The inventions described below relate to the field of catheters and more specifically, to catheters inserted into the central venous system.
An infusion catheter, such as a peripheral intravenous catheter, is a thin flexible tube that is inserted into a peripheral vein, usually in the bend of the arm of a patient. Once inserted, the infusion catheter is threaded along the peripheral vein with the tip ideally positioned for infusion of fluids where they can be quickly diluted. Peripheral catheters as well as other types of catheters including peripherally inserted central catheters, central venous catheters and Hickman lines can remain in place for extended periods of time within a patient (up to six months). Infusion catheters have been available for many years and are typically used to administer fluids such as parenteral nutrition, chemotherapy, vasopressor (adrenalin-like medications), antibiotics and other hypertonic/caustic solutions. These catheters may also be used for blood draws. The use of such catheters avoids the complications associated with the direct puncture of the central venous circulation system. However, using a peripherally inserted central catheter to administer fluids to a patient is not without its drawbacks.
A common problem with the infusion of solutions into a patient is extravasation. Extravasation is the collection of interstitial fluid such as blood, nutritional fluids or medications into tissue surrounding an infusion site. Fluid escaping into the soft tissues surrounding the infusion site can have adverse effects on the patient. Some of these effects include the forming of blood clots in veins (thrombophlebitis), arterial injury, nerve injury, the compression of blood vessels and nerves and infection.
Extravasation of certain medications can also lead to other injuries commonly referred to as “IV burns.” Leakage of cytotoxic drugs, intravenous nutrition, solutions of calcium, potassium, bicarbonate and even dextrose solutions outside the vein can cause skin necrosis. Other complications may include scarring around tendons, nerves and joints, especially on the dorsum of the hand or in the antecubital region. Extravasation may even cause skin loss above the area of injury and may require skin grafting.
In cancer treatment, accidental extravasation is a feared complication, especially from drugs such as the anthracyclines, mitomycin, vincristine, and vinorelbine, which are examples of vessicant drugs. Vessicant drugs cause tissue destruction upon infiltration. In this context, extravasation is the unintended presence of a vessicant outside the vascular bed or vasculature.
Accidental extravasation has been estimated to occur in up to 6% of all patients receiving chemotherapy. Chemotherapeutic agents, such as the anthracyclines, are especially likely to cause severe tissue damage on extravasation. The tissue injury may not appear for several days or even weeks, but when it appears it may continue to worsen for months, due to drug recycling into adjacent tissue.
The danger of the adverse effects as well as kinks or clogs in the catheter may require catheters to be removed from a patient and reinserted in another location. Furthermore, extravasation may result in longer recovery time, pain and discomfort in patients. Because of the effects caused by extravasation, devices and methods are needed to reduce extravasation caused by the use of infusion.
The devices and methods shown below provide for the minimization of fluid extravasation during use of infusion catheters including peripheral catheters and central venous catheters. The anti-extravasation catheter allows a surgeon to drain fluids from soft tissue surrounding an insertion point or an infusion site while also providing fluid inflow to a patient.
The anti-extravasation catheter comprises a multi-lumen flexible tube characterized by a distal end, a proximal end, a proximal portion and a distal portion. The proximal end of the tube is provided with fluid ports, a manifold and other means of controlling the flow of fluid inside the tube. The distal portion of the tube is provided with one or more outflow holes. The proximal portion of the tube is provided with a plurality of drainage apertures. Each drainage aperture communicates with one or more drainage lumens inside the tube, thereby allowing fluid to drain from the tissue surrounding the insertion point of the catheter to sinks or vacuum sources located outside the patient. When the anti-extravasation catheter is disposed within the patient, the drainage holes are placed in fluid communication with tissue outside of the insertion site. The anti-extravasation catheter allows a physician to administer solutions to the patient while reducing the amount of fluid extravasation occurring in tissue surrounding the insertion point near the site of infusion.
The length of the tube 4 is characterized by a distal section 12 (the venous section) and a proximal interstitial section 13 (the interstitial section). The distal end of the tube may contain a hollow penetrating element 14 in fluid communication with the central lumen 5 to facilitate insertion of the catheter into the patient. The proximal (interstitial) section of the tube is provided with a plurality of drainage apertures 15. The proximal section of the tube is placed in contact with tissue 16 surrounding the insertion point and the peripheral vein 3 of the patient when the catheter 2 is disposed within the patient 1. The drainage apertures 15 are disposed in such a way that the apertures 15 are placed in fluid communication with tissue surrounding the insertion point where interstitial fluid collection may occur when the catheter is in use. Each drainage aperture 15 communicates with one or more drainage lumens disposed within the tube, thereby allowing fluid to drain from the tissue surrounding the insertion point to a vacuum source or sinks located outside the patient in fluid communication with the drainage lumens.
