Bi-directional stiffness for optical image stabilization in a dual-aperture digital camera

Abstract
Mechanisms for providing optical image stabilization in at least one direction as well as auto-focus in a digital camera comprise a plurality of springs mechanically coupled to at least a lens module carrying a lens of the digital camera, wherein the plurality of springs provides overall low stiffness to movement of the lens in two, first and second directions orthogonal to each other, and provides high stiffness to torsion of the lens module.
Description
FIELD

Embodiments disclosed herein relate in general to digital cameras and in particular to optical image stabilization (OIS) and auto-focus (AF) in single and/or dual-aperture (“dual-optical module”) digital cameras.


BACKGROUND

In recent years, mobile devices such as cell-phones (and in particular smart-phones), tablets and laptops have become ubiquitous. Most of these devices include one or two compact cameras: a main rear-facing camera (i.e. a camera on the back side of the device, facing away from the user and often used for casual photography) and a secondary front-facing camera (i.e. a camera located on the front side of the device and often used for video conferencing).


Although relatively compact in nature, the design of most of these cameras is very similar to the traditional structure of a digital still camera, i.e. they comprise an optical component (or a train of several optical elements and a main aperture) placed on top of an image sensor. The optical component (also referred to as “optics”) refracts the incoming light rays and bends them to create an image of a scene on the sensor. The dimensions of these cameras are largely determined by the size of the sensor and by the height of the optics. These are usually tied together through the focal length (“f”) of the lens and its field of view (FOV)—a lens that has to image a certain FOV on a sensor of a certain size has a specific focal length. Keeping the FOV constant, the larger the sensor dimensions (e.g. in a X-Y plane) the larger the focal length and the optics height.


In addition to the optics and sensor, modern cameras usually further include mechanical motion (actuation) mechanism for two main purposes: focusing of the image on the sensor and optical image stabilization (OIS). For focusing, in more advanced cameras, the position of the lens module (or at least one lens element in the lens module) can be changed by means of an actuator and the focus distance can be changed in accordance with the captured object or scene. In these cameras it is possible to capture objects from a very short distance (e.g., 10 cm) to infinity. The trend in digital still cameras is to increase the zooming capabilities (e.g. to 5×, 10× or more) and, in cell-phone (and particularly smart-phone) cameras, to decrease the pixel size and increase the pixel count. These trends result in greater sensitivity to hand-shake or in a need for longer exposure time. An OIS mechanism is required to answer the needs in these trends.


In OIS-enabled cameras, the lens or camera module can change its lateral position or tilt angle in a fast manner to cancel the handshake during the image capture. Handshakes move the camera module in 6 degrees of freedom, namely linear movements in three degrees of freedom (X, Y & Z), pitch (tilt around the X axis), yaw (tilt around the Y axis) and roll (tilt around the Z axis). FIG. 1 shows an exemplary classical four rod-springs (102a-d) OIS structure in a single-aperture camera module 100. The four rod-springs are rigidly connected to an upper frame 104 that usually accommodates an AF actuator (not shown) that moves the lens module 106. This structure allows desired modes of movement in the X-Y plane (translation), FIG. 1a, but also allows a mode of unwanted rotation (also referred to as “θ-rotation” or “torsion”) around the Z axis, FIG. 1b. The latter may be due to a combination of several causes such as asymmetric forces applied by the coils or by a user's (or phone) movements, imperfections of the rod-springs and the high rotational compliance of the four spring rod spring+frame structure.


In the case of a centered single-aperture camera module, this rotation does not affect the image quality severely, since the lens is axisymmetric. However, this does affect OIS in a dual-camera module, FIGS. 2a and 2b. FIG. 2a shows a rotation mode around an axis 202 roughly centered between two camera modules 204 and 206 of a dual-aperture camera 200.


Because of the location of rotation axis 202, the rotation may cause significant deterioration in the image quality. The rotation causes each lens to shift away in undesired directions (shown by arrows in FIG. 2b), without having any ability to predict when and if this may happen. The result is motion blur of the image and a shift of the two lenses in opposite Y directions caused by the unwanted rotation that results in decenter between images received by each camera module, and therefore potentially in a catastrophic influence on fusion algorithm results.


