ASSEMBLY AND METHOD OF ASSEMBLING BY SOLDERING AN OBJECT AND A SUPPORT

Information

  • Patent Application
  • 20070284414
  • Publication Number
    20070284414
  • Date Filed
    May 14, 2007
    17 years ago
  • Date Published
    December 13, 2007
    17 years ago
Abstract
This assembly of an object and a support is achieved by using solder bumps. At least two wettability areas are made respectively on object and on support. Each solder bump ensures electrical contact and mechanical fixing firstly to one of the wettability areas of object and secondly to one of the wettability areas of support. The melting temperature of solder bumps is lower than the melting temperature of each of the wettability areas. Each wettability area of object forms an angle of 70° to 110° with respect to each wettability area of support. Object and support are mutually distant.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The way in which the invention can be implemented and its resulting advantages will be made more readily understandable by the descriptions of the following embodiments, given merely by way of example, reference being made to the accompanying drawings.



FIG. 1 is a schematic view of the assembly of a miniaturised optoelectronic component, in this case a VCSEL laser emitter, with a microelectronic platform, assembly being obtained by using a “flip chip” technique. FIG. 1 has already been described in reference to the prior state of the art.



FIG. 2 is a schematic view of the assembly of a miniaturised optoelectronic component, in this case a VCSEL laser emitter, with a microelectronic platform, assembly being obtained by using a “flip chip” technique. FIG. 2 has already been described in reference to the prior state of the art.



FIGS. 3
a to 3c are schematic views showing the disadvantages of prior-art methods of assembling. FIGS. 3a to 3c have already been described in reference to the prior state of the art.



FIGS. 4
a to 4d are schematic side views showing certain steps in a first embodiment of the method of assembling which is the subject of this invention. FIG. 4d shows the final step using this method and is therefore also a schematic view of a first embodiment of the assembly which is the subject of the invention.



FIGS. 5
a to 5d are schematic side views showing certain steps in a second embodiment of the method of assembling which is the subject of this invention. FIG. 5d shows the final step using this method and is therefore also a schematic view of a second embodiment of the assembly which is the subject of the invention.



FIG. 6 is a schematic front view of the assembly shown in FIG. 5d.



FIGS. 7
a and 7b are schematic side and front views of a third embodiment of the assembly which is the subject of this invention,



FIG. 8 is a schematic side view of a fourth embodiment of the assembly which is the subject of this invention.



FIG. 9 is a schematic side view of a fifth embodiment of the assembly which is the subject of this invention.



FIGS. 10
a and 10b are schematic perspective views showing two steps in another embodiment of the method of assembling which is the subject of this invention. FIG. 10b shows the final step using this method and is therefore a schematic view of a sixth embodiment of the assembly which is the subject of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 4
d illustrates a first embodiment of the assembly according to the invention. Object 401 is a Vertical Cavity Surface Emitting Laser (VCSEL) capable of emitting laser beam 404


Object 401 is assembled with support 402 by using several solder bumps 403. In order to attach solder bumps 403 to object 401, the latter has a wettability area 411 for each solder bump 403. Similarly, in order to attach solder bumps 403 to support 402, in this case a microelectronic platform, support 402 has a wettability area 412 for each solder bump 403. Given the wettability of these areas, each solder bump 403 substantially covers wettability areas 411 and 412, with which it comes into contact when it is in the remelted state of the solder material.


In the example in FIG. 4d, wettability areas 411 and 412 consist of stacked superposed layers of metals, the melting temperature of which is higher than the melting temperature of the material that constitutes solder bumps 403. This property makes it possible not to degrade wettability areas 411 and 412 during the step to form solder bumps 403 during which the solder material is heated to above its melting temperature as explained below in detail.


In this case, solder bumps 403 consist of a fusible alloy of 60% tin (Sn) and 40% lead (Pb), whereas wettability areas 411 and 412 consist of stacks of thin layers of metals such as titanium (Ti), nickel (Ni) and gold (Au).


Such materials are in fact capable of cooperating in order to form bumps 403 that substantially or completely cover each wettability area 411 and 412. To obtain such coverage, it is known that the interface energy between the material that constitutes solder bump 403 and the material that constitutes wettability area 411 or 412 must be sufficiently low for the liquid to spread over the surface of wettability area 411 or 412.


