Bipolar electrosurgical cutter with position insensitive return electrode contact

Information

  • Patent Grant
  • 9592090
  • Patent Number
    9,592,090
  • Date Filed
    Friday, March 11, 2011
    13 years ago
  • Date Issued
    Tuesday, March 14, 2017
    7 years ago
Abstract
A bipolar electrosurgical device includes a handle and an elongated end effector coupled to the handle. The end effector includes an elongated, insulating body having first and second electrodes disposed thereon. The first and second electrodes are separated at the distal end of the insulating body, and a cavity formed in the distal end of the effector is positioned between the first and second electrodes. A fluid-delivery tube is positioned on the body to deliver a conductive fluid to the distal end, adjacent the cavity. During use of the electrosurgical device, delivery of the conductive fluid facilitates formation of an electrical coupling between the electrodes via the tissue being treated.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


This invention relates generally to the field of medical systems, devices and methods for use upon a human body during surgery. More particularly, the invention relates to surgical systems, devices and methods that provide plasma-mediated cutting, fragmentation and evaporation/vaporization of tissue during surgery such as plastic, microsurgery, reconstructive, neurological and any other surgery where it is desirable to use a bipolar configuration without the need for undue manipulation of the angle of application to establish electrical contact.


Background Art


When electrosurgical cutting with an electrode is initiated, the tissue presents a low impedance path to the Radio Frequency (RF) current so that, at a given voltage, a significant amount of RF current (and RF power) may flow through the tissue. When this current heats the tissue from body temperature to greater than about 100° C., the fluid in the tissue starts vaporizing. The impedance begins increasing as the electrode is enveloped by a thin vapor bubble/layer.


Once the vapor envelops the electrode, it interrupts the current and the full voltage of the generator may be applied across the thin vapor layer to create a high electric field in the vapor bubble. This high electric field exerts force on the ions present in the vapor, accelerating them and establishing the current flow across the vapor gap. Impedance is understood to start decreasing (ionization phase) as a plasma develops. As the ions are accelerated, they are understood to collide with the molecules present in the vapor bubble, further ionizing them and leading to spark discharge. As the voltage across the vapor gap is present, it is understood to further accelerate the ions in the plasma, increasing their kinetic energy and thus temperature of the plasma which may eventually lead to avalanche ionization, high energy and arc discharge.


Many RF systems use a monopolar configuration for electrosurgical cutting. Such a device has an active electrode at its tip that is applied to the tissue to be cut. The return electrode is often in the form of a ground pad dispersive electrode that is placed on a patient's body in a different location than the area of surgery. An electrical circuit forms between the active electrode and return electrode through the patient. Since the path of the current through the patient is not precisely defined and is dependent on the local conditions of the tissue, the monopolar configuration is not the best to use in the proximity of sensitive organs or structures.


An electrosurgical device in a bipolar configuration, with the return electrode next to the active electrode, is a much safer device in such circumstances. An electrical circuit forms between the two electrodes, removing the need for current to flow through a patient's body to the ground pad as the monopolar configuration requires. One shortcoming of the bipolar configuration, however, is its need to establish two points of contact with the tissue to initiate cutting. The two-point contact is dependent on the angle of the handpiece with respect to the tissue surface. This dependence on angle may make it necessary to tilt the handpiece to establish a good contact and ignite the plasma.


One bipolar electrosurgical device addressed this problem with a spring-loaded return electrode to provide a self-compensating function. Coagulated blood or accumulated tissue may impede the proper function of such a device, however. Another variation involves coblation, which uses saline as a return electrode. This approach, however, requires the electrode to be submerged in saline for the duration of the task.


BRIEF SUMMARY OF THE INVENTION

The invention is a bipolar electrosurgical device that includes a handle and an elongated end effector coupled to the handle. The end effector (e.g., an elongated member for carrying bipolar electrodes to a surgical site for contacting tissue and performing electrosurgery) includes an elongated, insulating body having a proximal end coupled to the handle such that the body extends away from the handle toward a distal end. A first electrode (e.g., a cutting electrode) and a second electrode (e.g., a return electrode) are disposed along the insulating body. The first and second electrodes are separated at the distal end of the insulating body, and a cavity formed in the distal end of the effector is positioned between the first and second electrodes. A fluid-delivery tube is positioned on the body to deliver a conductive fluid to the distal end the insulating body adjacent the cavity.


An electrosurgical power generator (also called a voltage source, power supply or waveform generator) may be coupled to the proximal end of the device to provide a voltage to the electrodes of the end effector. During use of the electrosurgical device, delivery of the fluid facilitates formation of an electrical coupling between the first electrode and the second electrode via the tissue being treated, adjacent the distal end of the insulating body for performance of an electrosurgical procedure.


In a first embodiment, the end effector is wedge-shaped with the cutting electrode at the narrow base of the wedge-shaped effector extending at least a portion of the way along the base, and a return electrode disposed at least partially in the cavity foamed in the distal end of the effector. A tube or passage through the body of the end effector delivers fluid to the cavity. The insulating body of the effector separates the cutting and return electrodes.


The cutting electrode may be formed from a sheet of metal that is folded or bent around the apex edge of the wedge-shaped effector. Further, the edge formed from the folding of the metal sheet may be sharpened to form a sharp edge that has a thickness of about 0.005 inches to 0.10 inches (0.12 millimeters to 0.25 millimeters). Alternatively, the cutting electrode may be formed, for example, from a rounded, cylindrical-shaped conductor or wire with a radius less than about 20 mils and preferably about five (5) mils.


In another embodiment, the end effector has an insulating body portion with a cross-sectional shape that is a substantially flat rectangle or blade. The first electrode is disposed on a minor edge (i.e., the narrow side or edge of the rectangle) of the blade-shaped body portion, and the second electrode is disposed on the opposite minor edge. Both electrodes extend along the length of the body portion to the distal end. At the distal end, separation is maintained between the two electrodes. A cavity or dimple is formed in the distal end of the body portion between the electrodes. In one example embodiment, the electrodes are formed by metallized layers on the insulating body.