Yet another problem may occur in a folded optics zoom dual-aperture camera, such as a camera 300 shown in FIG. 3. Such a camera is described for example in detail in co-owned international patent application PCT/IB2016/052179 which is incorporated herein by reference in its entirety. Camera 300 comprises a folded optics camera module 302 and an upright (non-folded) camera module 304. Among other components, folded optics camera module 302 comprises a lens actuation sub-assembly for moving a lens module 306 (and a lens therein, which is referred to henceforth as “folded lens”) in the X-Y plane. The lens actuation sub-assembly includes a hanging structure with four flexible hanging members (i.e. the “rod-springs” referred to above) 308a-d that hang lens module 306 over a base 310. In some embodiments, hanging members 306a-d may be in the form of four wires and may be referred to as “wire springs” or “poles”. The hanging structure allows in-plane motion as known in the art and described exemplarily in co-owned U.S. patent application Ser. No. 14/373,490. Exemplarily, a first movement direction 312 of the lens is used to achieve Auto-Focus (AF) and a second movement direction 314 is used to achieve OIS. A third movement, an unwanted rotation 316 of the lens about an axis parallel to the Z axis as described above actually causes an unwanted effect of dynamic tilt of the lens (the lens' optical axis may not be perpendicular to the sensor's surface due to that rotation) and may result in images that are usually sharp on one side and blurry on the other side.


The physical quantities that reflect the tendency of any structure to dynamically behave one way or another are the natural frequency values that characterize each mode of behavior. This is of course also relevant for the hanging structure described above. FIGS. 4(a)-(c) show the simulated behavior of a standard rigid plate supported by four round rod-spring poles. The rigid plate may represent any optical element (such as, for example, a lens). The rod-spring poles have the same rigidity to movement in any direction in the X-Y plane (which is perpendicular to the pole's neutral axis). The figures show the compliance of the structure expressed in terms of a natural frequency ratio for each different movement mode: FIG. 4a refers to X-translation, FIG. 4b refers to Y-translation and FIG. 4c refers to rotation around the Z axis. The arrows show schematically the different movements. The reference bar indicates deformation scale in millimeters. The normalized (relative to the first frequency which in this exemplary case is of 33.6 Hz) natural frequencies for X and Y translations are of the same order (specifically 1 in (a) and 1.1 in (b)), whilst the natural frequency for rotation (c) has a relative value of 1.8, which is also of the same order of the X and Y translations. Thus the ratio between natural frequencies for torsion (rotation around Z) and for X or Y translation is about 1.8. In general, known ratios are no larger than 2. This means that the chance that the torsion mode will arise is almost the same as the chance that the X and Y translation modes will arise. This may cause problems in dual-aperture and/or folded zoom cameras (where it will be expressed as dynamic tilt) as described above.


In view of the above, it would be very difficult to get the desired movement of the lens without an active control loop (having such a control loop is one possible way to overcome the described problems). The unwanted torsion may be reduced significantly by means of electrical control over the force applied by the coils (i.e. by using several coils and controlling them so the resultant torque acts to limit the rotation of the lens within specified acceptable limits). However, the addition of an active control loop to avoid tilt complicates the design and adds to cost. It would be therefore advantageous to have lens actuation sub-assemblies for OIS without an active control loop for rotation/tilt.


SUMMARY

In an exemplary embodiment, there is provided a mechanism for providing optical image stabilization (OIS) in at least one direction in a digital camera, comprising: a plurality of springs mechanically coupled to at least a lens module carrying a lens of the digital camera, wherein the plurality of springs provides overall low stiffness to movement of the lens module in two, first and second directions orthogonal to each other and high stiffness to torsion of the lens module such that a ratio between natural frequencies arising from the high stiffness and the low stiffness is greater than 2.


In an exemplary embodiment, the plurality of springs includes a first plurality of springs with low stiffness in the first direction and high stiffness in the second direction; and a second plurality of springs with high stiffness in the first direction and low stiffness in the second direction.


In an exemplary embodiment, the ratio between natural frequencies arising from the high stiffness and the low stiffness is greater than 3.


In an exemplary embodiment, the ratio between natural frequencies arising from the high stiffness and the low stiffness is greater than 5.


In an exemplary embodiment, the ratio between natural frequencies arising from the high stiffness and the low stiffness is greater than 10.


In an exemplary embodiment, the mechanism is dimensioned to accommodate the lens module without obstructing an optical path passing through the lens.


In an exemplary embodiment, the first plurality includes two pairs of leaf springs and the second plurality includes a pair of cross springs.


In an exemplary embodiment, the first plurality includes a pair of leaf springs and one cross spring and the second plurality includes a pair of cross springs.


In an exemplary embodiment, each of the first and second pluralities includes a pair of cross springs.


In an exemplary embodiment, the digital camera is a dual-optical module camera.


In an exemplary embodiment, the lens is a folded lens.


In an exemplary embodiment, the camera is adapted to perform auto-focus.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated like numerals.