In order to optimise the wettability of areas 411 and 412, one can make provision, as in the case of FIG. 4d, for areas having a main surface which is substantially flat and disk shaped. Nevertheless, it is possible to select other wettability-area shapes as required without extending beyond the scope of this invention.


Moreover, in order to make the solder bumps, one starts by producing underbump metallisations on the object (FIGS. 4a to 4d) or on the support (FIGS. 5a to 5d). The method of fabricating the underbump metallisations and the wettability areas are explained below in relatively general terms because they are made in accordance with existing prior-art processes.


As is known, when the solder material is in a liquid state, it tends to form a globule or sphere wherever it is in contact with the ambient air. In fact, the system consisting of the liquid solder material and the air which surrounds it tends to minimise the surface energy and this results in the formation of a sphere in order to minimise the surface-area to volume-of-material ratio.


Note that use of the French term “bille” [bump], which usually denotes a spherical shape, to describe solder material 403 is not strictly correct because, firstly, this shape is truncated by the wettability areas and, secondly, the wettability areas, depending on their relative position, may exert low-intensity forces on the solder material, thus deforming the bump into an ellipsoid or even a more complex shape. This imprecise term has nevertheless gained acceptance in practical use in various technical fields and the term “bille” is therefore employed in this description to denote the shape adopted by the solder material when it comes into contact with air and wettability areas. In every case, the shape of solder bumps depends on the quantity of fusible material used and on the dimensions and positions of the wettability areas of the object and the support.


Given the conductive nature of the material that constitutes solder bumps 403, they also ensure electrical contact between wettability areas 411 and 412 and, as a result, between a circuit of support 402 and a circuit of object 401. Such electrical contact therefore makes it possible to pass current between said circuits so as to power object 401 if it is an “active” component such as VCSEL laser emitter 401.


Besides electrical contact, each solder bump 403, after cooling, fulfils a mechanical fixing function thanks to a soldered joint between wettability area 411 and wettability area 412, i.e. indirectly between VCSEL laser emitter 401 and platform 402. Typically, the cooling temperature may be room temperature.


According to one aspect of the invention, each wettability area 411 of object 401 forms an angle of 70° to 110° with respect to each wettability area 412 of support 402. In the example in FIG. 4d, this angle is 90°, i.e. wettability areas 411 are perpendicular to wettability areas 412.


Once again, imprecise terminology is used in order to make explanations simpler and for easier comprehension. In fact, the angle of 70° to 110°, in this case 90°, is actually formed by two straight lines which define, respectively, the main dimension of wettability areas 411, a vertical axis in this case, and the main dimension of wettability areas 412, a horizontal axis in this case. Consequently, object 401 is perpendicular to support 402, to the extent that the direction of the main dimension of wettability areas 411 is parallel to the direction of the main dimension of VCSEL laser emitter 401 and/or the direction of the main dimension of wettability areas 412 is parallel to the main direction of microelectronic platform 402.


Moreover, in the case of FIG. 4d, because object 401 has two flat parallel faces on which each of wettability areas 411 are made respectively and because wettability areas 412 are made in a single plane of support 402, each wettability area 411 of object 401 forms a right angle relative to each wettability area 412 of support 402.


Nevertheless, without extending beyond the scope of the invention, object 401 or support 402 may have less regular surfaces that are not parallel and not flat so that each wettability area of the object then forms any angle from 70° to 110° relative to each wettability area of the support. In such a case, the angle formed between a wettability area of the object and a wettability area of the support is generally different to the angles formed between the other wettability areas of the object and the other wettability areas of the support.


What is more, according to one aspect of the invention, object 401 and support 402 are mutually distant. In other words, as apparent in FIG. 4d, object 401 and support 402 do not come into contact with each other. This aspect makes it possible to avoid misalignment of object 401 on support 402, particularly in cases where the lower edge of object 401 has irregularities due to cutting.


Consequently, this aspect makes it possible to position the object relative to the support with greater accuracy than prior-art assemblies. An assembly in accordance with this invention is therefore capable of offering submicronic positional accuracy whereas prior-art assemblies only make it possible to achieve positioning with an accuracy of the order of several microns, as in the case of Document U.S. Pat. No. B-6,647,036. What is more, this accuracy is obtained relatively simply and inexpensively because the object is positioned relative to the support exclusively by surface tension.