In this blade-shaped embodiment of the end effector, the first electrode may comprise a wire having, for example, a diameter less than about one mm. The wire may be attached to the metallized layer or may be used in lieu of the metallized layer. Also, in this example embodiment, a fluid-delivery tube may be attached to the body portion of the end effector at the second electrode (i.e., the return electrode). The fluid-delivery tube may be made from a conductive material such as metal or a conductive polymer. In one embodiment, the fluid-delivery tube may act as the return electrode.


Another aspect of the invention includes a method of cutting biological tissue. The method involves initiating flow of an electrically conductive fluid to a distal end of the bipolar electrosurgical device. Electrical energy is applied between the first electrode and the second electrode on the bipolar electrosurgical device. The bipolar electrosurgical device is then applied to the biological tissue such that the first electrode near the distal end of the bipolar electrosurgical device is in direct contact with the biological tissue. This will result in formation of an electrical arc adjacent the distal end of the bipolar electrosurgical device. Thereafter, the flow of the electrically conductive fluid may be terminated without affecting the arc. The arc is maintained to cut the biological tissue.


It is an advantage that the electrosurgical device of the invention is able to establish a conductive path between the electrodes via the tissue with less sensitivity to handpiece angle (i.e., the angle at which the hand-held electrosurgical device is held with respect to the tissue being treated) as compared with prior devices.





BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES


FIG. 1 is a front view of one embodiment of a system of the present invention having an exemplary electrosurgical unit in combination with a fluid source and handheld electrosurgical device;



FIG. 2 a front perspective view of the electrosurgical unit of FIG. 1;



FIG. 3 is a perspective view of an electrosurgical device according to the present invention;



FIG. 4 is a perspective view of a distal end portion of the electrosurgical device of FIG. 3;



FIG. 5 is a perspective view of the end effector of the electrosurgical device of FIG. 3;



FIG. 6 is a perspective view of an alternative embodiment of the end effector of the electrosurgical device of FIG. 3;



FIG. 7 is another perspective view of the end effector of the electrosurgical device of FIG. 3;



FIG. 8 is a perspective view of a distal end portion of the end effector of the electrosurgical device of FIG. 3;



FIG. 9 is a sectional view of a distal end portion of the end effector of the electrosurgical device of FIG. 3 shown in the environment of cutting a biological tissue;



FIG. 10 is a side view of a second embodiment 1030 of the electrosurgical device of the present invention;



FIG. 11 is a side view of end effector 1101 of electrosurgical device 1030;



FIG. 12 is a side view of end effector 1101 of electrosurgical device 1030 showing the addition of a conductive tube and a cutting wire;



FIG. 13 is a cross-sectional view of end effector 1101 taken near distal end 1142;



FIG. 14 is a schematic diagram of body portion 1132 of end effector 1101;



FIG. 15 is a schematic diagram depicting in detail the shape of distal end 1142 of body portion 1132 of end effector 1101; and



FIG. 16 is a flow chart of an exemplary method for the electrosurgical cutting of biological tissue according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The features and advantages of the present invention will become apparent from the detailed description set forth below, when taken in conjunction with the drawings in which like reference numbers indicate identical or functionally similar elements. Throughout the description, like reference numerals and letters indicate corresponding structure throughout the several views. Features between the various exemplary embodiments described in this specification are interchangeable and are not exclusive to the embodiment in which they are described. Any use of the terms “distal” and “proximal” are made in reference from the user of the device, and not the patient.


The invention provides systems, devices and methods for cutting, coagulating and providing hemostasis. The invention will now be discussed with reference to the figures.



FIG. 1 shows a front view of an exemplary embodiment of a system of the present invention having an electrosurgical unit 10 in combination with a handheld electrosurgical device 30, and a fluid source 20 and fluid delivery arrangement. A movable cart 2 has a support member 4 comprising a hollow cylindrical post which carries a platform 6, comprising a pedestal table to provide a flat, stable surface for location of the electrosurgical unit 10. As shown, cart 2 may further comprise a fluid source carrying pole 8 having a cross support provided with loops at its ends to provide a hook for carrying fluid source 20.


Fluid source 20 comprises a bag of fluid. Fluid 12 flows from fluid source 20 through a drip chamber 14 after a spike located at the end of drip chamber 14 penetrates the bag. Fluid 12 may then flow through flexible delivery tubing 16 to handheld electrosurgical device 30. The fluid delivery tubing 16 is made preferably from a polymer material.


As shown in FIG. 1, the fluid delivery tubing 16 may pass through pump 22. Pump 22 may comprise a peristaltic pump and, more specifically, a rotary peristaltic pump. With a rotary peristaltic pump, a portion of the delivery tubing 16 may be loaded into the pump head by raising and lowering the pump head in a known manner. Fluid 12 may then be conveyed within the delivery tubing 16 by waves of contraction placed externally on the tubing 16. The waves of contraction are produced mechanically, typically by rotating pinch rollers which rotate on a drive shaft and intermittently compress the tubing 16 against an anvil support. Peristaltic pumps are generally preferred, because the electromechanical force mechanism, here rollers driven by electric motor, does not make contact with the fluid 12, thus reducing the likelihood of inadvertent contamination.


In other embodiments, pump 22 may be separate instead of integrated with electrosurgical unit 10. In still other embodiments, pump 22 may be eliminated and the fluid flow rate may be manually controlled. Such manual control may be by the user of device 10 or another member of the surgical team with a roller (pinch) clamp or other clamp provided with device 10. The clamp is configured to act upon and compress the tubing 16 and control flow in a manner known in the art.


The fluid may particularly comprise an electrically conductive fluid such as saline solution, and even more specifically, normal (physiologic) saline. Although the description herein may make reference to saline as the fluid 12, other electrically conductive fluids can be used in accordance with the invention. For example, in addition to the conductive fluid comprising physiologic saline (also known as “normal” saline, isotonic saline or 0.9% sodium chloride (NaCl) solution), the conductive fluid may comprise hypertonic saline solution, hypotonic saline solution, Ringer's solution (a physiologic solution of distilled water containing specified amounts of sodium chloride, calcium chloride, and potassium chloride), lactated Ringer's solution (a crystalloid electrolyte sterile solution of distilled water containing specified amounts of calcium chloride, potassium chloride, sodium chloride, and sodium lactate), Locke-Ringer's solution (a buffered isotonic solution of distilled water containing specified amounts of sodium chloride, potassium chloride, calcium chloride, sodium bicarbonate, magnesium chloride, and dextrose), or any other electrolyte solution. In other words, the conductive fluid is a solution that conducts electricity via, for example, an electrolyte (i.e., a substance such as a salt, acid or base that dissociates into electrically charged ions when dissolved in a solvent, such as water, resulting in a solution comprising an ionic conductor).


