A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates generally to the field of content data delivery over a network. More particularly, the present disclosure is related in one exemplary aspect to apparatus and methods for secondary content (e.g., advertising, promotions, etc.) management and provision within a managed content distribution network such as a cable, satellite, of hybrid fiber/copper (HFCu) distribution network.
In the context of network services, it is often highly desirable to provide users of the network with ready and instant access to a variety of different types of content (e.g., linear or broadcast content, video-on-demand (VOD), “start-over”, streaming media, etc.), accessible at different locations, and on different platforms (e.g., via set-top box, smart-TV, tablet or smartphone, etc.). In many cases, it is also desirable to provide the same users with “secondary” content (such as e.g., advertisements, promotions or “info-mercials”, related shorts, telescoping information/advertisements, hyperlinks, etc.). The secondary content may be directly or indirectly related to the “primary” content which the user selected in the first place (such as via a common theme or context, common persons of interest, common demographic factors, etc.), or can be totally unrelated.
Delivery of secondary content may comprise a major source of revenue for commercial television or movie distributors, and for the network operator. For example, where the secondary content comprises advertisements, it may be a main source of income for national television broadcasters and their local over-the-air affiliates. Cable, satellite, HFCu, and other content distribution networks, as well as Internet content providers, also derive income from the sale of advertising time and insertion opportunities (and “impressions” associated therewith).
Moreover, an advertiser may seek to maximize the return on their advertising investment by targeting specific users or groups of users that are likely to be most receptive to the commercial message embodied in the advertisements. The aforementioned selective “targeting” and delivery of content to e.g., subscribers in a cable network is generally well known in the prior art. For example, it may be desirable to include certain types of advertising at specific demographic or geographic segments of an MSO's subscriber base. One way of targeting viewers involves selecting advertisements based on a geographical region in which the advertisement is to be delivered; i.e., a so-called “advertisement zone”. In other words, it is advantageous to provide certain advertising content to viewers in one local or regional area which is different than that provided to the viewers in a different local or regional area.
For example, the advertisements may be limited by the geographic area in which a business operates. Hence, it typically only makes financial sense for an advertisement for that business to be provided in geographical areas where the business is operated or provides services. Similar logic applies to the demographic, psychographic, and other planes; e.g., an advertisement for a super-high end sports car would likely be wasted when delivered to lower middle-class households or subscribers (which may or may not be correlated to geography), as would an advertisement for a feminine product delivered to a predominantly male audience. Additionally, the context of the primary content may not be compatible with particular types/themes of secondary content (e.g., a VOD movie having a non-violent theme might not mesh optimally with advertisements for UFC sporting or boxing events, regardless of demographics or geography).
Hence, as used herein, the term “advertising zone” may include the delivery of advertisements, promotions, or other secondary content with an actual geographic zone, a demographic “zone” or logical space, a psychographic zone or logical space, a user-based preference space, a primary/secondary content context space, and so forth.
One technique for advertising comprises use of so-called “audience bundles”. Typically, such audience bundles are built to reach a certain demographic group. Audience bundles are useful when a client (e.g., advertiser) has a defined demographic or other target, and wants assurance that their audience is being reached with a certain level of frequency.
One problem commonly encountered in the foregoing scenarios relates to managing the great complexity of secondary content insertion opportunities. For example, a typical cable MSO may have a very large number of local “networks” (i.e., content provider networks or “channels”) ranging from small, geographically localized networks (e.g., KUSI-TV, a San Diego, CA independent station) to larger, regional networks, to national- or even global-level networks such as CBS, ABC, etc. Each of these content networks provides varied programming, including a number of secondary content “spots” interspersed throughout the programming day. For instance, on average, a given content network may have two (2) minutes of available advertising spots (aggregate) per hour of programming, such as four (4) 30-second spots per hour. Considering that the MSO may carry, via its content distribution infrastructure, literally dozens of such content networks/channels, this equates to roughly 24 hours×4 spots=96 available spots for each channel per day, and hence perhaps as many as thousands of different available spots in total for a given day. As can be appreciated, this becomes exceedingly difficult to manage manually, even at a basic level (i.e., without delving into the different demographics/psychographics, geographics, user profiles, etc. of the viewers of these channels, and how a given prospective advertiser's products and/or services may correlate or “map onto” such information).
Adding further complexity are such factors as: (i) a given advertiser's potential desire to be associated with particular primary content (e.g., they want to be within or temporally proximate to Monday Night Football since their target demographic is sports-minded people); (ii) the desire to know in advance what sort of penetration or efficacy a given schedule or campaign of advertising might produce; and (iii) financial limitations of prospective advertisers on implementing a given schedule or campaign. These factors are, under prior art approaches, typically addressed through heuristics or generalizations; e.g., in the context of Item (i) above, it is assumed that sports-minded people will be a large portion of the audience for Monday Night Football, but such assumptions may be inaccurate to varying degrees, and lack the ability to be tested under e.g., a sensitivity or other analysis (for instance, as the time slot during the aforementioned event for a given advertisement is shifted outside of the vent, what result such shift has on impressions by the target population of sports-minded people), or validated using e.g., historical or other data.
Yet further, the broad variety of different delivery paradigms and target platforms further complicates management of such activities. As indicated above, the typical MSO network includes both linear (e.g., broadcast, and non-repeatable) content, as well as non-linear content such as streaming IP-based content, VoD, cDVR, start-over, and the like, each of which raise their own issues. For example, does a given content program (e.g., Breaking Bad episode) when originally transmitted at say 5:00 pm local time require the same or different advertising when transmitted (or re-transmitted) at say midnight local, or days or even weeks later? What if certain advertising is not optimized or available for delivery or display on the smartphone or tablet via which the user is requesting it?
Moreover, it is critical for the MSO or other service provider to know (or at least be able to reliably estimate) what its prospective profit and/or revenue from implementing a given schedule or campaign are—the MSO/service provider clearly wants to optimize the financial aspects of providing such services (while also optimizing advertiser utility/satisfaction, as well as providing is subscribers with secondary content that is useful and germane to their particular context).
There is also a potentially large and untapped customer base for the MSO; i.e., relatively unsophisticated, and lower-budget advertisers who, by virtue of lacking explicit knowledge of advertising schedules, market correlations, and the like (i.e., they may know their target audience, but not the specifics of how to reach them), and through limited capital to expend on an advertising campaign, are larger excluded from the market. As in many endeavors, some level of detailed knowledge of the inner workings and considerations associated with multi-channel advertising is required under the prior art, and many of the more unsophisticated potential customers either rely on MSO personnel expertise (which has its own set of disabilities, including costs and latencies associated with human-centric management and implementation), or are dissuaded from any participation.
Heretofore, no suitable mechanism has existed which enables each of a) substantially automated, dynamic analysis and management of the large number of available spots across many different content networks (channels) over a designated period; b) substantially accurate projection of the penetration, impressions, or other performance attributes of a proposed schedule before the customer (e.g., advertiser) selects or implements it; c) substantially accurate correlation between the desired result (e.g., performance which the customer seeks) and that customer's budget; d) substantially accurate projection of the financial or other implications of the proposed schedule or campaign for the MSO or other service provider; e) scaling from relatively small schedules/campaigns to larger ones, including intra-/inter-regionally; and f) coordination with other schedules or campaigns implemented by other MSO customers (e.g., other advertisers) so as to, inter alia, optimize MSO coverage and financial performance.
Prior art approaches have historically managed such activities using, e.g., more general-purpose tools such as database software, manual user data entry and analysis, and the like; yet such tools have proven inadequate, especially in light of the complexities and considerations discussed supra.
The present disclosure addresses the foregoing needs by disclosing, inter alia, apparatus and methods for managing secondary content schedules and campaigns within a content distribution network infrastructure. In one aspect of the disclosure, a computerized method of constructing secondary content bundles for use in an content distribution network is described. In one embodiment, the method includes: determining a plurality of secondary content insertion opportunities within a plurality of different content networks; based at least on the determined plurality of secondary content insertion opportunities, selecting a subset of the plurality of different content networks; based at least on the selected subset, running a plurality of first computerized simulations to determine one or more optimal insertion opportunity counts to achieve one or more specified target performance criteria; and validating the determined one or more optimal insertion opportunity counts using one or more second computerized simulations that are based on data different than that used for the first simulations.
In one variant, the determination of a plurality of secondary content insertion opportunities within a plurality of different content networks is based at least on allocation of the insertion opportunities across: (i) a plurality of different content networks based on tier; and (ii) a plurality of different dayparts. Such allocation of the insertion opportunities across plurality of different content networks based on tier may, for instance, include allocation across a first tier comprising a prescribed percentage of top-ten popularity content networks, and allocation across a second tier comprising a prescribed percentage of non-top ten popularity content networks.
The allocation of the insertion opportunities across plurality of different content networks based on a plurality of different dayparts can include for example allocation across a prime-time daypart and allocation across one or more non-prime time dayparts. In another variant of the method, the selection of a subset of the plurality of different content networks comprises selecting based at least on a ranking of each of the plurality of content networks by at least one of reach and/or sellout rate.
In one implementation, the selection of a subset of the plurality of different content networks comprises eliminating one or more of the plurality of content networks based on a content context associated with each of the one or more networks.
In another variant of the method, the validation using one or more second computerized simulations that are based on data different than that used for the first simulations comprises running a plurality of second computerized simulations based at least on historical network user tuning data associated with a time period different than an associated time period for historical network user tuning data used for the first simulations. In one implementation, the validation comprises achieving, using the second simulations, at least a prescribed level performance relative to the one or more specified target performance criteria, such as e.g., (i) a reach target, and (ii) a frequency target. In another aspect, a computer readable apparatus comprising a non-transitory storage medium is disclosed. In one embodiment, the non-transitory medium includes at least one computer program having a plurality of instructions, the instructions configured to, when executed on a processing apparatus: obtain first data, at least portion of the first data relating to available advertising inventory on a plurality of different content networks; obtain second data relating to historical tuning activity of one or more users of a service provider network; obtain rate structure data associated with the advertising inventory; determine one or more desired performance criteria for an advertising campaign to be conducted over at least some of the plurality of different content networks; evaluate one or more performance attributes of selected ones of the plurality of content networks based on at least the second data; and, based at least on the obtained first and second data, the rate structure data, the evaluated performance, and one or more performance criteria, calculate a number of individual advertising spots necessary to achieve the one or more desired performance criteria.
In one variant, the one or more desired criteria, and the one or more performance criteria, each comprise both (i) reach, and (ii) frequency.
In another variant, the calculation of the number of spots comprises performing a plurality of computerized simulations based at least on the obtained first and second data, rate structure data, evaluated performance, and one or more performance criteria.
In a further variant, the plurality of instructions are further configured to, when executed: generate a schedule of the individual advertising spots across at least a portion of plurality of content networks, the schedule configured to achieve the desired performance criteria; and apply a multi-modal pricing structure to the generated schedule.