If object 401 consists of a VCSEL laser emitter, the latter emits an inherently slightly conical laser beam 404 having an axis of symmetry which is perfectly parallel to the plane of platform 402. Such accuracy therefore allows the laser to transmit maximum power and/or information to other components such as an optical fibre. Laser beam 404 can then be processed in the same way as laser beam 204 shown in FIG. 2.


As stated earlier, FIG. 4d shows the final step in an embodiment of the method of assembling which is the subject of this invention. During this last step, one cools down assembly 401-403 to a temperature below the melting temperature of the solder material.


Before doing so, in accordance with the method which is the subject of the invention, the steps illustrated in FIGS. 4a to 4c and involving, as shown in FIG. 4c, forming solder bumps 403 on said support 402 or on said object 401 must be completed by performing the sequence of steps detailed below.


Firstly, object 401 must be positioned a specific distance away from support 402 so that each solder bump 403 is placed substantially and partially facing the surface of each wettability area 411 of object 401 on the one hand and a corresponding surface of each wettability area 412 of support 402 on the other hand.


Then, the underbump metallisations must be heated to above the melting temperature of the solder material so as to move solder bumps 403 by surface tension so as to ensure cooperation between each solder bump 403 and one of wettability areas 411 of object 401 on the one hand and one of wettability areas 412 of support 402 on the other hand.


More precisely and according to the invention, the step to form solder bumps 403 on object 401 comprises a sequence of steps that involve initially depositing a sacrificial coating 413 on wettability areas 411 of object 401. This sacrificial coating 413 is relatively non-wetting in relation to the solder material and has a melting temperature higher than that of the solder material. In addition, sacrificial coating 413 extends asymmetrically over the main surface of each wettability area of object 401.


Then, holes must be drilled in sacrificial coating 413, each emerging on the surface of a wettability area 411 of object 401 and towards that part of wettability area 411 of object 401 which is opposite the closest edge of object 401. Thus, each hole is off-centred relative to the surface of the wettability area of the object on which it emerges and the bumps formed do not protrude beyond the edge of the object. One can also make provision for drilling several holes in the same wettability area.


Then, the underbump metallisations must be made by depositing solder material on sacrificial coating 413, as well as in said holes, and the underbump metallisations must be heated to above the melting temperature of the solder material so as to turn them, due to surface tension, into solder bumps 403 which completely or partially cover sacrificial coating 413.


Following this step, one removes sacrificial coating 413, for example by means of etching, so that each bump is then connected to a wettability area 411 via a stalk 414 originating from the solder material deposited in the hole. The stalk is therefore positioned on that part of the wettability area opposite the closest edge of the object. The “mushroom” formed by the bump and its stalk is therefore off-centred with respect to the main surface of wettability area 411.


Then, the edge of object 401 which is the closest to wettability area 411 must be cut in order to reduce one of the dimensions of the object. Such cutting ensures there is no contact between the object and the support in the resulting assembly.


Finally, one heats solder bumps 403 to above their melting temperature so as to completely cover each wettability area 411, with the periphery of solder bumps 403 protruding beyond the edge of object 401 obtained from the cutting step and bumps 403 covering wettability areas 401 of support 402 due to the effect of surface tension.


Alternatively but in a similar way, in the first embodiment of the method and the assembly which is the subject of the invention shown in FIGS. 4a to 4d, it is possible to form the solder bumps on the support rather than on the object in accordance with a second embodiment. In the examples in FIGS. 5a to 5d, solder bumps 503 are formed on support 502 and then attached by soldering to object 501, which once again is a VCSEL laser emitter. Like the embodiment of the method described in relation to FIGS. 4a to 4d, one uses a sacrificial coating 513 that extends asymmetrically over each wettability area 512, 517 of support 502.


Unlike the assembly shown in FIG. 4d, the assembly shown in FIG. 5d has two kinds of solder bumps 503 and 516 which fulfil different functions. Solder bumps 503 play a role similar to that of solder bumps 403, namely they ensure electrical connection and mechanical attachment of platform 502 to VCSEL laser emitter 501. Because their functions and compositions are similar to those of bumps 403, they are not described below in greater detail.