The use of conductive fluids may provide certain advantages over the use of a dry electrode including, for example, reduced occurrence of tissue sticking to the electrode of device 30, reduced smoke generation, and increased cooling of the electrode and/or tissue. A conductive fluid may also be particularly suited to provide better coagulation and hemostasis of tissue, given the desire to more widely disperse the electrical energy over a wider area of tissue.


Electrosurgical unit 10 may be configured to provide both monopolar and bipolar power output, and may include a lock out feature which prevents both monopolar and bipolar output from being activated simultaneously.


During monopolar operation, a first electrode, often referred to as the active electrode, may be disposed on the handheld portion of the electrosurgical device, while a second electrode, often referred to as the indifferent or neutral electrode, may be provided in the form of a ground pad dispersive electrode located on the patient (also known as a patient return electrode), typically on the back or other suitable anatomical location. An electrical circuit may be formed between the active electrode and ground pad dispersive electrode with electrical current flowing from the active electrode through the patient to the ground pad dispersive electrode in a manner known in the art.


During bipolar operation, the ground pad electrode located on the patient is not required, and a second electrode providing an electrical pole may be disposed on the handheld portion of the device. An alternating current electrical circuit may then be created between the first and second electrical poles of the device. Consequently, alternating current will typically not flow through the patient's body to a ground pad electrode as in monopolar operation, but rather through a localized portion of tissue between the poles of the bipolar device.


As shown in FIG. 1, depending on whether electrosurgical device 30 is a bipolar or monopolar device, device 30 may be connected to electrosurgical unit 10 via electrical cable 24 or cable 26. Cable 24 has a plug 34 which connects to bipolar mode output receptacle 38 of electrosurgical unit 10. Cable 26 has a plug 42 which connects to the monopolar mode output receptacle 46 of electrosurgical unit 10. When electrosurgical unit 10 is used in monopolar mode, an additional cable 50 is utilized to connect a ground pad dispersive electrode 48 to the ground pad receptacle 56 of the electrosurgical unit 10 via a connector 52 of cable 50.



FIG. 2 shows the front panel of the exemplary electrosurgical unit 10. A power switch 58 may be used to turn the electrosurgical unit 10 on and off. After turning the electrosurgical unit 10 on, an RF power setting display 60 may be used to display the RF power setting numerically in watts. The power setting display 60 may further comprise a liquid crystal display (LCD).


Electrosurgical unit 10 may further comprise an RF power selector 62 comprising RF power setting switches 62a, 62b which may be used to select the RF power setting. Pushing the switch 62a will increase the RF power setting, while pushing the switch 62b will decrease the RF power setting. Additionally, electrosurgical unit 10 may include an RF power activation display 64 comprising an indicator light which will illuminate when RF power is activated, either via a hand switch on device 30 (e.g. shown in FIG. 1 as monopolar or bipolar cut switch 114 or coagulate switch 116, depending on whether the device is a monopolar or bipolar device, respectively) or a footswitch (e.g. shown in FIG. 1 as monopolar or bipolar cut footswitch 94 or coagulate footswitch 96, depending on whether the device is a monopolar or bipolar device, respectively). Switches 62a, 62b may comprise membrane switches. It should be understood that, while only one RF power selector 62 is shown, electrosurgical unit 10 may have two such RF power selectors with one each for monopolar and bipolar power selection.


In addition to having RF power setting display 60, electrosurgical unit 10 may further include a fluid flow rate setting display 66. Flow rate setting display 66 may comprise three indicator lights 66a, 66b and 66c with first light 66a corresponding to a fluid flow rate setting of low, second light 66b corresponding to a fluid flow rate setting of medium (intermediate), and third light 66c corresponding to a flow rate setting of high. One of these three indicator lights will illuminate when a fluid flow rate setting is selected.


Electrosurgical unit 10 may further include a fluid flow selector 68 comprising flow rate setting switches 68a, 68b and 68c used to select or switch the flow rate setting. Three push switches may be provided with first switch 68a corresponding to the fluid flow rate setting of low, second switch 68b corresponding to a fluid flow rate setting of medium (intermediate) and third switch 68c corresponding to a flow rate setting of high. Pushing one of these three switches will select the corresponding flow rate setting of either low, medium (intermediate) or high. The medium, or intermediate, flow rate setting may be automatically selected as the default setting if no setting is manually selected. Switches 68a, 68b and 68c may comprise membrane switches.


Before starting a surgical procedure, it may be desirable to prime device 30 with fluid 12. A priming switch 70 may be used to initiate priming of device 30 with fluid 12. Pushing switch 70 once may initiate operation of pump 22 for a predetermined time period to prime device 30. After the time period is complete, the pump 22 may shut off automatically. When priming of device 30 is initiated, a priming display 72 comprising an indicator light may illuminate during the priming cycle.


In an example embodiment, electrosurgical unit 10 is an electrosurgical power generator (also called a voltage source, power supply or waveform generator) which produces a pulsed radio frequency (RF) waveform. The waveform can include a burst of biphasic pulses followed by a burst interval during which no pulses are present. Each pulse may have an opposite electrical polarity to that of a previous pulse (i.e., the pulses are charge balanced biphasic). Example characteristics of the power generator include a peak power output in a range of about 0.5 kW (kilowatts) to 2.5 kW, a peak voltage output in a range of about 200 volts to 1,000 volts, a burst frequency in a range of about 0.5 kHz to 12 kHz (kilohertz), and a burst duty cycle in a range of about 5% to 95%. In another example embodiment, electrosurgical unit 10 is an electrosurgical power generator as described in U.S. Pat. No. 7,357,802, which is incorporated herein by reference.


Electrosurgical device 30 of the present invention is described in further detail below with reference to FIGS. 3-8. It should be understood that while electrosurgical device 30 and electrosurgical unit 10 are described herein as being used together, a person skilled in the relevant art will understand that electrosurgical device 30 may be used with other electrosurgical units, and electrosurgical unit 10 may be used with other electrosurgical devices.


