated speakers, the loudspeaker array 3 may be any audio output device that houses multiple transducers 5. The multiple transducers 5 in these embodiments may not be arranged in an array. For example, the loudspeaker array 3 may be replaced by a laptop computer, a mobile audio device, a mobile phone, or a tablet computer with multiple transducers 5 for outputting sound.
The audio receiver 2 may include a main system processor 6 and memory unit 7. The processor 6 and memory unit 7 are generically used here to refer to any suitable combination of programmable data processing components and data storage that conduct the operations needed to implement the various functions and operations of the audio receiver 2. The processor 6 may be a special purpose processor such as an application-specific integrated circuit (ASIC), a general purpose microprocessor, a field-programmable gate array (FPGA), a digital signal controller, or a set of hardware logic structures (e.g., filters, arithmetic logic units, and dedicated state machines) while the memory unit 7 may refer to microelectronic, non-volatile random access memory. An operating system may be stored in the memory unit 7, along with application programs specific to the various functions of the audio receiver 2, which are to be run or executed by the processor 6 to perform the various functions of the audio receiver 2. For example, the audio receiver 2 may include an orientation determination unit 9, which in conjunction with other hardware elements of the audio receiver 2, drive individual transducers 5 in the loudspeaker array 3 to emit sound.
In one embodiment, the audio receiver 2 may include a set of orthogonal audio signals 8. The orthogonal audio signals 8 may be pseudorandom binary sequences, such as maximum length sequences. The pseudorandom noise sequences are signals similar to noise which satisfy one or more of the standard tests for statistical randomness. In one embodiment, the orthogonal audio signals 8 may be generated using a linear shift register. Taps of the shift register would be set differently for different sides of the loudspeaker array 3, thus ensuring that the generated orthogonal audio signal 8 for each side of the loudspeaker array 3 is highly orthogonal to all other orthogonal audio signals 8. The orthogonal audio signals 8 may be binary sequences with lengths of 2N-1, where N is the number of transducers 5 being simultaneously driven.
In one embodiment, each of the one or more orthogonal audio signals 8 is associated with a single side, quadrant, or direction of the loudspeaker array 3. For example, the loudspeaker array 3 shown in
In one embodiment, the main system processor 6 retrieves one or more of the orthogonal audio signals 8 in response to a request to determine the orientation of the loudspeaker array 3 relative to the listening device 4. The request may be instigated by a remote device (e.g., the listening device 4) or a component within the audio receiver 2. For example, the main system processor 6 may begin a procedure for determining the orientation of the loudspeaker array 3 (e.g., a procedure defined by the orientation determination unit 9) by retrieving one or more of the orthogonal audio signals 8 in response to a user selecting a test button on the audio receiver 2. In another embodiment, the main system processor 6 may periodically retrieve one or more of the orthogonal audio signals 8 to determine the orientation of the loudspeaker array 3 relative to the listening device 4 at a prescribed interval (e.g., every minute).
The main system processor 6 may create driving signals based on the orthogonal audio signals 8. The driving signals generate beam patterns for each of the orthogonal audio signals 8. For example, the main system processor 6 may create a set of driving signals corresponding to a highly directed beam pattern for each orthogonal audio signal 8. The beam patterns are directed along specified quadrants/directions 3A-3D associated with each orthogonal audio signal 8.
In one embodiment, the audio receiver 2 may also include a wireless local area network (WLAN) controller 12 that receives and transmits data packets from a nearby wireless router, access point, and/or other device, using antenna 13. The WLAN controller 12 may facilitate communications between the audio receiver 2 and the listening device 4 and/or the loudspeaker array 3 through an intermediate component (e.g., a router or a hub). In one embodiment, the audio receiver 2 may also include a BLUETOOTH transceiver 14 with an associated antenna 15 for communicating with the listening device 4, the loudspeaker array 3, and/or another device.
The listening device 4 may include a main system processor 16 and a memory unit 17. The processor 16 and the memory unit 17 are generically used here to refer to any suitable combination of programmable data processing components and data storage that conduct the operations needed to implement the various functions and operations of the listening device 4. The processor 16 may be an applications processor typically found in a smart phone, while the memory unit 17 may refer to microelectronic, non-volatile random access memory. An operating system may be stored in the memory unit 17, along with application programs specific to the various functions of the listening device 4, which are to be run or executed by the processor 16 to perform the various functions of the listening device 4. For instance, there may be a telephony application that (when launched, unsuspended, or brought to foreground) enables the user to “dial” a telephone number to initiate a telephone call using a wireless VOIP or a cellular protocol and to “hang up” on the call when finished.