As well as bumps 503, the assembly in FIG. 5d has solder bumps 516 which are in contact with the lower edge of VCSEL laser emitter 501. Bumps 516 are intended to damp the downward movement of object 501 during the step when bumps 503 are remelted and until bumps 503 wet the main surface areas of wettability areas 512 of support 502 and 511 of object 501 substantially and sufficiently to support the weight of object 501.


To achieve this, bumps 516 must be made of a solder material that has a melting temperature substantially equal to the melting temperature of the material that constitutes solder bumps 503. In the example in FIG. 5d, bumps 516 and bumps 503 are all made of the same material. This is a fusible alloy of 60% tin and 40% lead, but can also be other alloys or pure metals comprising gold, tin, lead and/or indium.


In this second embodiment of the invention, the step to form large bumps 503 on wettability areas 512 of support 502 is similar to that described in relation to FIGS. 4a to 4c, apart from the fact that solder bumps 503 are initially connected to support 502 before being connected to object 501. Consequently, the step to form bumps 503 comprises a succession of steps illustrated in FIGS. 5a to 5c and involves.

    • depositing on wettability areas 512 of support 502 a sacrificial coating 513 that is relatively non-wetting in relation to the solder material and having a melting temperature higher than that of the solder material, said sacrificial coating 513 extending asymmetrically over the main surface of each wettability area of support 502;
    • then drilling holes in sacrificial coating 513, each emerging on the main surface of a wettability area 512 of support 502 and offset towards the side opposite the other wettability area 512 of support 502;
    • producing underbump metallisations by depositing solder material on sacrificial coating 513, as well as in the hole;
    • heating the underbump metallisations to above the melting temperature of the solder material so as to turn them, due to surface tension, into solder bumps 503 which completely or partially cover sacrificial coating 513;
    • removing sacrificial coating 513, for example by means of etching, each bump 503 then being connected to a wettability area 512 via a stalk 514 originating from the solder material deposited in the hole, stalk 514 being positioned on wettability area 512 at the end opposite the other wettability area 512 of support 502.


Note that small solder bumps 516 are formed using the same method as that used to form large solder bumps 503. When solder bumps 516 are in the state shown in FIG. 5b, i.e. once the bumps are predisposed to receive object 501, the step to position the object comprises a succession of steps involving:

    • positioning object 501 between the two large bumps 503 which are in contact with small bump 516;
    • heating solder bumps 503 and 516 to above the melting temperature of the solder material so as to substantially or completely cover, by surface tension, each wettability area 512 and 517 of object 502 with the bumps also covering wettability areas 511 of object 501.


On completion of this step to position object 501 and after the step to cool the distinctive assembly of the method which is the subject of the invention, VCSEL laser emitter 501 is assembled on microelectronic platform 502 via solder bumps 503 which are attached to wettability areas 511 and 512, as shown in FIG. 5d.


In the example in FIG. 5d, object 501 is then in contact with small bumps 516. Nevertheless, depending on the location chosen for wettability areas 511 on object 501 and depending on the quantity of solder material that forms bumps 503 and 516, one can make provision to prevent object 501 having contact with bumps 516. The weight of object 501 is then supported only by solder bumps 503 due to the surface tension that exists at the interface between each bump 503 and each wettability area 511. Thus, small solder bumps 516 remain isolated from object 501 after having withstood and damped its downward movement during the positioning step,


Since object 501 remains some distance away from support 502, i.e. there is no contact between them, positioning or alignment of object 501 relative to support 502 can be performed with greater accuracy than that obtainable with prior-art assemblies.


Also, given the spacing of solder bumps 503 in the step shown in FIG. 5c which is made possible by using sacrificial coating 513, it is relatively easy to place object 501 between the two bumps 503 before each remelting step during which solder bumps 503 move closer to wettability areas 511 of object 501 “naturally”. This movement towards the wettability areas is due to surface tension at the interface between each bump 503 and each wettability area 512 of support 502. Using sacrificial coating 513 makes it possible to alleviate or even avoid problems associated with poor dimensioning or incorrect positioning of wettability areas, such as those shown in FIGS. 3b and 3c.


Note that here it is not necessary to off-centre the stalks of small bumps 516 on wettability areas 517. In fact, the spacing of small bumps 516 has no impact on the possibility of inserting object 501 between large bumps 503.


