1. Field of the Invention
The invention relates to a board connector.
2. Description of the Related Art
Japanese Unexamined Patent Publication No. 2008-135314 discloses a board connector that is to be mounted on a circuit board and includes a housing made of resin and a fixing member made of metal. The fixing member includes a housing mounting portion to be mounted in the housing and a board mounting portion to be mounted on the circuit board by solder.
The fixing member is punched out into a predetermined development shape from a metal plate, and plating layers can be formed on end surfaces (cut surfaces intersecting with plate surfaces) to improve solder wettability of the fixing member to the circuit board. However, post-plating costs are high, and it is desirable, if possible, to plate the metal plate before punching out (pre-plating). On the other hand, pre-plating leads to poor solder wettability since the plating layers cannot be formed on the end surfaces of the fixing member.
The invention was completed based on the above situation and aims to provide a board connector with a fixing member capable of improving solder wettability even if pre-plating is performed.
The invention relates to a board connector with a housing into which at least one terminal fitting is to be mounted. A substantially plate-like fixing member is mounted in the housing and includes at least one board fixing portion to be fixed to a circuit board by solder. At least the board fixing portion of the fixing member includes plate pieces arranged to substantially face each other in a plate thickness direction. Plating layers are formed on plate surfaces of the plate pieces and plating drip layers substantially continuous with the plating layers are formed on end surfaces of the plate pieces that intersect the plate surfaces.
The plate pieces may be arranged at a distance from each other in the plate thickness direction. Solder adheres to the plating layers formed on both plate surfaces of the plate pieces so that solder wettability is improved.
The plate pieces may be coupled integrally or unitarily via a bend. According to this configuration, the number of components can be reduced and workability is improved. In addition, the plating layers also may be formed on curved surfaces of the bend to improve solder wettability further.
The plate pieces need not be provided in a part of the fixing member to be mounted in the housing. Thus, a formation range of the plate pieces can be suppressed to a minimum necessary range and material cost can be reduced.
The plating drip layers may be substantially continuous with the plating layers formed on the plate surfaces of the plate pieces substantially facing toward one side in the plate thickness direction. Accordingly, a separation distance between the plating drip layers between adjacent plate pieces can be shorter. A non-plated area can be made shorter so that solder wettability can be improved.
A conductive metal plate is punched out or cut into a predetermined shape after being plated (pre-plating). Thus, plating layers are formed on plate surfaces of the fixing member and plating drip layers continuous with the plating layers are formed on end surfaces of the fixing member. At least the board fixing portion of the fixing member includes the plurality of plate pieces arranged to substantially face each other in the plate thickness direction and the plating drip layers are formed on the end surfaces of the plate pieces. Thus, a plurality of the plating drip layers are formed in the plate thickness direction, and solder wettability can be improved by the adhesion of solder to each plating drip layer.
These and other features and advantages of the invention will become more apparent upon reading the following detailed description and accompanying drawings. Even though embodiments are described separately, single features thereof may be combined to additional embodiments.
A first embodiment of the invention is described with reference to
The housing 10 is made e.g. of synthetic resin and includes, as shown in
The terminal fitting 90 is made of conductive material such as metal and, as shown in
As shown in
The fixing member 30 is a plate made of metal, arranged so that plate surfaces face laterally and, as shown in
As shown in
As shown in
The plate pieces 38A, 38B are formed over the entire width of the board fixing portion 31 in a plate width direction PWD (front-back direction) and over the entire length thereof in a vertical length direction LD, and are continuous with front and rear ends of the lower portion 34 of the housing fixing portion 32.