In a further aspect of the disclosure, a computerized method of generating a secondary content schedule is described. In one embodiment, the schedule is configured to achieve one or more performance targets and is utilized within a managed content distribution network having a plurality of subscribers, and the method includes: selecting a date range and a target market for analysis; obtaining one or more standardized descriptions associated with the selected target market; obtaining inventory data, the data indicating available secondary content insertion opportunities associated with a plurality of content networks for the date range; specifying one or more variables to be used for the analysis; excluding one or more networks based on one or more exclusion criteria; determine a number of the subscribers associated with the selected market; obtain viewership data for non-excluded ones of the plurality of content networks; ranking the non-excluded ones of the plurality of content networks based at least on one or more performance metrics; obtaining rate data associated with the inventory; selecting instances of secondary content for a prescribed period; randomizing and ranking the selected secondary content instances; determining a quantity of the selected secondary content instances based at least on the specified one or more variables; obtain historical subscriber viewership data for a duration equal to the prescribed period; evaluate the historical subscriber viewership data for performance; based at least on the evaluation, determine a minimum number of secondary content instances that meet the one or more performance targets; produce a schedule of secondary content instances that includes the determined minimum number of instances; and assign pricing to the determined schedule.
In one variant, the one or more standardized descriptions associated with the selected target market comprise system codes, and the one or more variables to be used for the analysis comprise: (1) a percentage of spots per content network tier; (2) a percentage of spots per daypart and (3) a range of a number of spots to be evaluated.
In another variant, the inventory data comprises: (1) a listing of a plurality of content networks having available insertion opportunities; and (2) a percentage of the available insertion opportunities sold, on both a per-content network and a per-tier basis.
In a further aspect of the disclosure, computerized network apparatus is disclosed. In one embodiment, the apparatus is configured for substantially automated calculation of a secondary content schedule for use by one or more customers of a managed content distribution network operator, and includes: a plurality of client application computer programs operative to run on respective remote client devices and communicate respective sets of specifications for respective secondary content campaigns desired by respective ones of customers of the network operator; and server apparatus.
In one variant, the server apparatus includes: processor apparatus; network interface apparatus in data communication with the processor apparatus; and storage apparatus in data communication with the processor apparatus, the storage apparatus comprising at least one computer program. In one implementation, the at least one computer program is configured to, when executed on the processor apparatus: receive, via the network interface apparatus, the plurality of respective sets of specifications from the client application computer programs; for each received respective set of specifications, access one or more pre-existing computerized models, the one or more models comprising simulation-based projections for each of a plurality of performance metrics associated with secondary content campaigns, and select the appropriate one or more models to utilize consistent with the respective set of specifications.
In another implementation, the respective sets of specifications comprise desired performance with respect to campaign reach, and the simulation-based projections comprise a plurality of simulations that are based on different ones of historical tuning data associated with a plurality of subscribers of the managed content distribution network.
In another aspect of the disclosure, a computerized analytics “engine” is disclosed. In one embodiment, the engine comprises a plurality of computer algorithms operative to run on a computerized platform (e.g., server or server farm) and configured to simulate various secondary content (e.g., advertising) schedules or campaigns, and enable determination of, inter alia, a prescribed number of spots on a plurality of networks necessary to achieve a desired target value.
In a further aspect, a data architecture and corresponding database is disclosed.
In yet another aspect of the disclosure, a method of substantially automatically generating advertising campaign aggregations or “bundles” is disclosed.
In a further aspect, a network architecture for use within a managed content distribution network is disclosed.
In another aspect of the disclosure, a method of operating a service provider network is disclosed. In one embodiment, the method includes determining a plurality of secondary content insertion opportunities within a plurality of different content networks; based at least on the determined plurality of secondary content insertion opportunities, selecting a subset of the plurality of different content networks; based at least on the selected subset, running a plurality of first computerized simulations to determine one or more optimal insertion opportunity counts to achieve one or more specified target performance criteria; validating the determined one or more optimal insertion opportunity counts using one or more second computerized simulations that are based on data different than that used for the first simulations; and delivering at least one of the optimal counts of secondary content via the selected subset of networks.
These and other aspects of the disclosure shall become apparent when considered in light of the detailed description provided herein.
All figures © Copyright 2016 Time Warner Cable Enterprises LLC. All rights reserved.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
As used herein, the term “application” refers generally to a unit of executable software that implements a certain functionality or theme. The themes of applications vary broadly across any number of disciplines and functions (such as on-demand content management, e-commerce transactions, brokerage transactions, home entertainment, calculator etc.), and one application may have more than one theme. The unit of executable software generally runs in a predetermined environment; for example, the unit could comprise a downloadable Java Xlet™ that runs within the JavaTV™ environment.
As used herein, the term “client device” includes, but is not limited to, digital set-top boxes (e.g., DSTBs), personal computers (PCs), and minicomputers, whether desktop, laptop, or otherwise, and mobile devices such as handheld computers, tablets, phablets, personal digital assistants (PDAs), personal media devices (PMDs), and smartphones.
As used herein, the term “computer program” or “software” is meant to include any sequence or human or machine cognizable steps which perform a function. Such program may be rendered in virtually any programming language or environment including, for example, Python, C/C++, Fortran, COBOL, PASCAL, assembly language, markup languages (e.g., HTML, SGML, XML, VoXML), and the like, as well as object-oriented environments such as the Common Object Request Broker Architecture (CORBA), Java™ (including J2ME, Java Beans, etc.), Binary Runtime Environment (e.g., BREW), C#, and the like.
The terms “consumer premises equipment” (CPE) and “consumer device” refer without limitation to any type of electronic equipment for use within a consumer's or user's premises and connected to a content distribution network. The term “consumer device” includes terminal devices that have access to digital television content via a satellite, cable, or terrestrial network. The term “consumer premises equipment” (CPE) includes such electronic equipment such as set-top boxes (e.g., DSTBs or IPTV devices), televisions, cable modems (CMs), embedded multimedia terminal adapters (eMTAs), whether stand-alone or integrated with other devices, digital video recorders (DVR), gateway storage devices, and ITV personal computers.
As used herein, the term “database” refers generally to one or more tangible or virtual data storage locations, which may or may not be physically co-located with each other or other system components.
As used herein, the term “DOCSIS” refers to any of the existing or planned variants of the Data Over Cable Services Interface Specification, including for example DOCSIS versions 1.0, 1.1, 2.0 and 3.0. DOCSIS (version 1.0) is a standard and protocol for internet access using a “digital” cable network.
As used herein, the terms “Internet” and “internet” are used interchangeably to refer to inter-networks including, without limitation, the Internet.
As used herein, the terms “microprocessor” and “digital processor” are meant generally to include all types of digital processing devices including, without limitation, digital signal processors (DSPs), reduced instruction set computers (RISC), general-purpose complex instruction set computing (CISC) processors, microprocessors, gate arrays (e.g., FPGAs), PLDs, reconfigurable compute fabrics (RCFs), array processors, and application-specific integrated circuits (ASICs). Such digital processors may be contained on a single unitary IC die, or distributed across multiple components.
As used herein, the terms “MSO” or “multiple systems operator” refer to a cable, satellite, or terrestrial network provider having infrastructure required to deliver services including programming and data over those mediums.
As used herein, the term “network content provider” refers generally and without limitation to any content service provider or content-providing logical “network” such as e.g., ABC, NBC, CBS, etc., regardless of delivery platform or underlying content distribution network infrastructure (see below).
As used herein, the terms “network” and “bearer network” (distinguished from “network content provider” supra) refer generally to any type of telecommunications or data network including, without limitation, hybrid fiber coax (HFC) networks, satellite networks, telco networks, and data networks (including MANs, WANs, LANs, WLANs, internets, and intranets). Such networks or portions thereof may utilize any one or more different topologies (e.g., ring, bus, star, loop, etc.), transmission media (e.g., wired/RF cable, RF wireless, millimeter wave, optical, etc.) and/or communications or networking protocols (e.g., SONET, DOCSIS, IEEE Std. 802.3, ATM, X.25, Frame Relay, 3GPP, 3GPP2, WAP, SIP, UDP, FTP, RTP/RTCP, H.323, etc.).
As used herein, the term “network interface” refers to any signal, data, or software interface with a component, network or process including, without limitation, those of the FireWire (e.g., FW400, FW800, etc.), USB (e.g., USB2, USB 3.0), Ethernet (e.g., 10/100, 10/100/1000 (Gigabit Ethernet), 10-Gig-E, etc.), MoCA, Coaxsys (e.g., TVnet™), radio frequency tuner (e.g., in-band or OOB, cable modem, etc.), Wi-Fi (802.11), WiMAX (802.16), PAN (e.g., 802.15), cellular (e.g., LTE/LTE-A, 3GPP, 3GPP2, UMTS), or IrDA families.
As used herein, the terms “personal media device” and “PMD” refer to, without limitation, any device, whether portable or otherwise, capable of storing and/or rendering media.
As used herein, the term “secondary content” refers without limitation to content other than primary programming content, such as e.g., advertisements, promotions, “telescoping” content, info-mercials, trailers, icons or animated overlays, etc. which may be presented either alone or in conjunction with the primary (or yet other) content.
As used herein, the term “server” refers to, without limitation, any computerized component, system or entity regardless of form which is adapted to provide data, files, applications, content, or other services to one or more other devices or entities on a computer network.
As used herein, the term “user interface” refers to, without limitation, any visual, graphical, tactile, audible, sensory, or other means of providing information to and/or receiving information from a user or other entity.
As used herein, the term “Wi-Fi” refers to, without limitation, any of the variants of IEEE-Std. 802.11 or related standards including 802.11 a/b/g/n/s/v/ac or 802.11-2012, as well as so-called “Wi-Fi Direct”, each of the foregoing incorporated herein by reference in its entirety.
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (3GPP/3GPP2), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, Zigbee, RFID/NFC, narrowband/FDMA, OFDM, PCS/DCS, LTE/LTE-A, analog cellular, CDPD, satellite systems, millimeter wave or microwave systems, acoustic, and infrared (i.e., IrDA).
Overview
In one salient aspect, the present disclosure provides apparatus and methods for substantially automatically generating advertising scheduling and product (e.g., “bundle”) offerings for users of a managed content distribution network such as a cable, satellite, of HFCu network.
In one exemplary embodiment, the methods an apparatus disclosed herein leverage both a variety of available data sources, including available secondary content inventory (e.g., available advertising “slots” across a plurality of different content networks or channels), and indigenously developed data relating to behavior of individual network subscribers (or larger subsets of the subscriber population), as well as computer-based simulations and models to, inter alia, identify product offerings that will apply to desired numbers and/or segments of the network operator's subscribers and achieve their particular goals, and within certain budgetary prescribed frameworks or rules specified by the network operator's advertising customers.
This capability enables timely generation and implementation of customer-instituted advertising management plans and schedules (based on, e.g., a derived “spot count”, and built around a prescribed period such as a broadcast month), including for a multitude of customers of the network simultaneously, thereby providing a heretofore unavailable operational capability and profitability (analysis) for the network operator, while reducing the need for manual (i.e., human) input, and its associated overhead and latency. The network operator can therefore offer largely preconfigured or “off the shelf” advertising products to its customers (as well as more sophisticated, customized products) in a highly automated fashion, and which have a broad reach.
Such methods and apparatus also enable a relatively unsophisticated advertising customer of the network operator to specify their desired result in high-level terms, consistent with their budget, while obviating the need for such customer to have any in-depth knowledge of their intended consumers of their products/services, or how to reach them (e.g., which programs they watch, etc.).
Moreover, the foregoing analysis and correlation can be used as the basis for “products” that can be provided to other network operators, service providers, or entities (whether free or for consideration), including third party advertisers, irrespective of whether they actually purchase any particular bundle.