As shown in FIG. 3, exemplary device 30 is a bipolar device which comprises an elongated handle 100 comprising mating handle portions 100a and 100b. Handle 100 is slender, along with the rest of device 30, to enable a user of device 30 to hold and manipulate device 30 between the thumb and index finger like a pen-type device. Handle 100 may comprise a sterilizable, rigid, non-conductive material, such as a polymer (e.g., polycarbonate).


During use of device 30, fluid 12 from fluid source 20 may flow through a tubular fluid passage which may be provided by various structures. In the present embodiment, fluid 12 from the fluid source 20 may first flow through lumen 18 of delivery tubing 16. Fluid 12 may also flow through a lumen of a special pump tubing segment designed to operate specifically with pump 22, which may be spliced in between portions of delivery tubing 16 and connected thereto at each end.


Device 30 includes cable 24 which is connectable to electrosurgical unit 10 to provide device 30 with bipolar power output from electrosurgical unit 10. Cable 24 of device 30 comprises four insulated wire conductors connectable to bipolar power output receptacles 38a, 38b, 38c, 38d (see FIG. 2) of electrosurgical unit 10 via four banana (male) plug connectors 36a, 36b, 36c, 36b. The banana plug connectors 36a, 36b, 36c, 36d are each assembled with the insulated wire conductors within the housing of plug 34 in a known manner. Plug connectors 36a, 36b are electrically coupled by wire conductors to hand switches 114, 116, respectively, in a known manner. Plug connector 36c is electrically coupled by a wire conductor to tubular shaft member 120, which is electrically coupled to electrode 134. Plug connector 36d is electrically coupled by a wire conductor to electrode 136. Electrodes 134 and 136 provide a bipolar pair of electrodes. Electrode 136 may be referred to as an active electrode, and electrode 134 may be referred to as a return electrode, due to the differences in surface area.


Within handle 100 of device 30, the distal end of fluid delivery tubing 16 may be connected to the proximal end of hollow tube 122 of shaft member 120, as shown in FIGS. 4-6. Shaft member 120 may comprise a self-supporting, electrically conductive tube 122 which may comprise a metal tubing segment, such as stainless steel tubing (e.g. hypodermic tubing). In such case, the outer surface of the tube 122 will preferably be electrically insulated by, for example, an overlying electrical insulator such as provided by polymer shrink wrap. To connect delivery tubing 16 to tube 122, the lumen 18 of delivery tubing is preferably interference fit over the outside diameter of tube 122 to provide an interference fit seal. Fluid 12 then may flow through the lumen 124 of tube 122 and be expelled from fluid outlet opening 126 at the distal end 127 of the tube 122.


Carried by and connected to a distal end of tube 122 is an end effector 101 in the form of an elongated wedge or triangular shaped blade member 130 having an electrically insulative (i.e., insulating) body portion 132, which may comprise an electrically insulative material such as a polymer or ceramic material. As shown in FIGS. 5 and 7, body portion 132 has opposing planar sides 138, 140 which may be partially covered by overlying electrode 134. Overlying electrode 134 may comprise, for example, a metal or conductive polymer material. In one embodiment, electrode 134 is formed by a thin metallic coating, such as would be provided by a low impedance, conductive paint (e.g., a Pb and Cd Free Silver Conductor C8728, available from Heraeus Materials Technology LLC, Thick Film Material Division, West Conshohocken, Pa.) or by depositing a metal using printed circuit board or semiconductor manufacturing techniques. Also as shown, sides 138, 140 converge to provide a wedge or triangular shape adjacent to electrode 136 which defines an electrosurgical cutting edge of end effector 101.


In one example embodiment, as shown in FIG. 5, electrode 136 may particularly comprise a wire having a rounded, cylindrical shape, with a radius of about 0.5 mm or less and which extends longitudinally (proximally-distally) along a length of body portion 132. In other example embodiments, such as in FIG. 6, edge 136 may be made sharp. This is accomplished, for example, by folding or bending a sheet of metal around the electrosurgical cutting edge formed by converging sides 138, 140 and sanding or grinding the metal to a sharp edge (e.g., having an edge thickness of about 0.005 to 0.010 inches (0.12 mm to 0.25 mm)).


At the distal end 142 of body portion 132 is an oblong cavity 144 which contains the distal end 127 of tube 122 and fluid outlet opening 126, as shown in FIG. 8. Oblong cavity 144 also has its surface coated with the metallic material to provide electrode 134 since it is in physical contact with electrically conductive tube 122 from which it receives electrical energy. There is also a portion 146 of body portion 132 located between electrodes 134 and 136 at the distal end 142 which functions to minimize or interrupt any short that may occur between electrodes 134 and 136. In addition, portion 146 may reduce or eliminate the ingress of fluid 12 to the vicinity of electrode 136, preventing any impairment of the cutting action by a defocused electric field.


Device 30 is preferably used with an electrically conductive fluid 12. As shown in FIG. 9, in order to facilitate plasma generation, two contacts are made with tissue 200, one contact by cutting electrode 136 and another contact with return electrode 134. The cutting electrode 136 of device 30 may be brought in contact with the tissue 200 to be cut, and power may be applied to the device 30. Depending on the angular position of device 30 with respect to tissue 200, the contact with the return electrode 134 may or may not be established and, as a result, the plasma process may or may not initialize. If there is contact between the return electrode 134 and tissue 200, the plasma process will initialize. If the angle of device 30 is such that there is no contact between return electrode 134 and tissue 200, the plasma process may not initialize.


To overcome this concern and to provide better assurance of electrical contact between return electrode 134 and tissue 200, an electrically conductive fluid 12 dispensed from fluid outlet opening 126 of tube 122, which is conductively coupled to the return electrode 134, may be used to establish a momentary localized fluid coupling 204 which provides an electrically conductive bridge between the return electrode 134 and the tissue 200. Once fluid coupling/bridge 204 is established between the return electrode 134 and the tissue 200, plasma ignition and the cutting process may commence. The fluid coupling/bridge 204 may be replaced by direct contact between the return electrode 134 and the tissue 200 as member 130 advances through the tissue 200. Thus, the fluid coupling/bridge 204 may provide a temporary connection between the return electrode 134 and the tissue 200. Once plasma ignition occurs and cutting is initiated, as shown by plasma area 206, the return electrode 134 may establish a direct connection with the tissue 200, allowing use of the electrically conductive fluid to be terminated. In particular, the flow of fluid 12 from device 30 may be terminated within seconds, for example, about 15 seconds or less, and more particularly about 10 seconds or less. In some cases, fluid flow may be terminated in about 3-5 seconds and, in other cases, in about 0.1-2.0 seconds.