FIG. 1 shows a camera module with an exemplary classical four rod-springs OIS structure: (a) modes of wanted X-Y translations, and (b) mode of unwanted rotation around the Z axis;



FIG. 2 shows a dual-aperture camera: (a) rotation mode around an axis roughly centered between two camera modules, and (b) movement of each lens in undesired directions;



FIG. 3 shows a dual-camera module with a folded optics camera module;



FIG. 4 show the simulated behavior of a standard rigid plate supported by four round rod-spring poles: (a) movement in the X-direction, (b) movement in the Y direction and (c) tilt around a rotation axis;



FIG. 5 shows an exemplary embodiment of an OIS and AF support structure disclosed herein in a folded optics camera module in (a) an isometric view, (b) side view and (c) radial cross section;



FIG. 6 shows the simulated behavior of the support structure of FIG. 5 for (a) movement in the X-direction, (b) movement in the Y direction and (c) tilt around a rotation axis.



FIG. 7 shows an isometric view of another exemplary embodiment of an OIS and AF support structure in a folded optics camera module;



FIG. 8 shows an isometric view of an exemplary embodiment of a dual-aperture camera with two camera modules held by a support structure disclosed herein;



FIG. 9 shows the simulated behavior of another exemplary embodiment of a support structure in a folded optics camera module for (a) movement in the X-direction, (b) movement in the Y direction and (c) tilt around a rotation axis.





DETAILED DESCRIPTION

We have determined that lens support structures used for AF and OIS may be designed with support members that have different compliance (stiffness) to movements in different directions of different types of movements. The different compliance in different movement directions or for different movement types may be obtained by non-round or non-square supports cross sections of such support members.



FIG. 5 shows an exemplary embodiment of a folded lens 500 held by a support structure numbered 502 in (a) an isometric view, (b) side view and (c) radial cross section. Exemplarily, support structure 502 may comprise four support spring members 502a-d, each spring member being essentially a thin leaf spring with high stiffness in one direction (e.g. Y) and low stiffness in a second direction (e.g. X) perpendicular to the first direction. In this description, the term “high stiffness” used with reference to a spring structure refers to a spring structure having a natural frequency in the range of hundreds to thousands of Hertz, exemplarily between 200-4000 Hz. The term “low stiffness” used with reference to a spring structure refers to a spring structure having a natural frequency in the range of tens of Hertz, exemplarily between 30-100 Hz. In general, the natural frequency of a spring is proportional to the square root of its stiffness.


Henceforth, support spring members 502 are referred to as “leaf springs”. Exemplarily, a leaf spring 502a-d has a length L3 of 4.8-5.5 mm and a rectangular cross section, with a small (exemplarily 20-60 μm) thickness d1 in the flexing direction (here X) and with a significantly larger (exemplarily 0.5-1 mm) width d2 in the non-flexing direction (here Y). The structure and mechanical properties of the leaf springs allows only movement for AF in the X direction. Each leaf spring is rigidly connected at a respective upper end 504a-d to a rigid upper frame 506 and at a respective bottom end to a base such as base 310. Leaf springs 502a and 502b may optionally be connected at a bottom end by a bar 530. Support structure 502-further comprises two support springs 508a and 508b coupled rigidly to frame 506 at an upper end 510 and to a lens support plate 512 at a lower end (respectively 514a and 514b). Support springs 508a and 508b are designed to have low stiffness in the Y direction for OIS movement, and high stiffness in the X direction, while not adding significantly to the camera module width. Exemplarily and as shown separately, springs 508a or 508b include two leaf spring members 520 and 521 connected by two diagonal leaf spring members 522 and 524. The leaf springs and diagonal springs are connected at an upper end to a member 523. Hereinafter, a support spring such as a spring 508 is referred to as “cross spring”. Exemplarily, a diagonal leaf spring member has a rectangular cross section with a thickness of the same order of that of a leaf spring 502a-d (exemplarily 20-60 μm) and a width d3 of about 0.2 mm Exemplarily, a cross spring 508a or 508b may have a length dimension L4 in the range of 7-10 mm and a height H in the range of 4-5 mm Exemplarily in an embodiment, L4 is approximately 9.5 mm and H is approximately 4.6 mm Optionally or alternatively, leaf springs 502a and 502b may be replaced by a cross spring 508a or 508b, with care being taken (if necessary) not to obstruct an optical path. In yet another alternative embodiment, a cross spring 508a or 508b may also replace leaf springs 502c and 502d, with care being taken (if necessary) not to obstruct an optical path.