Exemplary embodiments of the apparatus and methods of the present disclosure are now described in detail. While these exemplary embodiments are described in the context of a managed content distribution network (e.g., hybrid fiber coax (HFC) cable) architecture having a multiple systems operator, digital networking capability, and plurality of client devices/CPE, and Internet delivery via e.g., RF QAM and DOCSIS cable modem, the general principles and advantages of the disclosure may be extended to other types of networks, architectures and applications, whether broadband, narrowband, wired or wireless, terrestrial or satellite, managed or unmanaged (or combinations thereof), or otherwise, the following therefore being merely exemplary in nature.
It will also be appreciated that while described generally in the context of a network providing service to a customer or consumer or end user (i.e., residential), the present disclosure may be readily adapted to other types of environments including, e.g., commercial/retail, or enterprise domain (e.g., businesses), and government/military applications. Myriad other applications are possible.
Also, while certain aspects are described primarily in the context of the well-known Internet Protocol (described in, inter alia, Internet Protocol DARPA Internet Program Protocol Specification, IETF RCF 791 (September 1981) and Deering et al., Internet Protocol, Version 6 (Ipv6) Specification, IETF RFC 2460 (December 1998), each of which is incorporated herein by reference in its entirety), it will be appreciated that the present disclosure may utilize other types of protocols (and in fact bearer networks to include other internets and intranets) to implement the described functionality.
Other features and advantages of the present disclosure, including improvements to computerized technology, will immediately be recognized by persons of ordinary skill in the art with reference to the attached drawings and detailed description of exemplary embodiments as given below.
It will also be recognized that while described primarily in the context of one or more relational databases, the various aspects of the disclosure may be implemented using other types or constructs of databases, whether alone or in combination with a relational database.
Managed Service Provider Network—
Moreover, the functions described below with respect to
The exemplary architecture 150 of
Content (e.g., audio, video, data, files, etc.) is provided in each downstream (in-band) channel associated with the relevant service group. To communicate with the headend or intermediary node (e.g., hub server), the client devices/CPE 106 may use the out-of-band (OOB) or DOCSIS channels and associated protocols. The OCAP 1.0, 2.0, 3.0, 3.1 (and subsequent) specification provides for exemplary networking protocols both downstream and upstream, although the present disclosure is in no way limited to these approaches.
In addition to “broadcast” content (e.g., video programming), the systems of
Referring again to
The edge switch 194 forwards the packets received from the CMTS 199 to the QAM modulator, which transmits the packets on one or more physical (QAM-modulated RF) channels to the CPE/client devices. The IP packets are typically transmitted on RF channels (e.g., DOCSIS QAMs) that are different that the RF channels used for the broadcast video and audio programming, although this is not a requirement. The client devices/CPE 106 are each configured to monitor the particular assigned RF channel (such as via a port or socket ID/address, or other such mechanism) for IP packets intended for the subscriber premises/address that they serve. For example, in one embodiment, a business customer premises obtains its Internet access (such as for a connected Wi-Fi AP) via a DOCSIS cable modem or other device capable of utilizing the cable “drop” to the premises (e.g., a premises gateway, etc.).
While the foregoing network architectures described herein can (and in fact do) carry packetized content (e.g., IP over MPEG for high-speed data or Internet TV, MPEG2 packet content over QAM for MPTS, etc.), they are often not optimized for such delivery. Hence, in accordance with another embodiment of the disclosure, a “packet optimized” delivery network is used for carriage of the packet content (e.g., Internet data, IPTV content, etc.).
In another embodiment, the methods and apparatus disclosed in U.S. Pat. No. 8,701,138 issued Apr. 15, 2014 and entitled “ZONE CONTROL METHODS AND APPARATUS”, which is incorporated herein by reference in its entirety, may be used consistent with the present disclosure. Specifically, the aforementioned patent discloses, inter alia, methods and apparatus for selectively providing targeted secondary content to a user based at least in part on a logical, geographic, or other “zone” or space associated with the user. In one embodiment, when the user requests primary content at a non-legacy device (e.g., an IP-capable device such as an IP-enabled DSTB, portable computer, or 4G smartphone), the secondary content that is provided therewith is the same secondary content which would have been provided to the user had the request been generated at a legacy device; i.e., the “zone” (whether geographic, demographic, psychographic, or otherwise) is preserved. In one implementation, a non-legacy device is associated with a user's zone by introducing a link between a server providing content to the device (e.g., a web server) and a server which has the ability to determine an appropriate zone for the user. This is accomplished for example by associating each user with an advertisement zone identifier. Alternatively, the foregoing may be accomplished by associating each user with a device that is associated with a physical hub or node identifier, which, in turn, is associated with an advertisement zone identifier. In yet another variant, a service group identifier (rather than advertisement zone identifier) may be used.
Hence, using such methods and apparatus, the “reach” of a given advertising schedule (and its associated particular spots) generated using the methodology herein that is based on data derived from legacy CPE can be preserved for non-legacy, mobile devices.
It will also be appreciated that the methods and apparatus described herein can be readily adapted for use with non-linear delivery paradigms such as e.g., VOD (video on demand). In one such variant, non-linear content-related events can be modeled according to a statistical or other scheme, such as based on historical activity (e.g., historical data indicating that in a given zone, there are certain frequencies and/or temporal distributions of activities such as VOD request, Start-Over requests, IP-based streaming sessions, etc.), and such information used as part of the aforementioned “inventory” of insertion opportunities,
In one implementation, the non-linear content (e.g., VOD movie or TV episode) is characterized, whether by the MSO or an upstream content source or processing entity, as to one or more themes or logical threads associated with the content. For example, an animated movie about pets could be categorized in terms of themes relating to (i) animals generally; (ii) dogs and/or cats specifically; and (iii) humane societies (e.g., SPCA), was well as others. Such theme characterizations (e.g., in the form of alphanumeric codes or the like) can be used to correlate the movie with one or more networks/content channels (e.g., Animal Planet), the latter which also has associated insertion opportunities. Hence, advertisements targeted at the network/content channel would also presumably have at least some applicability to requesters of the non-linear content. In one methodology, one or more insertion opportunities associated with the non-linear content (e.g., at onset, such as when VOD session is queueing up the requested content for delivery, at a pre-planned intermediate break within the movie, at the end of the movie, or as part of a telescoping function associated with the movie) are identified, whether before delivery or “on the fly” during delivery, and the theme identifiers are accessed and correlated to an extant network/content channel campaign or bundle, and one or more secondary content elements drawn from the latter for insertion into the non-linear opportunities based on e.g., fitting within a prescribed temporal window, suitability for audience (e.g., no “adult” themes for a prospectively juvenile audience), and other such criteria relating to the compatibility of the secondary content for the non-linear (primary) content and its audience.
The network architecture(s) of
In yet other implementations, the aforementioned content distribution network 100 comprises both “managed” and “unmanaged” (or off-network) services, so that a network operator can utilize both its own and external infrastructure to provide content delivery (including secondary content as part of the foregoing “bundles”) to its subscribers in various locations and use cases. In one variant of this approach, network services are sent “over the top” of other provider's infrastructure, thereby making the service network substantially network-agnostic.
In another variant, a cooperative approach between service providers is utilized, so that features or capabilities present in one provider's network (e.g., authentication of mobile devices) can be leveraged by another provider operating in cooperation therewith.
Notwithstanding the foregoing, it will be appreciated that the various secondary content management aspects and functionalities of the present disclosure are effectively agnostic to the bearer network architecture or medium, and hence literally any type of delivery mechanism can be utilized consistent with the disclosure provided herein.
Secondary Content Management Architecture-
Referring now to
In operation, the SCME 203 obtains (via the SCME server 202) all of the necessary data for performance of the methodologies described below with respect to
The AM data aggregator 212 is in the illustrated embodiment a software process which obtains and aggregates audience measurement data from the various CPE or other client devices 106 of the MSO network, such as via an OOB upstream message from each subscriber's DSTB which includes tuning data, or alternatively via a network entity receiving or otherwise providing the tuning data (e.g., a switched server such as that of
In this manner, the SCME 203 can obtain AM data only for relevant subsets of the MSO subscriber pool (or the entirety thereof) when performing its analysis. It will be appreciated that while an MSO-based AM database and aggregator are shown, third party sources of data (e.g., so-called “TAM” systems and/or Nielsen-derived AM data) may be used consistent with the present disclosure as well.
Likewise, the inventory aggregator 208 comprises a software process which accesses third party and/or MSO data to determine an inventory of available spots within various content networks during a given time period. For instance, in one variant, the SCME 203 specifies a relevant time period (e.g., one broadcast month), and accordingly accesses the available inventory database 206 for relevant data. If such data is not available in the database 206, the aggregator 208 may query external databases or sources (via, e.g., the Internet 109 as shown) to obtain the necessary information. It will be recognized that while the aggregator 208 is shown as an MSO entity, in fact it may be wholly or partly managed (or its functionality provided) by a third party service.
Secondary Content Measurement Entity (SCME)-
The SCME server 202 also includes a user or operator interface 256, which is useful for structuring schedules, conducting simulations, generating the output schedule data in a tangible form for provision to customers, generating reports, etc. In one embodiment, the user interface is implemented in a windowed software environment of the type well known in the computer arts, although other approaches may be used. Moreover, it is appreciated that the user interface 256 may also include a remote interface (such as via a web-based client application 222 shown in
In the illustrated embodiment, the SCME process 203 (i.e., computerized logic rendered as code) is implemented on one or more servers 202 (which may be geographically localized, such as in a server “farm”, or alternatively distributed across multiple geographic regions), and may also be physically and/or logically integrated with other components of the MSO network, such as the aforementioned packaging entity, network management modules, etc.
In the illustrated implementation, the SCME server functionality is based on an exemplary Microsoft® SQL Server® Enterprise suite, although it will be appreciated that other configurations may be used consistent with the present disclosure. The exemplary SQL Server Enterprise suite provides, inter alia, high levels of speed/performance, encryption, local and “cloud” database access, and policy-based management. Specifically, SQL Server Reporting Services (SSRS) and SQL Server Analysis Services (SSAS) are two salient features of SQL Server that enable the exemplary SQL Server to provide the desired functionality in the exemplary embodiments, as well as enhanced data partitioning and dimensional table functionality.
As is well known, data warehouses are typically built using dimensional data models which include fact and dimension tables. Dimension tables are used to describe dimensions; they contain e.g., dimension keys, values and attributes. As but one example, an exemplary “time” dimension might contain chronological increments or references (e.g., hour, day, month, etc.). An exemplary product or service dimension could contain a name and description of products or services the MSO provides (e.g., advertising schedules for particular reach and frequency targets such as described above), their pricing, and other attributes as applicable such as Syscodes.
Dimension tables are often small; however, in the exemplary embodiment described herein, the dimension tables may grow to literally hundreds or thousands of entries or rows; e.g., one for each generated schedule, Syscode, advertiser or customer account, DMA/markets, etc.
Data warehouses may have multiple time dimensions as well. Since the warehouse may be used for finding and examining performance such as reach and frequency, it is often important to understand when each event has occurred; e.g., AM tuning events associated with subscriber client devices, airing or broadcast of certain ads, etc. A common time dimension is calendar time.
Fact tables may contain e.g., keys to dimension tables, as well as measurable facts useful to implementing the various algorithms described herein. For example, in one embodiment, the MSO might maintain a fact table recording provision of an advertising service or “product” to a given customer, or other such records.