FIGS. 11-15 show an alternate embodiment 1030 of electrosurgical device 30. Referring first to FIG. 10, a side view of device 1030 is shown. In this embodiment, device 1030 includes a handle 1100 and an end effector 1101. End effector 1101 includes a body portion 1132 having a distal end 1142.



FIGS. 11 and 12 show a side view of end effector 1101. As shown, end effector 1101 includes a body portion 1132, a cutting electrode 1136 and a return electrode 1134. Distal end 1142 of body portion 1132 includes a cavity or dimple 1144 formed therein. The position of cavity 1144 in distal end 1142 causes formation of a protruding portion 1146 of body portion 1132 to be formed adjacent cavity 1144. Cavity 1144 and protruding portion 1146 act together to prevent direct short-circuits between electrodes 1134 and 1136. In addition, portion 1146 may reduce or eliminate the ingress of conductive fluid to the vicinity of electrode 1136, preventing any impairment of the electrosurgical cutting action by a defocused electric field.


Body portion 1132 is formed from an insulating material such as a ceramic or polymer material. Body portion 1132 has a cross-sectional shape that is substantially rectangular or blade-shaped, having substantially flat, parallel sides. In one example embodiment, body portion 1132 is a thin ceramic blade having a thickness of approximately 0.020 inches (0.51 mm). Electrodes 1134 and 1136 are formed by depositing a thin metal layer, such as would be provided by a low impedance, conductive paint (e.g., Pb and Cd Free Silver Conductor C8728, available from Heraeus Materials Technology LLC, Thick Film Material Division, West Conshohocken, Pa.) or by depositing a metal using printed circuit board or semiconductor manufacturing techniques.


As shown in FIG. 12, an electrically conductive tube 1122 may be attached to electrode 1134 along the length of body portion 1132, where it may also serve as part of (or an alternative for) return electrode 1134. Tube 1122, having a fluid outlet opening 1126 adjacent to distal end 1142, is configured to deliver a conductive fluid to area immediately adjacent to distal end 1142. The embodiment of FIG. 11 also shows a cutting wire 1137 attached to cutting electrode 1136. In an example embodiment, wire 1137 has a diameter of 0.005″ to 0.015″ (0.13 mm to 0.38 mm) and is soldered (or welded) onto cutting electrode 1136 to enhance durability of cutting electrode 1136.



FIG. 13 shows a cross-sectional view (taken near distal end 1142) of end effector 1101. FIG. 14 is a schematic diagram of body portion 1132 of end effector 1101. FIG. 15 is a schematic diagram depicting in detail the shape of distal end 1142 of body portion 1132 of end effector 1101. These figures serve to further depict the details of this embodiment of the invention.



FIG. 16 illustrates a flow chart for the steps performed for cutting biological tissue in accordance with an embodiment of the present invention. At step 302, a flow of an electrically conductive fluid to a distal end of the bipolar electrosurgical device is initiated. At step 304, electrical energy is applied between the first electrode and the second electrode on the bipolar electrosurgical device. At step 306, the bipolar electrosurgical device is applied to the biological tissue such that the first electrode near the distal end of the bipolar electrosurgical device is in direct contact with the biological tissue. This will result in formation of an electrical arc adjacent the distal end of the bipolar electrosurgical device. At step 308, the flow of the electrically conductive fluid may be terminated without affecting the arc. Thus, as shown at step 310, the arc is maintained to cut the biological tissue.


Based on the disclosure set forth herein, a person skilled in the art will understand that the steps of this method are presented in a representative order and that certain of the steps may be performed in a different order or may even be performed simultaneously. For example, steps 302 and 304 may be performed in a different order or may be performed simultaneously.


While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications can be made therein without departing from the spirit of the invention and the scope of the appended claims. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents. Furthermore, it should be understood that the appended claims do not necessarily comprise the broadest scope of the invention which the Applicant is entitled to claim, or the only manner(s) in which the invention may be claimed, or that all recited features are necessary.


All publications and patent documents cited in this application are incorporated by reference in their entirety for all purposes to the extent they are consistent.