To ensure stable assembly of object 401 or 501 on support 402 or 502, it is preferable to make provision to firmly “clamp” the object between at least two pairs of solder bumps 403, 503. The term “pairs of solder bumps” should be construed as two bumps located facing each other and on either side of the object. It is therefore preferable to form at least three bumps distributed over two opposite faces of the object in order to ensure a certain degree of stability.



FIG. 6 shows a front view of the assemblies illustrated in FIGS. 4d and 5d where assembly is obtained by using two pairs of solder bumps 603 mounted side by side Bumps 603 in each of the pairs are located facing each other either side of object 601. However, depending on mounting constraints or other constraints, the bumps in each of the pairs can be slightly offset, as shown in FIG. 10a.


As an alternative to the embodiment shown in FIG. 6 where solder bumps 603 have the same dimensions, one can make provision to produce solder bumps having different dimensions, Such an assembly is shown in FIGS. 7a and 7b, viewed from the side and from the front respectively. In this assembly, object 701 is assembled on support 702 by using large solder bumps 703 and small solder bumps 716. As stated above, the pairs of solder bumps 703, 716 are mounted side by side on support 702 so as to secure object 701 in a stable state, also when the bumps are in the remelted state. With such a structure, large bumps 703 support most of the weight of object 701 because they have a large interface with the object whereas small bumps 716 are used to ensure lateral stability and positional accuracy when using the method of assembling which is the subject of the invention.



FIG. 8 shows another embodiment of the assembly which is the subject of this invention. In this assembly, the lower part of VCSEL laser emitter 801 is accommodated in cavity 820 made in microelectronic platform 802. In accordance with the invention, wettability areas 811 are made on either side of object 801 and at specific locations on the surface of support 802, in order to receive solder bumps 803.


In accordance with one aspect of the invention, object 801, once assembled by means of solder bumps 803, remains some distance away from support 802, in this case in the bottom of cavity 820. As explained earlier, this lack of contact between the object and support helps improve the accuracy with which the former is positioned on the latter.


In order to obtain such assembly, an embodiment of the method according to the invention must be used which includes a preliminary step involving producing cavity 820 in the support and where the step to position object 801 involves:

    • positioning the lower part of the object 801 in said cavity 820 so that wettability areas 811 of object 801 are at a height above that of the centre of gravity of object 801 and above the height of the upper surface of support 802;
    • heating solder bumps 803 to above the melting temperature of the solder material so as to substantially cover, by surface tension, each wettability area 811 and 812 with the bumps covering wettability areas 811 of object 801; the object aligns itself vertically due to the effect of gravity, on the one hand, and the surface tension forces produced by solder bumps 803 melted on wettability areas 811 of object 801, on the other hand.


The height of the clearance between the lower edge of object 801 and the lower edge of cavity 820 depends on several parameters. These parameters include, firstly, the height of wettability areas 811 on object 801, the height of the centre of gravity of object 801, the quantity of solder material intended to form bumps 803 and the depth of cavity 820.


Obviously, these various parameters are determined depending on the desired clearance or distance between the lower edge of object 801 and the bottom of cavity 820. The term “lower edge” is used to denote the edge that is located at a lower height than if the assembly rested horizontally on support 802. In practice, the clearance between object 801 and support 802 is primarily determined so that laser beam 804 emitted by VCSEL laser emitter 801 propagates in the direction of an optical fibre 805 embedded in support 802.


Because of lack of contact between the object and support, object 801 can be positioned with far greater accuracy than that achievable with prior-art assemblies. This way one can make sure that laser beam 804 transmits maximum power to optical fibre 805. This embodiment of the assembly which is the subject of the invention does not require the use of a sacrificial coating, in contrast to the embodiments described above, when using the method of assembling object 801 and support 802.


As stated earlier, it is possible to make provision for an angle other than 90° between the wettability areas of the object and those of the support. Thus, in the assembly shown in FIG. 9, the main direction of VCSEL laser emitter 901 forms, overall, a 75° angle 921 with respect to the plane of microelectronic platform 902. Thanks to this construction, VCSEL laser emitter 901 outputs oblique laser beam 904 in the direction of optical fibre 905. Such an assembly makes it possible to optimise the emission of the laser beam in the direction of optical fibre 905 which is obliquely polished in order to limit stray reflections.