Similar to data warehouses, such fact tables can grow very large, with thousands or even millions of rows in the exemplary context of a nationwide MSO with millions of subscribers and thousands of advertisers. This underscores some of the advantageous aspects of the present disclosure; i.e., efficient accumulation, storage, management, simulation/modeling, and utilization of possibly hundreds or thousands of entries (e.g., events) for thousands of advertisers (and tuning event data for millions of subscribers) is not only arduous, but effectively impossible using any manual processes, especially if the analysis, update, and offering of advertising products is to be implemented in a timely fashion (i.e., such that the latency between an advertiser wishing to engage in an advertising schedule or campaign, and the modeling, simulation, and actual implementation of the campaign is minimized).
It will be appreciated from the foregoing that various levels of “granularity” may be used in constructing the aforementioned data structures, depending on factors such as (i) availability of data (e.g., data may only be available in certain time increments, certain performance variables, etc.); (ii) desired frequency of simulation or analysis; (iii) desired end result or performance metrics, etc.
In implementation, the SCME application 203 comprises one or more computer programs with a plurality of instructions which when executed by the processor 250, cause the SCME to process the collected data and generate simulations, output schedules, etc. as described further below. In one implementation, the application computer program is rendered in a C#(“C Sharp”) object-oriented programming language (C# was chosen in the exemplary embodiment for use of the .NET Framework, which provides large libraries with built in capabilities and methods useful in the context of the present disclosure), although it will be appreciated that other languages may be used consistent with the present disclosure. The activity data collection entity 208 processes the collected data by, for example, validating, analyzing, and/or normalizing the collected data to generate a database of user and activity information. The SCME 203 normalizes (if necessary) the data by, for example, extracting information from the data and organizing the extracted information into a predefined format. The extracted information may include e.g., a user identifier, an activity identifier, and a data and time stamp for the activity. Processing the collected data prepares the data for correlation with other additional data obtained from the other database sources of
Methodology
It may also be related to or derived from any number of different populations (or subsets thereof), as well as having varying temporal relationships. For example, the data may be obtained (generally) from (i) the target consumers of the advertised product/service, e.g., the subscribers of the MSO's managed network only, (ii) based on data from non-subscriber persons (e.g., generated by a third party from the population at large), or (iii) a mixture of (i) and (ii). The obtained data may be real-time or near-real time (such as is collected on an ongoing basis from subscribers via their DSTB tuning, online, or other activities), or may be historical in nature, such as where the data is associated with a particular temporal period (e.g., last calendar month), or an event (e.g., during the NFL Super Bowl of the prior year).
Next, per step 304, a current secondary content insertion “inventory” is obtained, whether from data already obtained by the system (e.g., stored in an MSO database), “pushed” to the MSO (such as via periodic updates from a network content provider or third party aggregating service), or retrieved via a query or data “pull” (e.g., to the network content provider or aggregator). In the exemplary embodiment, the inventory comprises data (files or records) indicative of placement opportunities available in the future, and their associated content provider network (e.g., three 30-second time slots during NBC Nightly News or the like). Such data may be individual in granularity (i.e., as to each individual slot), or aggregated at varying levels (i.e., as to multiple slots on the same content network, multiple slots at the same time but on different networks, and/or both). A standardized data format—e.g., “flat” csv (comma separated values) format—is utilized in the exemplary implementation in order to make compilation and sorting of the data efficient as possible. Next, per step 306 of the method 300, data indicating one or more rate structures is determined by the system. For example, in one implementation, data files are obtained from an MSO-maintained database, which indicate advertising rates to be applied to given slots/content networks. Such rates may be specified in relative or absolute numbers (e.g., $X, +$X<A>, or the like), or may be derived from a prescribed formula or set of formulas from which the desired rate can be determined by entering one or more arguments/variables. In an exemplary implementation (described below), a multi-tier pricing model is applied. The rate structure may also be non-static, such that even after a schedule is determined (step 310) and delivered to a customer, it may change based on e.g., prevailing conditions such as changes in demand, unforeseen events, etc.
Per step 308, the “spots” are calculated. In the exemplary embodiment, this calculation involves determining the number of individual spots that will achieve the desired performance or result (e.g., percentage of penetration and/or frequency, and/or other parametric target values). This can be determined by, inter alia, modeling and simulation based on prior performance data associated with individual selected advertisements or content elements (see detailed discussion below).
Per step 310, assembly of the schedule is performed. In the exemplary embodiment, the scheduling calculation takes into account: (a) the available inventory; (b) prescribed restrictions or screening criteria (e.g., customer budget and/or desires, if known); (c) the imported rate data; (d) the selected secondary content elements; and (e) the number of spots needed to attain the desired performance (i.e., results from step 308 above). The output of step 310 may be for instance an electronic schedule indicative of what content elements (e.g., advertisements) should be run in which slots on which content networks; this schedule can be fed back to a content packager such as that previously referenced.
In the exemplary embodiment, the methodology 300 of
Audience measurement (AM) data, (such as e.g., the data associated with the media consumption database of the assignee hereof relating to subscriber client device 106 usage and tuning events) is also used to determine an optimal “spot count” (i.e., number of individual advertising time slots) to reach a specific share of households or other target entities within a given advertising zone, and achieve a target frequency. As used herein, the term “reach” refers without limitation to the number of viewers that have seen an advertisement/campaign, while “frequency” refers without limitation to the number of discrete times a viewer has seen an advertisement/campaign. Hence, targets can be specified both in terms of reach and frequency (and in fact other parameters, such as e.g., impression quality). In an exemplary implementation, the reach targets are configurable, and are set to prescribed heuristic or “fuzzy” logic variable values such as “20%”, “40%”, and “60%”, or “low”, “medium”, and “high” of households within one or more given advertising zones. The frequency for each of the targets can also be independently set, such as at discrete numerical values (e.g., 1, 2, and 3 times). So, for example, a given target “tuple” of {R, F} can be generated by the system, such as where an advertiser wishes 40% of a given zone to be “penetrated” to a depth of 2 impressions per viewer (i.e., 40% of the zone has seen the ad at least two different times).
Other examples of performance criteria that may be used consistent with the present disclosure might include: (i) percentage (%) of spots on a per-network tier basis, (ii) % of spots on a per-daypart basis (e.g., “morning drive”, “primetime”, “breakfast”, etc.), or (iii) a numerical quantity of individual spots.
The foregoing schedules may optimized around a time frame, such as e.g., one (1) broadcast month, two (2) broadcast weeks, etc., are market-based, and are provided at the advertising zone (Syscode) level.
Once the spot counts are determined, a second month of historical data is selected, and the modeling simulations re-run (typically numerous times) to validate the previously determined spot counts. It will also be appreciated that where some disparity exists (e.g., the validation data aligns poorly with the modeled simulations), changes to the model/assumptions can be made and the simulations re-run to test the correlation, and/or other techniques can be used (such as averaging spot counts derived from varying sets of simulation assumptions and/or validation data, performing a linear regression, etc.).
Referring now to
As shown in
Next, per step 406, the selected market/DMA from step 404 is correlated to one or more Syscodes, such as by logical entry into the Syscode database 210 using the various DMA/market parameters as search criteria.
Per steps 408 and 410, the inventory data is imported from the inventory database 206 and analyzed so as to find the content networks on which the MSO can insert secondary content such as advertisements, and to determine the amount (number, size) of available spots for a given content network.
Next, per step 412, the advertiser-selected criteria for performance or penetration are applied, such as those described supra.
Based on the criteria of step 412, the method 400 next chooses the networks to include in each advertising schedule in step 414. As part of this process, certain content networks may be excluded, such as based on their typical content, or to be reserved for future demand (i.e., planned use in another schedule or campaign).
Per step 418, a count of the viewership for each content network is obtained, grouped by one or more prescribed criteria (e.g., by content network tier and/or daypart). Such grouping is constructed in order to appeal to clients, and ensure “clearance” (i.e., that an advertisement runs as assigned; if an advertisement's rate is too low, it can be replaced by a more highly placed spot). For instance, in one implementation, spots are allocated by network tier (e.g., allocated across “top 10” and “other” content networks; see
Per step 420, the selected content networks are ranked, such as based on reach, frequency and/or inventory availability (defined above). See for example the exemplary ranking of
Per step 422, the relevant rate data (e.g., “rate card”) for the target market/DMA is imported, as well as the timing schedule for the slots
Next, per step 424, unique secondary content (e.g., advertisements) for the timeframe (e.g., part of day, time of day, or date range) selected in step 402 is selected. In the exemplary implementation, advertisements having an associated cost outside of certain prescribed criteria are excluded (e.g., less than a certain dollar floor, and greater than one or more rates specified on the rate card). As will be appreciated, rates for advertisements may vary based on e.g., time of day (prime time typically more than morning), proximity to other scheduled events, day of the week.
Per step 426, the selected advertisements from step 422 are each assign a random number, and then each random advertising event is ranked.) In one implementation, advertisements are selected based on the randomly assigned number falling within a range (e.g., all ads with numbers 1-1000). The quantity of advertisements for each daypart, network tier, and or other grouping criteria is also specified in this step.
Per step 432, the performance of the simulations is evaluated, including evaluating the number of times that the simulations for the number of ads achieved the prescribed performance target(s). From this data, the minimum number of spots necessary to achieve the target(s) is determined per step 434, such as via summing of the number of times that the simulation achieved the goal. In one exemplary implementation, the simulation must achieve the target (e.g., 95% of the time) for the spots quantity to be selected. For instance, one-thousand (1000) simulations are run per spot count; as such the target would have to be achieved 950 times. Based on this determination, the simulations are repeated, yet utilizing different source data (e.g., for a different month) to validate the spot counts (step 436).
Lastly, per step 438, the validated spot data from step 436 is used to assign a price the generated schedule, such as via use of the average unit rate, and include the reach, frequency and impression data.
In the exemplary embodiment, multiple (three) different suggested pricing models for customer advertising bundles are utilized, although it will be appreciated that more or less pricing models or tiers can be utilized consistent with the methodologies disclosed herein. Specifically, these three (3) models include: (i) a “rate card” model, wherein the spots are priced according to the preexisting market rate card (at their cost in rate cards (before any discounts; see discussion above); (ii) an effective rate model, wherein spots are priced according to the rate at which they were sold in the market (after discounts), and (iii) a blended rate model, wherein a certain category (e.g., top 10 prime spots) are priced according to one scheme such as a rate card, and all other spots are priced according to effective rate. In the exemplary implementation of the method 400 (see
It will be appreciated that while certain steps and aspects of the various methods and apparatus described herein may be performed by a human being, the disclosed computer technology improvements are computer-implemented, and computerized apparatus and methods are necessary to fully implement these aspects for any number of reasons including, without limitation, commercial viability, practicality, and even feasibility (i.e., certain steps/processes simply cannot be performed by a human being in any viable fashion).