In one embodiment, the listening device 4 may include a baseband processor 18 to perform speech coding and decoding functions upon the uplink and downlink signals, respectively, in accordance with the specifications of a given protocol (e.g., cellular GSM, cellular CDMA, wireless VOIP). A cellular RF transceiver 19 receives the coded uplink signal from the baseband processor 18 and up converts it to a carrier band before driving antenna 20 with it. Similarly, the RF transceiver 19 receives a downlink signal from the antenna 20 and down converts the signal to baseband before passing it to the baseband processor 18.
In one embodiment, the listening device 4 may also include a wireless local area network (WLAN) controller 21 that receives and transmits data packets from a nearby wireless router, access point, and/or other device using an antenna 22. The WLAN controller 21 may facilitate communications between the audio receiver 2 and the listening device 4 through an intermediate component (e.g., a router or a hub). In one embodiment, the listening device 4 may also include a BLUETOOTH transceiver 23 with an associated antenna 24 for communicating with the audio receiver 2. For example, the listening device 4 and the audio receiver 2 may share or synchronize data using one or more of the WLAN controller 21 and the BLUETOOTH transceiver 23.
In one embodiment, the listening device 4 may include an audio codec 25 for managing digital and analog audio signals. For example, the audio codec 25 may manage input audio signals received from one or more microphones 26 coupled to the codec 25. Management of audio signals received from the microphones 26 may include analog-to-digital conversion and general signal processing. The microphones 26 may be any type of acoustic-to-electric transducer or sensor, including a MicroElectrical-Mechanical System (MEMS) microphone, a piezoelectric microphone, an electret condenser microphone, or a dynamic microphone. The microphones 26 may provide a range of polar patterns, such as cardioid, omnidirectional, and figure-eight. In one embodiment, the polar patterns of the microphones 26 may vary continuously over time. In one embodiment, the microphones 26 are integrated in the listening device 4. In another embodiment, the microphones 26 are separate from the listening device 4 and are coupled to the listening device 4 through a wired or wireless connection (e.g., BLUETOOTH and IEEE 802.11x).
In one embodiment, the listening device 4 may include the set of orthogonal audio signals 8. As noted above in relation to the audio receiver 2, each of the one or more orthogonal audio signals 8 is associated with a quadrant 3A-3D of the loudspeaker array 3. For example, the loudspeaker array 3 shown in
In one embodiment, the orthogonal audio signals 8 may be identical to the orthogonal audio signals 8 stored in the audio receiver 2. In this embodiment, the orthogonal audio signals 8 are shared or synchronized between the listening device 4 and the audio receiver 2 using one or more of the WLAN controllers 12 and 21 and the BLUETOOTH transceivers 14 and 23.
In one embodiment, the listening device 4 includes an orientation determination unit 27 for determining the orientation of the loudspeaker array 3 relative to the listening device 4. The orientation determination unit 27 of the listening device 4 may work in conjunction with the orientation determination unit 9 of the audio receiver 2 to determine the orientation of the loudspeaker array 3 relative to the listening device 4.
In one embodiment, the method 28 begins at operation 29 with the audio receiver 2 driving the loudspeaker array 3 to simultaneously emit multiple beam patterns based on the orthogonal audio signals 8 into the listening area 1. In some embodiments, the transducers 5 may be driven to play a superposition of different orthogonal signals 8. As noted above, the audio receiver 2 may drive the transducers 5 in the loudspeaker array 3 to emit separate beam patterns along distinct quadrants/directions 3A-3D. The relationship between each quadrant 3A-3D of the loudspeaker array 3 and the orthogonal audio signals 8 may be stored along with the orthogonal audio signals 8 in the audio receiver 2 and/or the listening device 4. For example, the following table may be stored in the audio receiver 2 and/or the listening device 4 demonstrating the relationship between each quadrant/direction in
In one embodiment, the orthogonal audio signals 8 are ultrasound signals that are above the normal limit perceivable by humans. For example, the orthogonal audio signals 8 may be higher than 20 Hz. In this embodiment, the audio receiver 2 may drive the transducers 5 to emit beam patterns corresponding to the orthogonal audio signals 8 while simultaneously driving the transducers 5 to emit sounds corresponding to a piece of sound program content (e.g., a musical composition or an audio track for a movie). Using this methodology, the orthogonal audio signals 8 may be used to determine the orientation of the loudspeaker array 3 while the loudspeaker array 3 is being used during normal operations. Accordingly, orientation of the loudspeaker array 3 may be continually and variably determined without affecting a listener's audio experience.
At operation 30, the listening device 4 senses sounds produced by the loudspeaker array 3. Since beam patterns corresponding to each of the orthogonal audio signals 8 are simultaneously output in separate directions relative to the loudspeaker array 3, the listening device 4 generates a single sensed audio signal, which includes sounds corresponding to each of the simultaneously played orthogonal audio signals 8. For example, the listening device 4 may produce a five millisecond audio signal that includes each of the orthogonal audio signals 8. The listening device 4 may sense sounds produced by the loudspeaker array 3 using one or more of the microphones 26 in conjunction with the audio codec 25.