To implement such an assembly, it is preferable to form bumps 903 of different sizes in a single pair of bumps. In addition, the wettability zones of the object must be dimensioned and positioned asymmetrically, as shown in FIG. 9. Apart from these particular features, a method of assembling similar to those described in relation to FIG. 4 or 5 must be used, i.e. a method which uses a sacrificial coating. These methods of assembling are therefore not described here.



FIGS. 10
a and 10b show two juxtaposed assemblies of VCSEL laser emitter 1001 and miniaturised optical component 1050. Miniaturised optical component 1050 is actually an optical chip intended to process the laser beam emitted by laser 1001 before it is guided into optical fibre 1005. The optical fibre is accommodated in V-shaped groove 1006 made in support 1002, in this case a microelectronic platform, said V-shaped groove 1006 making it possible to position the optical fibre precisely relative to the reference frame that constitutes platform 1002. Objects 1001 and 1050 are assembled with platform 1002 in accordance with the invention and, in particular, using a method analogous to that described in relation to FIGS. 5a to 5d.


However, in FIG. 10a it is apparent that bumps 1003 and 1053 which are intended to be attached to the front faces of objects 1001 and 1050 are laterally staggered relative to the optical axis compared with solder bumps 1003 and 1053 which are intended to be attached to the rear faces of objects 1001 and 1050. Such offsetting makes it possible to ensure a certain degree of stability when objects are assembled on platform 1002, especially in the transverse direction.


As can be seen in FIGS. 10a and 10b, electrical circuits 1030 and 1031 are connected to wettability areas and solder bumps 1003 of VCSEL laser emitter 1001. The latter can thus be electrically powered by a power source (not shown). In contrast, optical processing chip 1050, which is a passive component, does not require any power supply so platform 1002 does not have an electrical circuit connected to bumps 1053 which are intended to be attached to object 1050.


Underbump metallisations made of solder material are produced in a known manner using conventional techniques which include depositing a metallised bonding layer, photolithography, removal of material by etching, electrolytic growth etc. Because all these techniques for forming underbump metallisations and hence solder bumps are familiar, their characteristics are not described in this document.


The only non-standard aspect of the formation of underbump metallisations in the method of assembling according to the invention involves depositing a layer of sacrificial coating and then making holes in it before applying the solder material to the substrate which may consist of a wafer of semiconductor material. This sacrificial coating is also produced using conventional techniques such as depositing a thin film by evaporation or spraying.


Moreover, if the initial substrate used is a wafer of semiconductor material, whether to produce solder bumps on the object or on the support, this substrate may comprise one or more electronic components and/or one or more sensors. This makes it possible to produce a complex system that fulfils multiple functions with a relatively high packing density.


An assembly such as those described above can be used, for example, to equip a transceiver system deployed in optical networks used to transfer data in the telecommunications sector.


What is more, although the examples explained in relation to the Figures relate mainly to mounting a VCSEL laser emitter, the invention is obviously not confined to such components and it can be used with many other objects and supports.


It can be used to mount MEMS chips or accelerometers. In the case of accelerometers, the invention is particularly advantageous for producing a sensor capable of measuring vibrations in three dimensions in space. This is achieved by assembling two accelerometers with a third accelerometer and using one of the methods which are the subject of the invention, along the three measuring axes. The invention thus makes it possible to implement an extremely accurate three-dimensional accelerometer.


Other implementations are possible without extending beyond the scope of this invention. It is possible to envisage an embodiment which is a hybrid of the embodiments shown in FIGS. 4 and 5 in which certain bumps are formed on the object and other bumps are formed on the support. One could even envisage an embodiment where the bumps are formed partly on the object and partly on the support.