Claims
  • 1. An electrosurgical device comprising: (a) a handle; and(b) an elongated end effector coupled to the handle, the elongated end effector having a proximal end, a distal end, (i) an elongated insulating body having a proximal end coupled to the handle such that the elongated insulating body extends away from the handle toward a distal end,(ii) a first electrode disposed along the elongated insulating body, the first electrode being substantially entirely disposed and, when in use, substantially unconcealed on an exterior surface of the elongated end effector and extending from the proximal end to the distal end of the elongated end effector, the first electrode protruding a distance away from the elongated insulating body,(iii) a second electrode disposed along the elongated insulating body, wherein the first electrode and the second electrode are separated at the distal end of the elongated insulating body,(iv) a cavity formed in the distal end of the elongated end effector between the first and second electrodes, and(v) a fluid-delivery tube for delivering a fluid to the distal end of the elongated insulating body adjacent the cavity; delivery of the fluid facilitates formation of an electrical coupling between the first electrode and the second electrode through tissue adjacent the distal end of the elongated insulating body for performance of an electrosurgical procedure.
  • 2. The device of claim 1, wherein: (a) the elongated insulating body has a cross-sectional shape that is a substantially flat rectangle;(b) the first electrode is disposed on a minor edge of the substantially flat rectangle; and(c) the second electrode is disposed on an opposite minor edge of the substantially flat rectangle.
  • 3. The device of claim 1, wherein the fluid delivery tube is attached to the elongated insulating body adjacent the second electrode.
  • 4. The device of claim 3, wherein the fluid delivery tube is attached to the second electrode.
  • 5. The device of claim 3, wherein the elongated end effector defines a major longitudinal axis substantially parallel with a major longitudinal axis of the fluid-delivery tube wherein the fluid-delivery tube comprises an electrically conductive tube having a fluid outlet port substantially parallel with the major longitudinal axis of the elongated end effector.
  • 6. The device of claim 5, wherein the fluid delivery tube also serves as the second electrode.
  • 7. The device of claim 2, wherein the first electrode and the second electrode comprise metalized layers on the elongated insulating body.
  • 8. The device of claim 7, wherein the first electrode further comprises a wire, having a diameter less than about one mm, attached to the metalized layer.
  • 9. The device of claim 2, wherein the first electrode comprises a wire, having a diameter less than about one mm.
  • 10. The device of claim 1, wherein: (a) the elongated insulating body has a cross-sectional shape that is substantially wedge-shaped with a broad base, a narrow edge opposite the broad base, and sides between the broad base and the narrow edge connecting the broad base to the narrow edge;(b) the first electrode is disposed on the narrow edge of the elongated insulating body; and(c) the second electrode is disposed on the elongated insulating body and terminates in a conductive portion in the cavity.
  • 11. The device of claim 10, wherein the fluid delivery tube comprises a passage through the insulating body that opens into the cavity at the distal end of the elongated insulating body.
  • 12. The device of claim 10, wherein the first electrode comprises a wire having a diameter less than about one mm.
  • 13. The device of claim 11, wherein the first electrode comprises a sheet of metal covering the apex of the narrow edge.
  • 14. The device of claim 13, wherein the sheet of metal has a thickness in the range of about 0.12 mm to 0.25 mm.
  • 15. The device of claim 10, wherein the first electrode and the second electrode are disposed on opposite sides of the elongated insulating body to provide coagulation and hemostasis to biological tissue.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Appl. No. 61/313,056, filed Mar. 11, 2010, which is incorporated herein by reference as if reproduced in full below.