In one embodiment, the listening device 4 is continually recording sounds in the listening area 1. In another embodiment, the listening device 4 begins to record sounds upon being prompted by the audio receiver 2. For example, the audio receiver 2 may transmit a record command to the listening device 4 using the WLAN controllers 12 and 21 and/or the BLUETOOTH transceivers 14 and 23. The record command may be intercepted by the orientation determination unit 27, which begins recording sounds in the listening area 1.
At operation 31, the listening device 4 transmits the sensed audio signal to the audio receiver 2 for processing and orientation determination. The transmission of the sensed audio signal may be performed using the WLAN controllers 12 and 21 and/or the BLUETOOTH transceivers 14 and 23. In one embodiment, the listening device 4 performs orientation determination without assistance from the audio receiver 2. In this embodiment, the sensed audio signal is not transmitted to the audio receiver 2. Instead, the orientation determination may be performed by the listening device 4 and the orientation results are thereafter transmitted to the audio receiver 2 using the WLAN controllers 12 and 21 and/or the BLUETOOTH transceivers 14 and 23.
At operation 32, the sensed audio signal is convolved with each stored orthogonal audio signal 8 to produce a set of cross-correlation signals. Since the convolution is performed for each orthogonal audio signal 8, the number of cross-correlation signals will be equal to the number of orthogonal audio signals 8. Each of the cross-correlation signals corresponds to the same quadrant/side 3A-3D as its associated orthogonal audio signal (for example as shown in the Table 1).
At operation 33, the peaks in each cross-correlation signal are compared to determine the orientation of the loudspeaker array 3 relative to the listening device 4. In one embodiment, quadrants 3A-3D corresponding to cross-correlation signals with higher peaks are determined to be closer to the listening device 4 than quadrants 3A-3D corresponding to cross-correlation signals with lower peaks. For example, the peak in
In one embodiment, the phase of each beam pattern corresponding to the orthogonal audio signals 8 is used to determine the location of the listening device 4 relative to the loudspeaker array 3. Knowing the beam patterns used to emit each of the orthogonal audio signals 8, the location of the listening device 4 relative to the emitted beam pattern may be calculated. This location within the beam pattern may thereafter be used to determine the location of the listening device 4 relative to the loudspeaker array 3.
As shown in
In one embodiment, multiple loudspeaker arrays 3 may be used to determine orientation. For example, as shown in
In one embodiment, the time of arrival between each of the orthogonal audio signals 8 from multiple loudspeaker arrays 3 may be used to improve on the above orientation estimates. For example, sound corresponding to an orthogonal audio signal 8 output by loudspeaker array 31 may be received at time t1, whereas sound corresponding to an orthogonal audio signal 8 output by loudspeaker array 32 may be received at time t2. Based on these times, the distance between the loudspeakers 31 and 32 may be determined using the following equation:
Where c is the speed of sound in air and d1 and d2 are the distances between the loudspeakers 31 and 32 and the listening device 4, respectively.
The method 28 allows for the simultaneous examination of multiple transducers 5 on separate sides or directions of a loudspeaker array 3 through the use of orthogonal test signals 8. By analyzing multiple transducers 8 and directions of the loudspeaker array 3 simultaneously, the method 28 allows for a more accurate orientation determination in a greatly reduced period of time in comparison to sequentially driving the transducers 5. By quickly determining orientation of the loudspeaker array 3 relative to the listening device 4, immediate and continual adjustment of sound produced by the loudspeaker array 3 may be performed. For example, the audio receiver 2 may adjust one or more beam patterns emitted by the loudspeaker array 3 upon determining that the listening device 4 (and by inference the listener/user) is seated to the left of the loudspeaker array 3. Driving all of the transducers 5 in the loudspeaker array 3 simultaneously and accordingly taking all of the measurements simultaneously also avoids problems due to the movement of the listening/measurement device 4 between measurements, because all measurements are taken at the same time.
Further, by using orthogonal test signals 8, the method 28 for determining orientation of the loudspeaker array 3 is more robust to extraneous sounds. For example, the audio receiver 2 may determine orientation of the loudspeaker array 3 while simultaneously playing an audio track without affecting the orientation determination process.
As explained above, an embodiment of the invention may be an article of manufacture in which a machine-readable medium (such as microelectronic memory) has stored thereon instructions which program one or more data processing components (generically referred to here as a “processor”) to perform the operations described above. In other embodiments, some of these operations might be performed by specific hardware components that contain hardwired logic (e.g., dedicated digital filter blocks and state machines). Those operations might alternatively be performed by any combination of programmed data processing components and fixed hardwired circuit components.
While certain embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. The description is thus to be regarded as illustrative instead of limiting.
This application claims the benefit of the earlier filing date of U.S. provisional application No. 61/785,114, filed Mar. 14, 2013.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/26576 | 3/13/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61785114 | Mar 2013 | US |