Claims
  • 1. An assembly of an object and a support by using solder bumps in which: at least two wettability areas are made respectively on said object and on said support,each solder bump ensures electrical contact and mechanical fixing firstly to one of the wettability areas of said object and secondly to one of said wettability areas of said support,the melting temperature of said solder bumps is below the melting temperature of each wettability area,
  • 2. An assembly as claimed in claim 1, wherein the angle formed between each wettability area of said object and each wettability area of said support substantially equals 90°.
  • 3. An assembly as claimed in claim 1, wherein the lower part of said object is accommodated in a cavity made in said support with the lower edge of said object being some distance away from the bottom of said cavity.
  • 4. An assembly as claimed in claim 1, wherein said solder bumps have different dimensions.
  • 5. An assembly as claimed in, claim 1, wherein the material that constitutes said solder bumps consists of a pure element or an alloy of elements selected from the group comprising tin (Sn), lead (Pb), gold (Au) and indium (In).
  • 6. An assembly as claimed in claim 1, wherein each wettability area comprises a stack of several layers of materials consisting of elements selected from the group comprising titanium (Ti), nickel (Ni) and gold (Au).
  • 7. An assembly as claimed in claim 1, wherein said support is a microelectronic platform and said object is an optical or optoelectronic component such as a Vertical Cavity Surface Emitting Laser (VCSEL).
  • 8. A method of assembling an object and a support by using a solder material in which: at least two wettability areas are made respectively on said object and on said support,the melting temperature of the solder material is lower than the melting temperature of each wettability area,
  • 9. A method of assembling as claimed in claim 8, wherein the step to form the solder bumps comprises: depositing, on said wettability areas of said support, a sacrificial coating that is relatively non-wetting in relation to the solder material and having a melting temperature higher than that of the solder material, said sacrificial coating extending asymmetrically over the main surface of each wettability area of said support;drilling in said sacrificial coating holes each of which emerges on the main surface of a wettability area of said object and towards that part of said wettability area of said object which is opposite the closest edge of said object;producing said underbump metallisations by depositing solder material on the sacrificial coating, as well as in said hole;heating the underbump metallisations to above the melting temperature of the solder material so as to turn them, by surface tension, into solder bumps which completely or partially cover said sacrificial coating;removing said sacrificial coating, each bump then being connected to a wettability area via a stalk originating from the solder material deposited in said hole, said stalk being positioned on the part of said wettability area opposite the closest edge of said object;cutting the edge of said object which is the closest to said wettability area so as to reduce one of the dimensions of said object; andheating said solder bumps to above their melting temperature so as to completely cover each of said wettability areas, with the periphery of solder bumps protruding beyond the edge of said object obtained by said cutting and bumps covering said wettability areas of said support due to the effect of surface tension.
  • 10. A method of assembling as claimed in claim 8, wherein the step to form solder bumps comprises: depositing, on wettability areas said support, a sacrificial coating that is relatively non-wetting in relation to the solder material and having a melting temperature higher than that of the solder material, said sacrificial coating extending asymmetrically over the main surface of each wettability area of said support;then drilling, in said sacrificial coating, holes which each emerge on the main surface of a wettability area of said support and are offset towards the side opposite the other wettability area of said support;producing said underbump metallisations by depositing solder material on the sacrificial coating, as well as in said hole;heating the underbump metallisations to above the melting temperature of the solder material so as to turn them, by surface tension, into solder bumps which completely or partially cover sacrificial coating; andremoving said sacrificial coating, each bump then being connected to a wettability area via a stalk originating from the solder material deposited in said hole, said stalk being positioned on wettability area at the end opposite the other wettability area of said support.
  • 11. A method of assembling as claimed in claim 10, wherein said support has, between its two wettability areas, at least one additional wettability area having dimensions smaller than those of each of the said two wettability areas, said additional wettability area being subjected to a step to form a solder bump, with or without offsetting of the associated hole, said step to position said object comprising: positioning said object between two large bumps which are in contact with a small bump;heating said solder bumps to above the melting temperature of said solder material so as to substantially cover each wettability area of said object and of said support.
  • 12. Method of assembling as claimed in claim 8, further comprising a step of forming in said support, a cavity intended to accommodate the lower part of said object, wherein said positioning step comprises: positioning the lower part of said object in said cavity so that the wettability areas of said object are at a height above that of the centre of gravity of said object and above the height of the upper surface of said support;heating said solder bumps to above the melting temperature of said solder material so as to substantially cover, by surface tension, each wettability area with the bumps covering wettability areas of said object which is thus capable of aligning itself vertically due to the effect of gravity, on the one hand, and the surface tension forces produced by solder bumps melted on wettability areas of said object, on the other hand.
Priority Claims (1)
Number Date Country Kind
06.04984 Jun 2006 FR national