This application is a divisional of, and claims priority to, co-owned and co-pending U.S. patent application Ser. No. 15/277,840 of the same title filed on Sep. 27, 2016, and issuing as U.S. Pat. No. 11,212,593 on Dec. 28, 2021, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4521881 | Stapleford et al. | Jun 1985 | A |
4546382 | McKenna et al. | Oct 1985 | A |
4602279 | Freeman | Jul 1986 | A |
4905080 | Watanabe et al. | Feb 1990 | A |
4930120 | Baxter et al. | May 1990 | A |
5155591 | Wachob | Oct 1992 | A |
5373315 | Dufresne et al. | Dec 1994 | A |
5481294 | Thomas et al. | Jan 1996 | A |
5497185 | Dufresne et al. | Mar 1996 | A |
5528284 | Iwami et al. | Jun 1996 | A |
5600364 | Hendricks et al. | Feb 1997 | A |
5675647 | Garneau et al. | Oct 1997 | A |
5708961 | Hylton et al. | Jan 1998 | A |
5758257 | Herz et al. | May 1998 | A |
5774170 | Hite et al. | Jun 1998 | A |
5793409 | Tetsumura | Aug 1998 | A |
5812642 | Leroy | Sep 1998 | A |
5818438 | Howe et al. | Oct 1998 | A |
5842221 | Schmonsees | Nov 1998 | A |
5862312 | Mann et al. | Jan 1999 | A |
5913040 | Rakavy et al. | Jun 1999 | A |
5914945 | Abu-Amara et al. | Jun 1999 | A |
5929849 | Kikinis | Jul 1999 | A |
5956037 | Osawa et al. | Sep 1999 | A |
5963844 | Dail | Oct 1999 | A |
5974299 | Massetti | Oct 1999 | A |
6002393 | Hite et al. | Dec 1999 | A |
6016316 | Moura et al. | Jan 2000 | A |
6029045 | Picco et al. | Feb 2000 | A |
6047327 | Tso et al. | Apr 2000 | A |
6081830 | Schindler | Jun 2000 | A |
6088722 | Herz et al. | Jul 2000 | A |
6124878 | Adams et al. | Sep 2000 | A |
6134532 | Lazarus et al. | Oct 2000 | A |
6161142 | Wolfe et al. | Dec 2000 | A |
6167432 | Jiang | Dec 2000 | A |
6169728 | Perreault et al. | Jan 2001 | B1 |
6177931 | Alexander et al. | Jan 2001 | B1 |
6181697 | Nurenberg et al. | Jan 2001 | B1 |
6182050 | Ballard | Jan 2001 | B1 |
6202210 | Ludtke | Mar 2001 | B1 |
6211901 | Imajima et al. | Apr 2001 | B1 |
6216129 | Eldering | Apr 2001 | B1 |
6219710 | Gray et al. | Apr 2001 | B1 |
6259701 | Shur et al. | Jul 2001 | B1 |
6272176 | Srinivasan | Aug 2001 | B1 |
6282713 | Kitsukawa et al. | Aug 2001 | B1 |
6292624 | Saib et al. | Sep 2001 | B1 |
6330609 | Garofalakis et al. | Dec 2001 | B1 |
6389538 | Gruse et al. | May 2002 | B1 |
6396055 | Biedendorf | May 2002 | B1 |
6446261 | Rosser | Sep 2002 | B1 |
6463585 | Hendricks et al. | Oct 2002 | B1 |
6467089 | Aust et al. | Oct 2002 | B1 |
6502076 | Smith | Dec 2002 | B1 |
6519062 | Yoo | Feb 2003 | B1 |
6523696 | Saito et al. | Feb 2003 | B1 |
6549718 | Grooters et al. | Apr 2003 | B1 |
6560578 | Eldering | May 2003 | B2 |
6601237 | Ten et al. | Jul 2003 | B1 |
6604138 | Virine et al. | Aug 2003 | B1 |
6615039 | Eldering | Sep 2003 | B1 |
6615251 | Klug et al. | Sep 2003 | B1 |
6640145 | Hoffberg et al. | Oct 2003 | B2 |
6647548 | Lu et al. | Nov 2003 | B1 |
6671736 | Virine et al. | Dec 2003 | B2 |
6681393 | Bauminger et al. | Jan 2004 | B1 |
6687735 | Logston et al. | Feb 2004 | B1 |
6694145 | Riikonen et al. | Feb 2004 | B2 |
6700624 | Yun | Mar 2004 | B2 |
6704930 | Eldering et al. | Mar 2004 | B1 |
6718551 | Swix et al. | Apr 2004 | B1 |
6725461 | Dougherty et al. | Apr 2004 | B1 |
6738978 | Hendricks et al. | May 2004 | B1 |
6742187 | Vogel | May 2004 | B1 |
6769127 | Bonomi et al. | Jul 2004 | B1 |
6771290 | Hoyle | Aug 2004 | B1 |
6775843 | McDermott | Aug 2004 | B1 |
6785901 | Horiwitz et al. | Aug 2004 | B1 |
6788676 | Partanen et al. | Sep 2004 | B2 |
6813776 | Chernock et al. | Nov 2004 | B2 |
6859845 | Mate | Feb 2005 | B2 |
6898762 | Ellis et al. | May 2005 | B2 |
6901606 | Wright et al. | May 2005 | B2 |
6909837 | Unger | Jun 2005 | B1 |
6915528 | McKenna, Jr. | Jul 2005 | B1 |
6917614 | Laubach et al. | Jul 2005 | B1 |
6917641 | Kotzin et al. | Jul 2005 | B2 |
6925257 | Yoo | Aug 2005 | B2 |
6944150 | McConnell et al. | Sep 2005 | B1 |
6990680 | Wugofski | Jan 2006 | B1 |
7006881 | Hoffberg et al. | Feb 2006 | B1 |
7009972 | Maher et al. | Mar 2006 | B2 |
7017179 | Asamoto et al. | Mar 2006 | B1 |
7024676 | Klopfenstein | Apr 2006 | B1 |
7027460 | Iyer et al. | Apr 2006 | B2 |
7028071 | Slik | Apr 2006 | B1 |
7039048 | Monta et al. | May 2006 | B1 |
7039928 | Kamada et al. | May 2006 | B2 |
7054902 | Toporek et al. | May 2006 | B2 |
7068639 | Varma et al. | Jun 2006 | B1 |
7075945 | Arsenault et al. | Jul 2006 | B2 |
7099308 | Merrill et al. | Aug 2006 | B2 |
7100183 | Kunkel et al. | Aug 2006 | B2 |
7106382 | Shiotsu | Sep 2006 | B2 |
7109848 | Schybergson | Sep 2006 | B2 |
7143431 | Eager et al. | Nov 2006 | B1 |
7146627 | Ismail et al. | Dec 2006 | B1 |
7149772 | Kalavade | Dec 2006 | B1 |
7152237 | Flickinger et al. | Dec 2006 | B2 |
7155508 | Sankuratripati et al. | Dec 2006 | B2 |
7174126 | McElhatten et al. | Feb 2007 | B2 |
7174127 | Otten et al. | Feb 2007 | B2 |
7174385 | Li | Feb 2007 | B2 |
7191461 | Arsenault et al. | Mar 2007 | B1 |
7197472 | Conkwright et al. | Mar 2007 | B2 |
7209458 | Ahvonen et al. | Apr 2007 | B2 |
7213036 | Apparao et al. | May 2007 | B2 |
7222078 | Abelow | May 2007 | B2 |
7228555 | Schlack | Jun 2007 | B2 |
7237250 | Kanojia et al. | Jun 2007 | B2 |
7242960 | Van et al. | Jul 2007 | B2 |
7242988 | Hoffberg et al. | Jul 2007 | B1 |
7246150 | Donoho et al. | Jul 2007 | B1 |
7246172 | Yoshiba et al. | Jul 2007 | B2 |
7254608 | Yeager et al. | Aug 2007 | B2 |
7266836 | Anttila et al. | Sep 2007 | B2 |
7280737 | Smith | Oct 2007 | B2 |
7281261 | Jaff et al. | Oct 2007 | B2 |
7317728 | Acharya et al. | Jan 2008 | B2 |
7325073 | Shao et al. | Jan 2008 | B2 |
7327692 | Ain et al. | Feb 2008 | B2 |
7330483 | Peters, Jr. et al. | Feb 2008 | B1 |
7352775 | Powell | Apr 2008 | B2 |
7355980 | Bauer et al. | Apr 2008 | B2 |
7356751 | Levitan | Apr 2008 | B1 |
7357775 | Koh | Apr 2008 | B1 |
7363371 | Kirby et al. | Apr 2008 | B2 |
7363643 | Drake et al. | Apr 2008 | B2 |
7367043 | Dudkiewicz et al. | Apr 2008 | B2 |
7369750 | Cheng et al. | May 2008 | B2 |
7376386 | Phillips et al. | May 2008 | B2 |
7444655 | Sardera | Oct 2008 | B2 |
7457520 | Rosetti et al. | Nov 2008 | B2 |
7486869 | Alexander et al. | Feb 2009 | B2 |
7567983 | Pickelsimer et al. | Jul 2009 | B2 |
7577118 | Haumonte et al. | Aug 2009 | B2 |
7592912 | Hasek et al. | Sep 2009 | B2 |
7602820 | Helms et al. | Oct 2009 | B2 |
7603529 | MacHardy et al. | Oct 2009 | B1 |
7650319 | Hoffberg et al. | Jan 2010 | B2 |
7690020 | Lebar | Mar 2010 | B2 |
7693171 | Gould | Apr 2010 | B2 |
7712125 | Herigstad et al. | May 2010 | B2 |
7720432 | Colby et al. | May 2010 | B1 |
7721314 | Sincaglia et al. | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730509 | Boulet et al. | Jun 2010 | B2 |
7742074 | Minatogawa | Jun 2010 | B2 |
7763360 | Paul et al. | Jul 2010 | B2 |
7783316 | Mitchell | Aug 2010 | B1 |
7788687 | Conrad et al. | Aug 2010 | B1 |
7801803 | Forlai | Sep 2010 | B2 |
7809942 | Baran et al. | Oct 2010 | B2 |
7889765 | Brooks et al. | Feb 2011 | B2 |
7900052 | Jonas et al. | Mar 2011 | B2 |
7900229 | Dureau | Mar 2011 | B2 |
7954131 | Cholas et al. | May 2011 | B2 |
8024762 | Britt | Sep 2011 | B2 |
8028322 | Riedl et al. | Sep 2011 | B2 |
8042131 | Flickinger | Oct 2011 | B2 |
8065703 | Wilson et al. | Nov 2011 | B2 |
8073460 | Scofield et al. | Dec 2011 | B1 |
8078696 | Lajoie et al. | Dec 2011 | B2 |
8079052 | Chen et al. | Dec 2011 | B2 |
8090014 | Cheung et al. | Jan 2012 | B2 |
8090104 | Wajs et al. | Jan 2012 | B2 |
8095610 | Gould et al. | Jan 2012 | B2 |
8099757 | Riedl et al. | Jan 2012 | B2 |
8151294 | Carlucci et al. | Apr 2012 | B2 |
8151295 | Eldering et al. | Apr 2012 | B1 |
8156520 | Casagrande et al. | Apr 2012 | B2 |
8165916 | Hoffberg et al. | Apr 2012 | B2 |
8181209 | Hasek et al. | May 2012 | B2 |
8205226 | Ko et al. | Jun 2012 | B2 |
8214256 | Riedl et al. | Jul 2012 | B2 |
8249918 | Biere et al. | Aug 2012 | B1 |
8280982 | La et al. | Oct 2012 | B2 |
8296185 | Isaac | Oct 2012 | B2 |
8296643 | Vasilik | Oct 2012 | B1 |
8341242 | Dillon et al. | Dec 2012 | B2 |
8347341 | Markley et al. | Jan 2013 | B2 |
8365213 | Orlowski | Jan 2013 | B1 |
8396055 | Patel et al. | Mar 2013 | B2 |
8396056 | Dalton, Jr. et al. | Mar 2013 | B2 |