The plate pieces 38A, 38B are coupled unitarily via a bend 39 except at the tip area 37. As shown in
As shown in
The tip area 37 is formed with a guide 45 for guiding an inserting into the fixing hole 102. The guide 45 is configured by parts of the inner end surface and left and right plate surfaces (both end surfaces in the plate thickness direction PTD) of the plate pieces 38A, 38B tapered toward the lower end. Note that, as shown in
In manufacturing the fixing member 30, a metal plate is plated with tin, nickel, gold or the like to form plating layers 46 (see thick lines of
On end surfaces of the series terminal 48 (fracture surfaces intersecting with the plate surfaces), corners 49 continuous with the punch-out surface 47 are formed into curved surfaces (see
Subsequently, the second plate piece 38B is folded toward the first plate piece 38A via the bend 39. In this way, the plate pieces 38A, 38B are arranged to face each other in the plate thickness direction PTD with the first plate piece 38A covered by the second plate piece 38B. As shown in
The end surface of the plate pieces 38A and 38B are arranged along the plate thickness direction PTD and are at the same position in the plate width direction PWD. The corners 49 of the plate pieces 38A, 38B and the plating drip layers 43 formed on the corners 49 are on opposite end parts of the plate pieces 38A, 38B in the plate thickness direction PTD. Thus, plural plating drip layers 43 are formed in the plate thickness direction PTD on the end surfaces of the board fixing portions 31. Intermediate parts of the plate pieces 38A, 38B in the plate thickness direction PTD define non-plated areas 51 between the plating drip layers 43.
Next, functions and effects of the first embodiment are described.
In assembling, the housing fixing portion 32 of the fixing member 30 is inserted into the mounting groove 14 of the mounting portion 13 of the housing 10 from above and the fixing member 30 is retained and held in the housing 10 by the locking action of the locking projections 36 located on both front and rear sides of the housing fixing portion 32 (see
Subsequently, the housing 10 is placed on the surface of the circuit board 100 and the board fixing portions 31 of the fixing members 30 are inserted into the fixing holes 102 of the circuit board 100 (see
Solder covers the outer peripheries of the board fixing portions 31 and satisfactorily adheres to the plating layers 46 and the plating drip layers 43 of the plate pieces 38A, 38B, but is difficult to adhere to the non-plated areas 51 of the plate pieces 38A, 38B. If the board fixing portion 31 is configured by one plate piece, only one plating drip layer is formed. Thus, a solder adhesion area is reduced. However, in the first embodiment, the board fixing portion 31 includes the plate pieces 38A, 38B and the plating drip layers 43 are formed respectively on the end surfaces of the plate pieces 38A, 38B. Thus, a large solder adhesion area is ensured.
As just described, according to the first embodiment, the board fixing portion 31 includes the plate pieces 38A, 38B, and the plating drip layers 43 are formed in the plate thickness direction PTD on the end surface of the board fixing portion 31. Thus, a large solder adhesion area can be ensured and solder wettability can be improved. As a result, a holding force of the fixing member 30 on the circuit board 100 is enhanced.
The plate pieces 38A, 38B are spaced from each other in the plate thickness direction PTD, so that solder satisfactorily adheres to the plating layers 46 formed on the plate surfaces of the plate pieces 38A, 38B facing each other via an inner clearance and solder wettability can be improved.
The plate pieces 38A, 38B are coupled unitarily via the bend 39 in the coupled plate piece 41. Thus, the number of components can be reduced, the plating layers 46 can be formed on the bent inner and outer surfaces of the bend 39 and solder wettability can be improved further.
The both plate pieces 38A, 38B are not provided on the upper portion 35 of the housing fixing portion 32. Thus, wasteful consumption of the metal plate can be prevented and cost can be suppressed to be low.
The board fixing portion 31E has a ring-shaped cross-section with ends, specifically a C-shaped cross-section, and is composed of plate pieces 38AE, 38BE having an arcuate cross-section and arranged to face in a plate thickness direction PTD. Plate surfaces (inner and outer surfaces) of the plate pieces 38AE, 38BE are curved arcuately without any step and end surfaces of the plate pieces 38AE, 38BE are tapered to be more separated toward a lateral or outer side. The plate surfaces of the plate pieces 38AE, 38BE on an outer peripheral side are a punch-out surface 47E and radially outer end parts of the end surfaces of the plate pieces 38AE, 38BE are corner parts 49E in the form of curved surfaces extending from the punch-out surface 47E.
One or more plating layers 46E are formed arcuately on the plate surfaces of the both plate pieces 38AE, 38BE, and plating drip layers 43E are formed to be continuous with the plating layer 46E on the outer periphery on the end surfaces of the plate pieces 38AE, 38BE. The plating drip layers 43E are formed on radially outer sides (including the corner parts 49) of the end surfaces of the plate pieces 38AE, 38BE, and radially inner sides of the end surfaces of the plate pieces 38AE, 38BE define non-plate areas 51E. Accordingly, the plating drip layers 43E formed on the end surfaces of the plate pieces 38AE, 38BE improves solder wettability, as in the first embodiment.