The proximal end of the tube is provided with a manifold or hub 17. The hub is in fluid communication with the central lumen and the drainage lumens. The hub is adapted for coupling to a vacuum source 18 and fluid source 19. The fluid source is placed in fluid communication with the central lumen of the catheter through the hub to facilitate the flow of fluids into the patient. The vacuum source is placed in fluid communication with the drainage lumens to facilitate removal of interstitial fluid. A control system 20 may be operably connected to the fluid source to deliver fluid and to the vacuum source to remove interstitial fluid by activating the vacuum source. Interstitial fluid is removed through one or more drainage apertures in fluid communication with the drainage lumens and the vacuum source. The control system may also be provided with a display 21 was well as an audio 22 and/or visual 23 warning system that indicates when extravasation is occurring.
Drainage apertures 15 may comprise a variety of patterns or configurations that allow for the effective removal of interstitial fluid. The size and pattern of the drainage apertures can be used to regulate fluid removal.
The anti-extravasation catheter in
Extravasation can result from a thrombosed or collapsed vein 44. A collapsed vein will cause a pressure increase within the vein of the patient due to the backflow of an infusate. When a pressure increase exceeding an acceptable threshold is detected by pressure transducer 36, the control system 20 may operate a pump operably coupled to the dilution source to flush the surrounding tissue. Tissue 16 is flushed using the fluid from the dilution source that is placed in fluid communication with the tissue through one or more drainage lumens and one or more drainage apertures. The control system can also operate the vacuum source to aspirate the interstitial fluid from the tissue. Interstitial fluid is removed through one or more drainage apertures in fluid communication with the drainage lumens and the vacuum source. The control system can be programmed to perform cycles of infusion and aspiration to more completely dilute and remove harmful agents from the soft tissue surround the insertion point of the catheter. A display 21 as well as an audio 22 and/or visual 23 warning system that indicates when extravasation is occurring may also be provided with the control system.
Current prior art catheters used in chemotherapeutic sessions do not provide for the removal of interstitial fluid while simultaneously infusing therapeutic agents into a patient. The anti-extravasation catheter 2 is especially suitable for the infusion of therapeutic agents used in chemotherapy. When the catheter is in use, the physician provides the anti-extravasation catheter 2 with at least one drainage aperture 15 disposed on the proximal portion of the catheter. The catheter is inserted into the vein of a patient at the insertion point 6. The catheter 2 extends from the insertion point to the infusion site 7 when functionally disposed with the patient 1. The catheter 2 is disposed inside the patient 1 in such a way that the drainage aperture 15 is placed in fluid communication with tissue 16 surrounding the vein 3 and the insertion point 6.
The catheter 2 is operably connected to a therapeutic solution/fluid source 19 and a vacuum source 19 through the hub 17. During chemotherapy, the therapeutic solution is infused into the patient through the catheter. During the infusion, extravasation may occur by fluid leaking from the infusion site into tissue surrounding the vein and the insertion point. This extravasated fluid is drained from tissue surrounding the catheter insertion point and the vein 3 during a chemotherapeutic session through the drainage aperture. The tissue 16 may also be treated by an antidote that is provided through the aperture if necessary.
While the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the inventions. Other embodiments and configurations may be devised without departing from the spirit of the inventions and the scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 13/746,659, filed Jan. 22, 2013, now U.S. Pat. No. 8,647,322 which is a continuation of Ser. No. 11/585,716, filed Oct. 24, 2006, now U.S. Pat. No. 8,357,126.
Number | Name | Date | Kind |
---|---|---|---|
4583968 | Mahurkar | Apr 1986 | A |
4717379 | Ekholmer | Jan 1988 | A |
4973321 | Michelson | Nov 1990 | A |
5394886 | Nabai | Mar 1995 | A |
6980852 | Jersey-Willuhn | Dec 2005 | B2 |
20030093029 | McGuckin, Jr. | May 2003 | A1 |
20030204161 | Ferek-Petric | Oct 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20140163459 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13746659 | Jan 2013 | US |
Child | 14178094 | US | |
Parent | 11585716 | Oct 2006 | US |
Child | 13746659 | US |