Frame 506 may exemplarily be made of a plastic material such as LCP (VECTRA® E525T). Plate 512 is rigidly connected to a lens 516 (or to a lens carrier carrying the lens). In this embodiment, upper frame 506 has a U-shape so as not to block an optical path to a path-folding optical element (e.g. mirror or prism, not shown). Exemplarily, frame 506 has dimensions of L1=11.9 mm and L2=7.6 mm. More generally, the ratio L2/L1 can be between 0.5-0.7.



FIG. 6 shows the first three modes of the support structure of FIG. 5 resulting from modal Finite Element Analysis where: (a) describes a mode of movement in the X-direction for AF, (b) describes a mode of movement in the Y direction for OIS and (c) describes a mode of (unwanted) tilt around a rotation axis like movement 316 thin FIG. 3. The arrows show schematically the different movements. In use for AF, the lens and upper frame 506 is actuated to move in the X direction while flexing springs 502.


Movement in the Y direction and unwanted rotation such a rotation 316 around the Z-axis in FIG. 3 are minimal. For OIS, lens movement in the Y direction is allowed by the flexing of cross springs 508a or 508b (see also FIG. 6b), while movement in the X direction and unwanted rotation around the Z-axis are again minimal. Specifically, the normalized (relative to a first frequency which in this exemplary case is of 40 Hz) natural frequencies for X and Y translations are of the same order (specifically 1 in (a) and 1.2 in (b)), whilst the natural frequency for rotation (c) has a relative value of 29.3. That is, the natural frequency in FIG. 6c is of a significantly higher order than that in FIGS. 6a and 6b. Advantageously, the arrangement of separate leaf springs (flexible in the X-direction) and cross springs (flexible in the Y direction) prevents unwanted rotation motion around the Z-axis.


In an embodiment and exemplarily, the springs are made of a copper-nickel-tin mx-215 alloy with an elastic modulus of 125 GPa. In other exemplary embodiments, the springs may be made of some other metal alloy or of a non-metal, for example of polymer or plastic material, a composite material or a combination of metal/ceramic and/or plastic materials, chosen such that the dimensions and elastic properties fit the camera form requirements.



FIG. 7 shows an isometric view of another exemplary embodiment of a support structure in a folded optics camera 700. Here, an upper frame 706 is closed and leaf springs 702c and 702d are connected at the bottom by a bar 704, imparting added stiffness in the Y direction. Alternatively, the leaf springs and bar may be replaced by a cross spring. The frame is closed behind the optical path folding element (prism or mirror) so there is no problem of disturbing the optical path to this element. In yet another embodiment shown in FIG. 9, an upper frame 906 has a closed rectangular shape strengthened by two cross bar members 906a and 906b.



FIG. 8 shows an isometric view of an exemplary embodiment of a dual-aperture camera 800 with two camera modules 802 and 804 held by a support structure disclosed herein. An upper frame 806 is closed like frame 706 in FIG. 7, while the support structure is comprised of cross springs 808a-d. Here, the support structure is designed for OIS in two directions—X and Y.



FIG. 9 shows the first three modes of another exemplary embodiment of a support structure in a folded optics camera module, as resulting from modal simulation, where: (a) describes a mode of movement in the X-direction for AF, (b) describes a mode of movement in the Y direction for OIS and (c) describes a mode of (unwanted) tilt around a rotation axis. The arrows show schematically the different movements. The first frequency is 100 Hz, and the normalized natural frequencies for X and Y translations are of the same order (specifically 1 in (a) and 1.2 in (b)), whilst the natural frequency for torsion (c) has a relative value of 23.9.


In summary, the performance of the support structures provided herein in terms of avoidance of unwanted linear movement and rotation (torsion) while performing AF and OIS is much superior to that of any known support structure used for the same purposes.


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.