8472371 | Bari et al. | Jun 2013 | B1 |
8484511 | Engel et al. | Jul 2013 | B2 |
8516529 | Lajoie et al. | Aug 2013 | B2 |
8561113 | Cansler et al. | Oct 2013 | B2 |
8561116 | Hasek | Oct 2013 | B2 |
8571931 | Riedl et al. | Oct 2013 | B2 |
8621501 | Matheny et al. | Dec 2013 | B2 |
8701138 | Stern et al. | Apr 2014 | B2 |
8769559 | Moon et al. | Jul 2014 | B2 |
8838149 | Hasek | Sep 2014 | B2 |
8848969 | Ramsdell et al. | Sep 2014 | B2 |
8935721 | Tidwell et al. | Jan 2015 | B2 |
9021566 | Panayotopoulos et al. | Apr 2015 | B1 |
9047621 | Newton | Jun 2015 | B1 |
9178634 | Tidwell et al. | Nov 2015 | B2 |
9215423 | Kimble et al. | Dec 2015 | B2 |
9906838 | Cronk et al. | Feb 2018 | B2 |
10506296 | Bonvolanta et al. | Dec 2019 | B2 |
20010004768 | Hodge et al. | Jun 2001 | A1 |
20010013123 | Freeman et al. | Aug 2001 | A1 |
20010056573 | Kovac et al. | Dec 2001 | A1 |
20020013943 | Haberman et al. | Jan 2002 | A1 |
20020026496 | Boyer et al. | Feb 2002 | A1 |
20020027883 | Belaiche | Mar 2002 | A1 |
20020032754 | Logston et al. | Mar 2002 | A1 |
20020049902 | Rhodes | Apr 2002 | A1 |
20020055924 | Liming | May 2002 | A1 |
20020056107 | Schlack | May 2002 | A1 |
20020056125 | Hodge et al. | May 2002 | A1 |
20020059577 | Lu et al. | May 2002 | A1 |
20020059602 | Macrae et al. | May 2002 | A1 |
20020059619 | Lebar | May 2002 | A1 |
20020069404 | Copeman et al. | Jun 2002 | A1 |
20020073419 | Yen et al. | Jun 2002 | A1 |
20020073421 | Levitan et al. | Jun 2002 | A1 |
20020077787 | Rappaport et al. | Jun 2002 | A1 |
20020078441 | Drake et al. | Jun 2002 | A1 |
20020078444 | Krewin et al. | Jun 2002 | A1 |
20020087975 | Schlack | Jul 2002 | A1 |
20020087976 | Kaplan et al. | Jul 2002 | A1 |
20020095684 | St. John et al. | Jul 2002 | A1 |
20020100063 | Herigstad et al. | Jul 2002 | A1 |
20020104083 | Hendricks et al. | Aug 2002 | A1 |
20020104096 | Cramer et al. | Aug 2002 | A1 |
20020112240 | Bacso et al. | Aug 2002 | A1 |
20020120498 | Gordon et al. | Aug 2002 | A1 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20020124182 | Bacso et al. | Sep 2002 | A1 |
20020129368 | Schlack et al. | Sep 2002 | A1 |
20020144263 | Eldering et al. | Oct 2002 | A1 |
20020147771 | Traversat et al. | Oct 2002 | A1 |
20020147984 | Tomsen et al. | Oct 2002 | A1 |
20020152299 | Traversat et al. | Oct 2002 | A1 |
20020154655 | Gummalla et al. | Oct 2002 | A1 |
20020163928 | Rudnick et al. | Nov 2002 | A1 |
20020166119 | Cristofalo | Nov 2002 | A1 |
20020174430 | Ellis et al. | Nov 2002 | A1 |
20020178445 | Eldering et al. | Nov 2002 | A1 |
20020178447 | Plotnick et al. | Nov 2002 | A1 |
20020184091 | Pudar | Dec 2002 | A1 |
20020184629 | Sie et al. | Dec 2002 | A1 |
20020184634 | Cooper | Dec 2002 | A1 |
20020184635 | Istvan | Dec 2002 | A1 |
20020188744 | Mani | Dec 2002 | A1 |
20020194608 | Goldhor et al. | Dec 2002 | A1 |
20030004810 | Eldering | Jan 2003 | A1 |
20030005446 | Jaff et al. | Jan 2003 | A1 |
20030018977 | McKenna | Jan 2003 | A1 |
20030020744 | Ellis et al. | Jan 2003 | A1 |
20030030751 | Lupulescu et al. | Feb 2003 | A1 |
20030033199 | Coleman | Feb 2003 | A1 |
20030056217 | Brooks | Mar 2003 | A1 |
20030077067 | Wu et al. | Apr 2003 | A1 |
20030086422 | Klinker et al. | May 2003 | A1 |
20030093311 | Knowlson | May 2003 | A1 |
20030093784 | Dimitrova et al. | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030093792 | Labeeb et al. | May 2003 | A1 |
20030101449 | Bentolila et al. | May 2003 | A1 |
20030101451 | Bentolila et al. | May 2003 | A1 |
20030101454 | Ozer | May 2003 | A1 |
20030110499 | Knudson et al. | Jun 2003 | A1 |
20030110503 | Perkes | Jun 2003 | A1 |
20030115601 | Palazzo et al. | Jun 2003 | A1 |
20030115612 | Mao et al. | Jun 2003 | A1 |
20030123465 | Donahue | Jul 2003 | A1 |
20030126244 | Smith et al. | Jul 2003 | A1 |
20030135513 | Quinn et al. | Jul 2003 | A1 |
20030140351 | Hoarty et al. | Jul 2003 | A1 |
20030145323 | Hendricks et al. | Jul 2003 | A1 |
20030149975 | Eldering et al. | Aug 2003 | A1 |
20030149990 | Anttila et al. | Aug 2003 | A1 |
20030149993 | Son et al. | Aug 2003 | A1 |
20030166401 | Combes et al. | Sep 2003 | A1 |
20030169234 | Kempisty | Sep 2003 | A1 |
20030172374 | Vinson et al. | Sep 2003 | A1 |
20030172376 | Coffin | Sep 2003 | A1 |
20030177495 | Needham et al. | Sep 2003 | A1 |
20030179865 | Stillman et al. | Sep 2003 | A1 |
20030198461 | Taylor et al. | Oct 2003 | A1 |
20030208767 | Williamson et al. | Nov 2003 | A1 |
20030217365 | Caputo | Nov 2003 | A1 |
20030220100 | McElhatten et al. | Nov 2003 | A1 |
20030229681 | Levitan | Dec 2003 | A1 |
20030237090 | Boston et al. | Dec 2003 | A1 |
20040001087 | Warmus et al. | Jan 2004 | A1 |
20040030747 | Oppermann et al. | Feb 2004 | A1 |
20040034873 | Zenoni | Feb 2004 | A1 |
20040034877 | Nogues | Feb 2004 | A1 |
20040045032 | Cummings et al. | Mar 2004 | A1 |
20040045035 | Cummings et al. | Mar 2004 | A1 |
20040045037 | Cummings et al. | Mar 2004 | A1 |
20040047599 | Grzeczkowski | Mar 2004 | A1 |
20040060076 | Song | Mar 2004 | A1 |
20040070678 | Toyama et al. | Apr 2004 | A1 |
20040073915 | Dureau | Apr 2004 | A1 |
20040078809 | Drazin | Apr 2004 | A1 |
20040083177 | Chen et al. | Apr 2004 | A1 |
20040103429 | Carlucci et al. | May 2004 | A1 |
20040109672 | Kim et al. | Jun 2004 | A1 |
20040117817 | Kwon et al. | Jun 2004 | A1 |
20040133467 | Siler | Jul 2004 | A1 |
20040133923 | Watson et al. | Jul 2004 | A1 |
20040137918 | Varonen et al. | Jul 2004 | A1 |
20040138909 | Mayer | Jul 2004 | A1 |
20040148625 | Eldering et al. | Jul 2004 | A1 |
20040163109 | Kang et al. | Aug 2004 | A1 |
20040163111 | Palazzo et al. | Aug 2004 | A1 |
20040177383 | Martinolich et al. | Sep 2004 | A1 |
20040181811 | Rakib | Sep 2004 | A1 |
20040186774 | Lee | Sep 2004 | A1 |
20040189873 | Konig et al. | Sep 2004 | A1 |
20040194134 | Gunatilake et al. | Sep 2004 | A1 |
20040199789 | Shaw et al. | Oct 2004 | A1 |
20040230994 | Urdang et al. | Nov 2004 | A1 |
20040255148 | Monteiro et al. | Dec 2004 | A1 |
20040268398 | Fano et al. | Dec 2004 | A1 |
20050002638 | Putterman et al. | Jan 2005 | A1 |
20050005308 | Logan et al. | Jan 2005 | A1 |
20050022237 | Nomura | Jan 2005 | A1 |
20050027696 | Swaminathan et al. | Feb 2005 | A1 |
20050028200 | Sardera | Feb 2005 | A1 |
20050028208 | Ellis et al. | Feb 2005 | A1 |
20050034171 | Benya | Feb 2005 | A1 |
20050034173 | Hatanaka | Feb 2005 | A1 |
20050039205 | Riedl | Feb 2005 | A1 |
20050047596 | Suzuki | Mar 2005 | A1 |
20050055220 | Lee et al. | Mar 2005 | A1 |
20050055685 | Maynard et al. | Mar 2005 | A1 |
20050060229 | Riedl et al. | Mar 2005 | A1 |
20050060742 | Riedl et al. | Mar 2005 | A1 |
20050060745 | Riedl et al. | Mar 2005 | A1 |
20050086334 | Aaltonen et al. | Apr 2005 | A1 |
20050086691 | Dudkiewicz et al. | Apr 2005 | A1 |
20050105396 | Schybergson | May 2005 | A1 |
20050108763 | Baran et al. | May 2005 | A1 |
20050114141 | Grody | May 2005 | A1 |
20050114900 | Ladd et al. | May 2005 | A1 |
20050122393 | Cockerton et al. | Jun 2005 | A1 |
20050123001 | Craven et al. | Jun 2005 | A1 |
20050138656 | Moore et al. | Jun 2005 | A1 |
20050144635 | Boortz et al. | Jun 2005 | A1 |
20050160308 | Elcock et al. | Jul 2005 | A1 |
20050172312 | Lienhart et al. | Aug 2005 | A1 |
20050177855 | Maynard et al. | Aug 2005 | A1 |
20050188402 | De Andrade et al. | Aug 2005 | A1 |
20050198686 | Krause et al. | Sep 2005 | A1 |
20050210502 | Flickinger et al. | Sep 2005 | A1 |
20050223409 | Rautila et al. | Oct 2005 | A1 |
20050229209 | Hildebolt et al. | Oct 2005 | A1 |
20050234779 | Chiu et al. | Oct 2005 | A1 |
20050234998 | Lesandrini et al. | Oct 2005 | A1 |
20050235318 | Grauch et al. | Oct 2005 | A1 |
20050251827 | Ellis et al. | Nov 2005 | A1 |
20050257242 | Montgomery et al. | Nov 2005 | A1 |
20050262542 | DeWeese et al. | Nov 2005 | A1 |
20050273819 | Knudson et al. | Dec 2005 | A1 |
20050276284 | Krause et al. | Dec 2005 | A1 |
20050289588 | Kinnear | Dec 2005 | A1 |
20050289618 | Hardin | Dec 2005 | A1 |
20060019702 | Anttila et al. | Jan 2006 | A1 |
20060020785 | Grawrock et al. | Jan 2006 | A1 |
20060031883 | Ellis et al. | Feb 2006 | A1 |
20060036750 | Ladd et al. | Feb 2006 | A1 |
20060037060 | Simms et al. | Feb 2006 | A1 |