US Referenced Citations (542)
Number Name Date Kind
2888928 Seiger Jun 1959 A
3682130 Jeffers Aug 1972 A
3750650 Ruttgers Aug 1973 A
4060088 Morrison, Jr. et al. Nov 1977 A
4195637 Gruntzig et al. Apr 1980 A
4207897 Lloyd et al. Jun 1980 A
4244371 Farin Jan 1981 A
4248224 Jones Feb 1981 A
4275734 Mitchiner Jun 1981 A
4276874 Wolvek et al. Jul 1981 A
4278090 van Gerven Jul 1981 A
4321931 Hon Mar 1982 A
4342218 Fox Aug 1982 A
4355642 Alferness Oct 1982 A
4377168 Rzasa et al. Mar 1983 A
4381007 Doss Apr 1983 A
4519389 Gudkin et al. May 1985 A
4598698 Siegmund Jul 1986 A
4601290 Effron et al. Jul 1986 A
4664110 Schanzlin May 1987 A
4671274 Sorochenko Jun 1987 A
4736749 Lundback Apr 1988 A
4779611 Grooters et al. Oct 1988 A
4802475 Weshahy Feb 1989 A
4919129 Weber et al. Apr 1990 A
4931047 Broadwin et al. Jun 1990 A
4932952 Wojciechowicz, Jr. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4950232 Ruzicka et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
4998933 Eggers et al. Mar 1991 A
5190541 Abele et al. Mar 1993 A
5195959 Smith Mar 1993 A
5234428 Kaufman Aug 1993 A
5254117 Rigby et al. Oct 1993 A
5281215 Milder Jan 1994 A
5309896 Moll et al. May 1994 A
5316000 Chapelon et al. May 1994 A
5317878 Bradshaw et al. Jun 1994 A
5318525 West et al. Jun 1994 A
5322520 Milder Jun 1994 A
5323781 Ideker et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
5324286 Fowler Jun 1994 A
5330521 Cohen Jul 1994 A
5334181 Rubinsky et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5348554 Imran et al. Sep 1994 A
5353783 Nakao et al. Oct 1994 A
5354258 Dory Oct 1994 A
5361752 Moll et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5395312 Desai Mar 1995 A
5396887 Imran Mar 1995 A
5397304 Truckai Mar 1995 A
5400770 Nakao et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403309 Coleman et al. Apr 1995 A
5403311 Abele et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5417709 Slater May 1995 A
5423807 Mlilder Jun 1995 A
5423811 Imran et al. Jun 1995 A
5427119 Swartz et al. Jun 1995 A
5431168 Webster, Jr. Jul 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5435308 Gallup et al. Jul 1995 A
5437651 Todd et al. Aug 1995 A
5441503 Considine et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443470 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5450843 Moll et al. Sep 1995 A
5452582 Longsworth Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5460629 Shlain et al. Oct 1995 A
5462545 Wang et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5469853 Law et al. Nov 1995 A
5472876 Fahy Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478330 Imran et al. Dec 1995 A
5486193 Bourne et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5496271 Burton et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5497774 Swartz et al. Mar 1996 A
5498248 Milder Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505700 Leone et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5516505 McDow May 1996 A
5520682 Baust et al. May 1996 A
5522870 Ben-Zion Jun 1996 A
5536267 Edwards et al. Jul 1996 A
5540562 Giter Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5542945 Fritzsch Aug 1996 A
5545195 Lennox et al. Aug 1996 A
5545200 West et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5555883 Avitall Sep 1996 A
5556397 Long et al. Sep 1996 A
5558671 Yates Sep 1996 A
5560362 Sliwa, Jr. et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573532 Chang et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575788 Baker et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578007 Imran Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5590657 Cain et al. Jan 1997 A
5595183 Swanson et al. Jan 1997 A
5599346 Edwards et al. Feb 1997 A
5605539 Buelna et al. Feb 1997 A
5607462 Imran Mar 1997 A
5617854 Munsif Apr 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5656029 Imran et al. Aug 1997 A
5658278 Imran et al. Aug 1997 A
5671747 Connor Sep 1997 A
5673695 McGee et al. Oct 1997 A
5676662 Fleischhacker et al. Oct 1997 A
5676692 Sanghvi et al. Oct 1997 A
5676693 Lafontaine Oct 1997 A
5678550 Bassen et al. Oct 1997 A
5680860 Imran Oct 1997 A
5681278 Igo et al. Oct 1997 A
5681294 Osborne et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5687737 Branham et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690611 Swartz et al. Nov 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5697928 Walcott et al. Dec 1997 A
5713942 Stern Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5720775 Lanard Feb 1998 A
5722402 Swanson et al. Mar 1998 A
5730074 Peter Mar 1998 A
5730127 Avitall Mar 1998 A
5730704 Avitall Mar 1998 A
5733280 Avitall Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5735290 Sterman et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5755760 Maguire et al. May 1998 A
5766167 Eggers et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788636 Curley Aug 1998 A
5792140 Tu et al. Aug 1998 A
5797905 Fleischman et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800428 Nelson et al. Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836947 Fleischman et al. Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843152 Tu et al. Dec 1998 A
5844349 Oakley et al. Dec 1998 A
5846187 Wells et al. Dec 1998 A
5846191 Wells et al. Dec 1998 A
5849028 Chen Dec 1998 A
5861021 Thome et al. Jan 1999 A
5871523 Fleischman et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873845 Cline et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879295 Li et al. Mar 1999 A
5879296 Ockuly et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5881732 Sung et al. Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5895355 Schaer Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899898 Arless et al. May 1999 A
5899899 Arless et al. May 1999 A
5902289 Swartz et al. May 1999 A
5904711 Flom et al. May 1999 A
5906580 Kline-Schoder et al. May 1999 A
5906587 Zimmon May 1999 A
5906606 Chee et al. May 1999 A
5908029 Knudson et al. Jun 1999 A
5913854 Maguire et al. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5916214 Cosio et al. Jun 1999 A
5921924 Avitall Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5925045 Reimels et al. Jul 1999 A
5927284 Borst et al. Jul 1999 A
5928191 Houser et al. Jul 1999 A
5931810 Grabek Aug 1999 A
5931848 Saadat Aug 1999 A
5935123 Edwards et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5954661 Greenspon et al. Sep 1999 A
5971980 Sherman Oct 1999 A
5971983 Lesh Oct 1999 A
5975919 Arnett et al. Nov 1999 A
5980516 Mulier et al. Nov 1999 A
5989248 Tu et al. Nov 1999 A
5993412 Deily et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
6004316 Laufer Dec 1999 A
6004319 Goble et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6010500 Sherman et al. Jan 2000 A
6012457 Lesh Jan 2000 A
6015391 Rishton et al. Jan 2000 A
6016811 Knopp et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6030381 Jones et al. Feb 2000 A
6036687 Laufer et al. Mar 2000 A
6042556 Beach et al. Mar 2000 A
6048333 Lennox et al. Apr 2000 A
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble May 2000 A
6056747 Saadat et al. May 2000 A
6063081 Mulier May 2000 A
6066139 Ryan et al. May 2000 A
6068653 LaFontaine May 2000 A
6071279 Whayne et al. Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6088894 Oakley Jul 2000 A
6096037 Mulier Aug 2000 A
6113592 Taylor Sep 2000 A
6113596 Hooven et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6120496 Whayne et al. Sep 2000 A
6141576 Littmann et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6161543 Cox et al. Dec 2000 A
6165174 Jacobs et al. Dec 2000 A
6190384 Ouchi Feb 2001 B1
6193716 Shannon, Jr. Feb 2001 B1
6210406 Webster Apr 2001 B1
6210410 Farin et al. Apr 2001 B1
6210411 Hofmann et al. Apr 2001 B1
6212426 Swanson Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217528 Koblish et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6231591 Desai May 2001 B1
6235020 Cheng et al. May 2001 B1
6235024 Tu May 2001 B1
6237605 Vaska et al. May 2001 B1