Claims
  • 1. A mechanism for providing optical image stabilization (OIS) in a digital camera, comprising: a first plurality of springs connected at a lower end to a base and at an upper end to a rigid upper frame, the first plurality of springs enabling the rigid upper frame to move with a first stiffness in a first direction and to move with a second stiffness, higher than the first stiffness, in a second direction orthogonal to the first direction; anda second plurality of springs connected at an upper end to the rigid upper frame and at the lower end to a rigid body that includes a lens having a lens optical axis, the second plurality of springs enabling the lens to move with a third stiffness in the second direction and to move with a fourth stiffness, higher than the third stiffness, in the first direction,wherein the upper ends and the lower ends of both pluralities of springs define a same direction, wherein the first direction is substantially parallel to the lens optical axis andwherein the mechanism enables lens movement in the first and second directions and reduces rotation about an axis perpendicular to the first and second direction.
  • 2. The mechanism of claim 1, wherein normalized natural frequencies for the first direction and second direction are of the same first order of magnitude and wherein a normalized natural frequency for rotation has a value which is greater by at least one order of magnitude than the first order of magnitude.
  • 3. The mechanism of claim 1, wherein a ratio between a natural frequency for rotation and either of the natural frequencies for movement in the first direction and the second direction is greater than 2.
  • 4. The mechanism of claim 1, wherein a ratio between a natural frequency for rotation and either of the natural frequencies for movement in the first direction and the second direction is greater than 5.
  • 5. The mechanism of claim 1, wherein a ratio between a natural frequency for rotation and either of the natural frequencies for movement in the first direction and the second direction is greater than 10.
  • 6. The mechanism of claim 5, wherein the lens movements in the first direction and the second direction are characterized by natural frequencies in the range of 30-100 Hz and wherein the lens rotation about an axis perpendicular to the first direction and the second direction is characterized by a natural frequency in the range of 200-4000 Hz.
  • 7. The mechanism of claim 1, dimensioned to accommodate the lens without obstructing an optical path passing through the lens.
  • 8. The mechanism of claim 1, wherein the first plurality of springs or the second plurality of springs includes a pair of cross springs.
  • 9. The mechanism of claim 1, wherein the first plurality of springs and the second plurality of springs includes a mix of leaf springs and cross springs.
  • 10. The mechanism of claim 1, wherein the first plurality of springs includes two pairs of leaf springs and wherein the second plurality of springs includes a pair of cross springs.
  • 11. The mechanism of claim 1, wherein the first plurality of springs includes a pair of leaf springs and one cross spring and wherein the second plurality of springs includes a pair of cross springs.
  • 12. The mechanism of claim 1, wherein each of the first and second pluralities of springs includes a pair of cross springs.
  • 13. The mechanism of claim 1, wherein the digital camera is a dual-optical module camera.
  • 14. The mechanism of claim 13, wherein the second plurality of springs is connected at the upper end to the rigid upper frame and at the lower end through a support structure to two lenses of the dual-optical module camera.
  • 15. The mechanism of claim 1, wherein the lens is a folded lens.
  • 16. The mechanism of claim 1, adapted to perform auto-focus.
  • 17. The mechanism of claim 1, wherein the second stiffness is greater than the first stiffness by at least 4 times and wherein the fourth stiffness is greater than the third stiffness by at least 4 times.
  • 18. The mechanism of claim 1, wherein each spring of the first plurality of springs has a rectangular cross section with 20-60 μm thickness in the first direction, and wherein each spring of the second plurality of springs has a rectangular cross section with 20-60 μm thickness in the second direction.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application from U.S. patent application Ser. No. 15/310,887 filed Nov. 14, 2016 (now allowed), which was a 371 application from international patent application PCT/IB2016/053026, and is related to and claims priority from U.S. Provisional Patent Application No. 62/167,571 filed on May 28, 2015 which is expressly incorporated herein by reference in its entirety.

US Referenced Citations (229)
Number Name Date Kind
4199785 McCullough et al. Apr 1980 A
4679904 Kurihara Jul 1987 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5051830 von Hoessle Sep 1991 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6208765 Bergen Mar 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8803990 Smith Aug 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9448382 Shabtay et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020163581 Kitazawa Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050110873 Enomoto May 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050200718 Lee Sep 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070058958 Enomoto Mar 2007 A1
20070146883 Akada et al. Jun 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080117316 Orimoto May 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100103194 Chen et al. Apr 2010 A1
20100165131 Makimoto Jul 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20120026366 Golan et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120105579 Jeon et al. May 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130088609 Shimizu Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130135445 Dahi et al. May 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130293728 Ohashi Nov 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140355120 Yeo Dec 2014 A1
20140362242 Takizawa Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160301840 Du et al. Oct 2016 A1
20160353012 Kao et al. Dec 2016 A1
20170019616 Zhu et al. Jan 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170289458 Song et al. Oct 2017 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
Foreign Referenced Citations (3)
Number Date Country
2207057 Jul 2010 EP
2523450 Nov 2012 EP
2016166730 Oct 2016 WO
Non-Patent Literature Citations (16)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology Jun. 2009, 3 pages.
Office Action in related EP patent application 16799452.4, dated Feb. 6, 2019. 8 pages.
Related Publications (1)
Number Date Country
20180307057 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62167571 May 2015 US
Continuations (1)
Number Date Country
Parent 15310887 US
Child 16017144 US