20060047957 | Helms et al. | Mar 2006 | A1 |
20060059532 | Dugan et al. | Mar 2006 | A1 |
20060061682 | Bradley et al. | Mar 2006 | A1 |
20060080408 | Istvan et al. | Apr 2006 | A1 |
20060090186 | Santangelo et al. | Apr 2006 | A1 |
20060095940 | Yearwood | May 2006 | A1 |
20060117341 | Park | Jun 2006 | A1 |
20060117357 | Surline et al. | Jun 2006 | A1 |
20060128397 | Choti et al. | Jun 2006 | A1 |
20060130099 | Rooyen | Jun 2006 | A1 |
20060130107 | Gonder et al. | Jun 2006 | A1 |
20060130113 | Carlucci et al. | Jun 2006 | A1 |
20060136964 | Diez et al. | Jun 2006 | A1 |
20060139379 | Toma et al. | Jun 2006 | A1 |
20060149850 | Bowman | Jul 2006 | A1 |
20060165082 | Pfeffer et al. | Jul 2006 | A1 |
20060171390 | La | Aug 2006 | A1 |
20060171423 | Helms et al. | Aug 2006 | A1 |
20060187900 | Akbar | Aug 2006 | A1 |
20060190336 | Pisaris-Henderson et al. | Aug 2006 | A1 |
20060197828 | Zeng et al. | Sep 2006 | A1 |
20060209799 | Gallagher et al. | Sep 2006 | A1 |
20060218604 | Riedl et al. | Sep 2006 | A1 |
20060230427 | Kunkel et al. | Oct 2006 | A1 |
20060248553 | Mikkelson et al. | Nov 2006 | A1 |
20060248555 | Eldering | Nov 2006 | A1 |
20060253328 | Kohli et al. | Nov 2006 | A1 |
20060253584 | Dixon et al. | Nov 2006 | A1 |
20060253864 | Easty | Nov 2006 | A1 |
20060259924 | Boortz et al. | Nov 2006 | A1 |
20060260601 | Schedeler et al. | Nov 2006 | A1 |
20060277569 | Smith | Dec 2006 | A1 |
20060288374 | Ferris et al. | Dec 2006 | A1 |
20060291506 | Cain | Dec 2006 | A1 |
20060294259 | Matefi et al. | Dec 2006 | A1 |
20070014293 | Filsfils et al. | Jan 2007 | A1 |
20070016476 | Hoffberg et al. | Jan 2007 | A1 |
20070019645 | Menon | Jan 2007 | A1 |
20070022459 | Gaebel, Jr. et al. | Jan 2007 | A1 |
20070029379 | Peyer | Feb 2007 | A1 |
20070033531 | Marsh | Feb 2007 | A1 |
20070048716 | Hsu et al. | Mar 2007 | A1 |
20070049245 | Lipman | Mar 2007 | A1 |
20070061023 | Hoffberg et al. | Mar 2007 | A1 |
20070067195 | Fahner | Mar 2007 | A1 |
20070067851 | Fernando et al. | Mar 2007 | A1 |
20070074258 | Wood et al. | Mar 2007 | A1 |
20070076728 | Rieger et al. | Apr 2007 | A1 |
20070089127 | Flickinger et al. | Apr 2007 | A1 |
20070091920 | Harris et al. | Apr 2007 | A1 |
20070094691 | Gazdzinski | Apr 2007 | A1 |
20070094692 | De Heer | Apr 2007 | A1 |
20070098350 | Gibbon et al. | May 2007 | A1 |
20070101370 | Calderwood | May 2007 | A1 |
20070113243 | Brey | May 2007 | A1 |
20070115389 | McCarthy et al. | May 2007 | A1 |
20070118852 | Calderwood | May 2007 | A1 |
20070118910 | Taylor et al. | May 2007 | A1 |
20070121678 | Brooks et al. | May 2007 | A1 |
20070124488 | Baum et al. | May 2007 | A1 |
20070130010 | Pokonosky | Jun 2007 | A1 |
20070136777 | Hasek et al. | Jun 2007 | A1 |
20070150919 | Morishita et al. | Jun 2007 | A1 |
20070155401 | Ward | Jul 2007 | A1 |
20070157228 | Bayer et al. | Jul 2007 | A1 |
20070157234 | Walker | Jul 2007 | A1 |
20070157242 | Cordray et al. | Jul 2007 | A1 |
20070157262 | Ramaswamy et al. | Jul 2007 | A1 |
20070180230 | Cortez | Aug 2007 | A1 |
20070204292 | Riedl et al. | Aug 2007 | A1 |
20070204308 | Nicholas et al. | Aug 2007 | A1 |
20070204310 | Hua et al. | Aug 2007 | A1 |
20070209059 | Moore et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070219860 | Karls et al. | Sep 2007 | A1 |
20070219910 | Martinez | Sep 2007 | A1 |
20070233857 | Cheng et al. | Oct 2007 | A1 |
20070239536 | Bollapragada | Oct 2007 | A1 |
20070244760 | Bodnar et al. | Oct 2007 | A1 |
20070250880 | Hainline | Oct 2007 | A1 |
20070276925 | La et al. | Nov 2007 | A1 |
20070276926 | LaJoie et al. | Nov 2007 | A1 |
20070280298 | Hearn et al. | Dec 2007 | A1 |
20080016526 | Asmussen | Jan 2008 | A1 |
20080022012 | Wang | Jan 2008 | A1 |
20080022309 | Begeja et al. | Jan 2008 | A1 |
20080027801 | Walter et al. | Jan 2008 | A1 |
20080052157 | Kadambi et al. | Feb 2008 | A1 |
20080066095 | Reinoso | Mar 2008 | A1 |
20080066112 | Bailey et al. | Mar 2008 | A1 |
20080091805 | Malaby et al. | Apr 2008 | A1 |
20080092058 | Afergan et al. | Apr 2008 | A1 |
20080092181 | Britt | Apr 2008 | A1 |
20080098212 | Helms et al. | Apr 2008 | A1 |
20080109853 | Einarsson et al. | May 2008 | A1 |
20080115169 | Ellis et al. | May 2008 | A1 |
20080124056 | Concotelli et al. | May 2008 | A1 |
20080133551 | Wensley et al. | Jun 2008 | A1 |
20080147497 | Tischer | Jun 2008 | A1 |
20080155059 | Hardin et al. | Jun 2008 | A1 |
20080155588 | Roberts et al. | Jun 2008 | A1 |
20080163305 | Johnson et al. | Jul 2008 | A1 |
20080168487 | Chow et al. | Jul 2008 | A1 |
20080170551 | Zaks | Jul 2008 | A1 |
20080184122 | Grant et al. | Jul 2008 | A1 |
20080184344 | Hernacki et al. | Jul 2008 | A1 |
20080189617 | Covell et al. | Aug 2008 | A1 |
20080192820 | Brooks et al. | Aug 2008 | A1 |
20080195468 | Malik | Aug 2008 | A1 |
20080200154 | Maharajh et al. | Aug 2008 | A1 |
20080201736 | Gordon et al. | Aug 2008 | A1 |
20080215755 | Farber et al. | Sep 2008 | A1 |
20080229354 | Morris et al. | Sep 2008 | A1 |
20080235722 | Baugher et al. | Sep 2008 | A1 |
20080235746 | Peters et al. | Sep 2008 | A1 |
20080250453 | Smith | Oct 2008 | A1 |
20080256615 | Schlacht et al. | Oct 2008 | A1 |
20080263578 | Bayer et al. | Oct 2008 | A1 |
20080271068 | Ou et al. | Oct 2008 | A1 |
20080271070 | Kanojia et al. | Oct 2008 | A1 |
20080273591 | Brooks et al. | Nov 2008 | A1 |
20080281697 | Whitehead | Nov 2008 | A1 |
20080282299 | Koat et al. | Nov 2008 | A1 |
20080306814 | Hudson | Dec 2008 | A1 |
20080306903 | Larson et al. | Dec 2008 | A1 |
20080307454 | Ahanger et al. | Dec 2008 | A1 |
20080313671 | Batrouny et al. | Dec 2008 | A1 |
20080313691 | Cholas et al. | Dec 2008 | A1 |
20090006145 | Duggal et al. | Jan 2009 | A1 |
20090006211 | Perry et al. | Jan 2009 | A1 |
20090030802 | Plotnick et al. | Jan 2009 | A1 |
20090031384 | Brooks et al. | Jan 2009 | A1 |
20090064219 | Minor | Mar 2009 | A1 |
20090076898 | Wang et al. | Mar 2009 | A1 |
20090077583 | Sugiyama et al. | Mar 2009 | A1 |
20090083279 | Hasek | Mar 2009 | A1 |
20090083813 | Dolce et al. | Mar 2009 | A1 |
20090086643 | Kotrla et al. | Apr 2009 | A1 |
20090094347 | Ting et al. | Apr 2009 | A1 |
20090100459 | Riedl et al. | Apr 2009 | A1 |
20090119169 | Chandratillake et al. | May 2009 | A1 |
20090119703 | Piepenbrink et al. | May 2009 | A1 |
20090125951 | Agricola et al. | May 2009 | A1 |
20090132346 | Duggal et al. | May 2009 | A1 |
20090132347 | Anderson et al. | May 2009 | A1 |
20090133048 | Gibbs et al. | May 2009 | A1 |
20090150917 | Huffman et al. | Jun 2009 | A1 |
20090165045 | Stallings et al. | Jun 2009 | A1 |
20090171784 | Morgan et al. | Jul 2009 | A1 |
20090185576 | Kisel et al. | Jul 2009 | A1 |
20090187939 | Lajoie | Jul 2009 | A1 |
20090187941 | Smith | Jul 2009 | A1 |
20090193485 | Rieger et al. | Jul 2009 | A1 |
20090201917 | Maes et al. | Aug 2009 | A1 |
20090210899 | Lawrence-Apfelbaum et al. | Aug 2009 | A1 |
20090210912 | Cholas et al. | Aug 2009 | A1 |
20090222316 | Boinepalli et al. | Sep 2009 | A1 |
20090222853 | White et al. | Sep 2009 | A1 |
20090225760 | Foti | Sep 2009 | A1 |
20090228941 | Russell et al. | Sep 2009 | A1 |
20090248794 | Helms et al. | Oct 2009 | A1 |
20090260030 | Karlsson et al. | Oct 2009 | A1 |
20090299853 | Jones et al. | Dec 2009 | A1 |
20090310668 | Sackstein et al. | Dec 2009 | A1 |
20090313654 | Paila et al. | Dec 2009 | A1 |
20090319379 | Joao | Dec 2009 | A1 |
20090320059 | Bolyukh | Dec 2009 | A1 |
20090327057 | Redlich | Dec 2009 | A1 |
20090327346 | Teinila et al. | Dec 2009 | A1 |
20090328113 | Van De Klashorst | Dec 2009 | A1 |
20100005527 | Jeon | Jan 2010 | A1 |
20100023963 | Crookes et al. | Jan 2010 | A1 |
20100027560 | Yang et al. | Feb 2010 | A1 |
20100027787 | Benkert et al. | Feb 2010 | A1 |
20100030578 | Siddique et al. | Feb 2010 | A1 |
20100036720 | Jain et al. | Feb 2010 | A1 |
20100057560 | Skudlark et al. | Mar 2010 | A1 |
20100082440 | Vaidyanathan et al. | Apr 2010 | A1 |
20100083303 | Redei et al. | Apr 2010 | A1 |
20100083329 | Joyce et al. | Apr 2010 | A1 |
20100104015 | Chatterjee et al. | Apr 2010 | A1 |
20100107194 | McKissick et al. | Apr 2010 | A1 |
20100114696 | Yang | May 2010 | A1 |