6238347 Nix et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238393 Mulier May 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245064 Lesh et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6270471 Hechel et al. Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6302880 Schaer Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6312383 Lizzi et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328735 Curley et al. Dec 2001 B1
6328736 Mulier et al. Dec 2001 B1
6332881 Carner et al. Dec 2001 B1
6352533 Ellman et al. Mar 2002 B1
6358248 Mulier Mar 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6371955 Fuimaono et al. Apr 2002 B1
6371956 Wilson et al. Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6385472 Hall et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6409722 Hoey Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419648 Vitek et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6430426 Avitall Aug 2002 B2
6440130 Mulier Aug 2002 B1
6443952 Mulier Sep 2002 B1
6447507 Bednarek et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6461356 Patterson Oct 2002 B1
6464700 Koblish et al. Oct 2002 B1
6471697 Lesh Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475216 Mulier Nov 2002 B2
6477396 Mest et al. Nov 2002 B1
6478793 Cosman et al. Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6497704 Ein-Gal Dec 2002 B2
6502575 Jacobs et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6514250 Jahns et al. Feb 2003 B1
6517536 Hooven et al. Feb 2003 B2
6527767 Wang et al. Mar 2003 B2
6537248 Mulier Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6558382 Jahns May 2003 B2
6558385 McClurken et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6579288 Swanson et al. Jun 2003 B1
6584360 Francischelli Jun 2003 B2
6585732 Mulier Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6603988 Dowlatshahi Aug 2003 B2
6605084 Acker et al. Aug 2003 B2
6610055 Swanson et al. Aug 2003 B1
6610060 Mulier Aug 2003 B2
6613048 Mulier Sep 2003 B2
6635034 Cosmescu Oct 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6645202 Pless et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6656175 Francischelli Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6666862 Jain et al. Dec 2003 B2
6679882 Kornerup Jan 2004 B1
6682501 Nelson Jan 2004 B1
6689131 McClurken Feb 2004 B2
6692450 Coleman Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6702810 McClurken et al. Mar 2004 B2
6702811 Stewart et al. Mar 2004 B2
6706038 Francischelli Mar 2004 B2
6706039 Mulier Mar 2004 B2
6716211 Mulier Apr 2004 B2
6736810 Hoey May 2004 B2
6755827 Mulier Jun 2004 B2
6764487 Mulier Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6766817 da Silva Jul 2004 B2
6773433 Stewart et al. Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier Aug 2004 B2
6786906 Cobb Sep 2004 B1
6807968 Francischelli Oct 2004 B2
6827713 Bek et al. Dec 2004 B2
6827715 Francischelli Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6849073 Hoey Feb 2005 B2
6858028 Mulier Feb 2005 B2
6887238 Jahns May 2005 B2
6899711 Stewart et al. May 2005 B2
6911019 Mulier Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6916318 Francischelli Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6936046 Hissong Aug 2005 B2
6942661 Swanson Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949098 Mulier Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6960205 Jahns Nov 2005 B2
6962589 Mulier Nov 2005 B2
7066586 da Silva Jun 2006 B2
7156845 Mulier et al. Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7247155 Hoey et al. Jul 2007 B2
7261711 Mulier et al. Aug 2007 B2
7309325 Mulier et al. Dec 2007 B2
7311708 McClurken Dec 2007 B2
7322974 Swoyer et al. Jan 2008 B2
7361175 Suslov Apr 2008 B2
7364579 Mulier et al. Apr 2008 B2
7537595 McClurken May 2009 B2
7604635 McClurken et al. Oct 2009 B2
7608072 Swanson Oct 2009 B2
7645277 McClurken et al. Jan 2010 B2
7651494 McClurken et al. Jan 2010 B2
7691050 Gellman Apr 2010 B2
7727232 Maurer et al. Jun 2010 B1
7736361 Palanker Jun 2010 B2
7811282 McClurken Oct 2010 B2
7815634 McClurken et al. Oct 2010 B2
7909820 Lipson Mar 2011 B2
7942872 Ein-Gal May 2011 B2
7976544 McClurken Jul 2011 B2
7993337 Lesh Aug 2011 B2
7997278 Utley et al. Aug 2011 B2
7998140 McClurken Aug 2011 B2
8034071 Scribner et al. Oct 2011 B2
8038670 McClurken Oct 2011 B2
8048070 O'Brien Nov 2011 B2
8083736 McClurken et al. Dec 2011 B2
8105323 Buysse et al. Jan 2012 B2
8172828 Chang et al. May 2012 B2
8177783 Davison et al. May 2012 B2
8216233 McClurken Jul 2012 B2
8323276 Palanker et al. Dec 2012 B2
8348946 McClurken Jan 2013 B2
8361068 McClurken Jan 2013 B2
8388642 Muni et al. Mar 2013 B2
8414572 Davison et al. Apr 2013 B2
8475455 McClurken Jul 2013 B2
20020049483 Knowlton Apr 2002 A1
20020062131 Gallo, Sr. May 2002 A1
20020082634 Kammerer et al. Jun 2002 A1
20030014050 Sharkey et al. Jan 2003 A1
20030032954 Carranza et al. Feb 2003 A1
20030045872 Jacobs Mar 2003 A1
20030073993 Ciarrocca Apr 2003 A1
20030144656 Ocel Jul 2003 A1
20030191462 Jacobs Oct 2003 A1
20030204185 Sherman et al. Oct 2003 A1
20030216724 Jahns Nov 2003 A1
20040015106 Coleman Jan 2004 A1
20040015219 Francischelli Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040044340 Francischelli Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040078069 Francischelli Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087940 Jahns May 2004 A1
20040092926 Hoey May 2004 A1
20040111136 Sharkey et al. Jun 2004 A1
20040111137 Shankey et al. Jun 2004 A1
20040116923 Desinger Jun 2004 A1
20040138621 Jahns Jul 2004 A1
20040138656 Francischelli Jul 2004 A1
20040143260 Francischelli Jul 2004 A1
20040186465 Francischelli Sep 2004 A1
20040215183 Hoey Oct 2004 A1
20040220560 Briscoe Nov 2004 A1
20040236322 Mulier Nov 2004 A1
20040267326 Ocel Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050033280 Francischelli Feb 2005 A1
20050090815 Francischelli Apr 2005 A1
20050090816 McClurken et al. Apr 2005 A1
20050143729 Francischelli Jun 2005 A1
20050165392 Francischelli Jul 2005 A1
20050171525 Rioux et al. Aug 2005 A1
20050209564 Bonner Sep 2005 A1
20050267454 Hissong Dec 2005 A1
20050273097 Ryan Dec 2005 A1
20060009756 Francischelli Jan 2006 A1
20060009759 Christian Jan 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060106375 Werneth et al. May 2006 A1
20060111709 Goble et al. May 2006 A1
20070049920 McClurken et al. Mar 2007 A1
20070093808 Mulier et al. Apr 2007 A1
20070118114 Miller et al. May 2007 A1
20070149965 Gallo, Sr. et al. Jun 2007 A1
20070208332 Mulier et al. Sep 2007 A1
20080004656 Livneh Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080058796 O'Brien et al. Mar 2008 A1
20080058821 Maurer et al. Mar 2008 A1
20080071270 Desinger et al. Mar 2008 A1
20080103494 Rioux et al. May 2008 A1
20080207208 Buckley Aug 2008 A1
20080262489 Steinke Oct 2008 A1
20090222001 Greeley et al. Sep 2009 A1
20090264879 McClurken et al. Oct 2009 A1
20090306655 Stangenes Dec 2009 A1
20100069904 Cunningham Mar 2010 A1
20100100095 McClurken et al. Apr 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168743 Stone et al. Jul 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100241178 Tilson et al. Sep 2010 A1
20110028965 McClurken Feb 2011 A1
20110137298 Nguyen et al. Jun 2011 A1
20110178515 Bloom et al. Jul 2011 A1
20110196367 Gallo Aug 2011 A1
20110295249 Bloom et al. Dec 2011 A1
20110319889 Conley et al. Dec 2011 A1
20120004657 Conley et al. Jan 2012 A1
20120071712 Manwaring et al. Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101496 McClurken et al. Apr 2012 A1
20120116397 Rencher et al. May 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120151165 Furuichi et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120184983 Chang et al. Jul 2012 A1
20120191084 Davison et al. Jul 2012 A1
20120253343 McClurken et al. Oct 2012 A1
Foreign Referenced Citations (3)
Number Date Country
WO9604955 Feb 1996 WO
WO2007-037785 Apr 2007 WO
WO2010141417 Dec 2010 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion, dated May 5, 2011, for PCT Application No. PCT/US2011/028188, filed Mar. 11, 2011, 12 pages.
Related Publications (1)
Number Date Country
20110224669 A1 Sep 2011 US
Provisional Applications (1)
Number Date Country
61313056 Mar 2010 US