20100115091 | Park et al. | May 2010 | A1 |
20100115540 | Fan et al. | May 2010 | A1 |
20100121936 | Liu et al. | May 2010 | A1 |
20100122276 | Chen | May 2010 | A1 |
20100122285 | Begeja et al. | May 2010 | A1 |
20100125658 | Strasters | May 2010 | A1 |
20100131973 | Dillon et al. | May 2010 | A1 |
20100132003 | Bennett et al. | May 2010 | A1 |
20100146541 | Velazquez | Jun 2010 | A1 |
20100153831 | Beaton | Jun 2010 | A1 |
20100161492 | Harvey et al. | Jun 2010 | A1 |
20100162367 | Lajoie et al. | Jun 2010 | A1 |
20100169503 | Kollmansberger et al. | Jul 2010 | A1 |
20100175084 | Ellis et al. | Jul 2010 | A1 |
20100175584 | Kusaka et al. | Jul 2010 | A1 |
20100186029 | Kim et al. | Jul 2010 | A1 |
20100218231 | Frink et al. | Aug 2010 | A1 |
20100251289 | Agarwal et al. | Sep 2010 | A1 |
20100251304 | Donoghue et al. | Sep 2010 | A1 |
20100251305 | Kimble et al. | Sep 2010 | A1 |
20100262461 | Bohannon | Oct 2010 | A1 |
20100262488 | Harrison et al. | Oct 2010 | A1 |
20100262999 | Curran | Oct 2010 | A1 |
20100269128 | Gordon | Oct 2010 | A1 |
20100269131 | Newberry et al. | Oct 2010 | A1 |
20100269132 | Foti | Oct 2010 | A1 |
20100275226 | Kitazato | Oct 2010 | A1 |
20100280641 | Harkness et al. | Nov 2010 | A1 |
20100287609 | Gonzalez et al. | Nov 2010 | A1 |
20100293047 | Schwarz et al. | Nov 2010 | A1 |
20100313225 | Cholas et al. | Dec 2010 | A1 |
20100333132 | Robertson et al. | Dec 2010 | A1 |
20100333137 | Hamano et al. | Dec 2010 | A1 |
20110015989 | Tidwell et al. | Jan 2011 | A1 |
20110016479 | Tidwell et al. | Jan 2011 | A1 |
20110016482 | Tidwell et al. | Jan 2011 | A1 |
20110035273 | Parikh | Feb 2011 | A1 |
20110055866 | Piepenbrink et al. | Mar 2011 | A1 |
20110058675 | Brueck et al. | Mar 2011 | A1 |
20110083069 | Paul et al. | Apr 2011 | A1 |
20110083144 | Bocharov et al. | Apr 2011 | A1 |
20110090898 | Patel et al. | Apr 2011 | A1 |
20110093900 | Patel et al. | Apr 2011 | A1 |
20110099017 | Ure | Apr 2011 | A1 |
20110103374 | Lajoie et al. | May 2011 | A1 |
20110106784 | Terheggen et al. | May 2011 | A1 |
20110107364 | Lajoie et al. | May 2011 | A1 |
20110107379 | Lajoie et al. | May 2011 | A1 |
20110110515 | Tidwell et al. | May 2011 | A1 |
20110128961 | Brooks et al. | Jun 2011 | A1 |
20110138064 | Rieger et al. | Jun 2011 | A1 |
20110154383 | Hao et al. | Jun 2011 | A1 |
20110178880 | Karaoguz et al. | Jul 2011 | A1 |
20110178943 | Motahari et al. | Jul 2011 | A1 |
20110202270 | Sharma et al. | Aug 2011 | A1 |
20110223944 | Gosselin | Sep 2011 | A1 |
20110231265 | Brown et al. | Sep 2011 | A1 |
20110231660 | Kanungo | Sep 2011 | A1 |
20110246616 | Ronca et al. | Oct 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110264530 | Santangelo et al. | Oct 2011 | A1 |
20110265116 | Stern et al. | Oct 2011 | A1 |
20110302624 | Chen et al. | Dec 2011 | A1 |
20110307339 | Russell et al. | Dec 2011 | A1 |
20110307920 | Blanchard et al. | Dec 2011 | A1 |
20110317977 | Harris | Dec 2011 | A1 |
20120011269 | Krikorian et al. | Jan 2012 | A1 |
20120030363 | Conrad | Feb 2012 | A1 |
20120072526 | Kling et al. | Mar 2012 | A1 |
20120076015 | Pfeffer | Mar 2012 | A1 |
20120079523 | Trimper et al. | Mar 2012 | A1 |
20120084813 | Dmitriev et al. | Apr 2012 | A1 |
20120089699 | Cholas | Apr 2012 | A1 |
20120096106 | Blumofe et al. | Apr 2012 | A1 |
20120110620 | Kilar et al. | May 2012 | A1 |
20120117584 | Gordon | May 2012 | A1 |
20120124161 | Tidwell et al. | May 2012 | A1 |
20120124606 | Tidwell et al. | May 2012 | A1 |
20120124612 | Adimatyam et al. | May 2012 | A1 |
20120137332 | Kumar | May 2012 | A1 |
20120143660 | Jiwang et al. | Jun 2012 | A1 |
20120144195 | Nair et al. | Jun 2012 | A1 |
20120151077 | Finster | Jun 2012 | A1 |
20120159539 | Berberet et al. | Jun 2012 | A1 |
20120167132 | Mathews et al. | Jun 2012 | A1 |
20120170544 | Cheng et al. | Jul 2012 | A1 |
20120170741 | Chen et al. | Jul 2012 | A1 |
20120173746 | Salinger et al. | Jul 2012 | A1 |
20120185693 | Chen et al. | Jul 2012 | A1 |
20120246462 | Moroney et al. | Sep 2012 | A1 |
20120278833 | Tam et al. | Nov 2012 | A1 |
20120284804 | Lindquist et al. | Nov 2012 | A1 |
20120308071 | Ramsdell et al. | Dec 2012 | A1 |
20120324552 | Padala et al. | Dec 2012 | A1 |
20130007799 | Sandoval | Jan 2013 | A1 |
20130029716 | Lee et al. | Jan 2013 | A1 |
20130031578 | Zhu et al. | Jan 2013 | A1 |
20130041747 | Anderson et al. | Feb 2013 | A1 |
20130046849 | Wolf et al. | Feb 2013 | A1 |
20130114940 | Merzon et al. | May 2013 | A1 |
20130132986 | Mack et al. | May 2013 | A1 |
20130133010 | Chen | May 2013 | A1 |
20130166765 | Kaufman et al. | Jun 2013 | A1 |
20130166906 | Swaminathan et al. | Jun 2013 | A1 |
20130174271 | Handal et al. | Jul 2013 | A1 |
20130179588 | McCarthy et al. | Jul 2013 | A1 |
20130219178 | Xiques et al. | Aug 2013 | A1 |
20130227283 | Williamson et al. | Aug 2013 | A1 |
20130227284 | Pfeffer et al. | Aug 2013 | A1 |
20130227608 | Evans et al. | Aug 2013 | A1 |
20140012843 | Soon-Shiong | Jan 2014 | A1 |
20140020017 | Stern et al. | Jan 2014 | A1 |
20140075466 | Zhao | Mar 2014 | A1 |
20140230003 | Ma et al. | Aug 2014 | A1 |
20140245341 | Mack et al. | Aug 2014 | A1 |
20140259182 | Mershon | Sep 2014 | A1 |
20140282695 | Bakar et al. | Sep 2014 | A1 |
20150109122 | Stern et al. | Apr 2015 | A1 |
20150163540 | Masterson | Jun 2015 | A1 |
20150189396 | Tidwell et al. | Jul 2015 | A1 |
20150304698 | Redol | Oct 2015 | A1 |
20150382034 | Thangaraj et al. | Dec 2015 | A1 |
20160055606 | Petrovic et al. | Feb 2016 | A1 |
20160094893 | Tse | Mar 2016 | A1 |
20160182973 | Winograd et al. | Jun 2016 | A1 |
20160241617 | Jelley et al. | Aug 2016 | A1 |
20160335659 | Lewis et al. | Nov 2016 | A1 |
20170070789 | Liassides et al. | Mar 2017 | A1 |
20180035174 | Littlejohn | Feb 2018 | A1 |
20190251602 | Cormie | Aug 2019 | A1 |
20190268392 | Santangelo et al. | Aug 2019 | A1 |
20200059693 | Neumeier et al. | Feb 2020 | A1 |
20200329260 | Mathur | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
WO-0110125 | Feb 2001 | WO |
WO-0191474 | Nov 2001 | WO |
WO-2010008487 | Jan 2010 | WO |
WO-2011035443 | Mar 2011 | WO |
WO-2011053858 | May 2011 | WO |
WO-2012026410 | Mar 2012 | WO |
WO-2013026320 | Feb 2013 | WO |
Entry |
---|
Francis Phan, Nteractive Advertising Bureau—Display & Mobile Advertising Creative Format Guidelines, 2015 (Year: 2015). |
Apple Inc., HTTP Live Streaming Overview, Apr. 1, 2011, 36 pages. |
Deering, S., et al., “Internet Protocol, Version 6 (IPv6) Specification,” Internet Engineering Task Force (IETF) RFC 2460, Dec. 1998, 39 pages. |
“Internet Protocol, DARPA Internet Program, Protocol Specification”, IETF RCF 791, Sep. 1981, 50 pages. |
IP—Internet Protocol, About.com, Internet Archive Capture date of Mar. 4, 2009 from URL: http://compnetworking.about.com/od/networkprotocolsip/g/ip_protocol.htm. |
Open Cable Specification entitled “Enhanced TV Binary Interchange Format 1 0” 0C-SP-ETV-131F1.0-106-110128 dated Jan. 28, 2011, 408 pages. |
OpenCable Specifications, Alternate Content, Real-Time Event Signaling and Management API, OC-SP-ESAM-API-101-120910 (2012), 59 pages. |
Rampton J., “7 Worthwhile Ways to Automate Social Media,” 2016, 4 pages, Retrieved from the internet [URL: https://mashable.com/2016/02/01/automate-social-media/]. |
SCTE American National Standard ANSI/SCTE 118-2 2007, 20 pages. |
SCTE American National Standard ANSI/SCTE 130-1 2008, 16 pages. |
SCTE, American National Standard, ANSI/SCTE 35 2012, 44 pages. |
Tandberg Television specification entitled “AdPoint.RTM. Advanced Advertising Platform” dated Mar. 2008, 2 pages. |
UTF-32, IBM, retrieved from http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Fnls%2Frbagsutf32.htm on Aug. 28, 2013, 1 page. |
What is Packet Switching on Computer Networks, about.com, Internet Archive Capture date of Feb. 12, 2009 from URL http://compnetworking.about.com/od/networkprotcols/f/packet-switch.html. |
Zarnbelli, The Apparatus and Methods of HS Smooth Streaming Technical Overview, Mar. 2009, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20220201368 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15277840 | Sep 2016 | US |
Child | 17561333 | US |