The board fixing portion 31F has a ring-shaped cross-section with ends, and comprises a first plate piece 38AF substantially straight along the front-back direction and a second plate piece 38BF having a substantially arcuate cross-section and folded along a curve from one end of the first plate piece 38AF. The end surface of the second plate piece 38BF is facing a plate surface of the first plate piece 38AF substantially in parallel with a tiny clearance formed therebetween and arranged along the front-back direction. The end surface of the first plate piece 38AF is arranged along the lateral direction. Outer plate surfaces of the plate pieces 38AF, 38BF are a punch-out surface 47F and outer end parts of the end surfaces of the plate pieces 38AF, 38BF are corner parts 49F in the form of curves extending from the punch-out surface 47F.
One or more plating layers 46F are formed straight on the plate surfaces of the first plate piece 38AF, and plating layers 46F are formed arcuately formed on the plate surfaces of the second plate piece 38BF. One or more plating drip layers 43F are formed to be continuous with the plating layers 46F at positions of outer sides of the end surfaces of the plate pieces 38AF, 38BF including the corner parts 49F. Accordingly, the plating drip layers 43F formed respectively on the end surfaces of the plate pieces 38AF, 38BF of the third embodiment improves solder wettability, as in the first embodiment.
In the case of the first embodiment, the fixing member 30 tends to be enlarged in the lateral direction by including the plate pieces 38A, 38B in the lateral direction. In view of this, the plate thickness of the fixing member 30 is made smaller than normal to suppress enlargement in the lateral direction. Processing can be difficult if only the board fixing portions 31 are thinned. More particularly, if the plate thickness of the entire fixing member 30 including the housing fixing portion 32 is thinned, the rigidity of the housing fixing portion 32 is reduced and there is a possibility of reducing a holding force of the fixing member 30 in the housing 10.
On the other hand, in the fourth embodiment, a sufficient holding force of the fixing member 30G in a housing 10 can be ensured regardless of a plate thickness of the fixing member 30G.
As shown in
A housing fixing portion 32G is configured by the bridging portion 53 and upper end parts of the legs 52 and U-shaped in a side view. Two locking projections 36G protrude in the lateral direction on left and right edge parts of the upper or distal end parts of the legs 52. As shown in
A board fixing portion 31G is configured by a part of the leg 52 excluding the upper end part and includes two plate pieces 38AG, 38BG facing each other in the lateral direction. A part of the board fixing portion 31G excluding a tip area 37G on a tip side is formed into a coupled plate piece 41G provided with a bend 39G for coupling the plate pieces 38AG, 38BG. The bend 39G is connected to the housing fixing portion 32G and the plate pieces 38AG, 38BG are bent at both left and right sides of the bend 39G such that plate surfaces thereof face each other. Unillustrated plating layers are formed on the plate surfaces of the plate pieces 38AG, 38BG and the plate surfaces of the bend 39G, and unillustrated plating drip layers are formed on outer end parts of the end surfaces of the plate pieces 38AG, 38BG. These plating layers and plating drip layers have substantially the same structures as in the first embodiment.
Note that, in development shapes of the plate pieces 38AG, 38BG before bending, a width of the coupled plate piece 41G in the lateral direction is suppressed to be equal to or smaller than that of the housing fixing portion 32G in the lateral direction (maximum width of a part corresponding to the locking projections 36G) so that a material is not wasted.
The tip area 37G has no bent portion 39G and the plate pieces 38AG, 38BG continuously hang down. The inner end surfaces (surfaces of the plate pieces 38AG, 38BG facing each other between the legs 52) and the left and right plate surfaces of the plate pieces 38AG, 38BG are tapered and constitute guide portions 45G. The structure and functions of the tip areas 37G are as in the first embodiment.
In the case of the fourth embodiment, the housing fixing portion 32G is in the form of a strip wide in the lateral direction and four locking projections 36G provided on the housing fixing portion 32G respectively bite into the left and right edges of the mounting groove 14G. Thus, a sufficient holding force of the fixing member 30G in the housing 10 can be ensured.
The fixing member 30H is folded to overlap entirely in the lateral direction (plate thickness direction PTD). Specifically, the fixing member 30H is arranged so that plate surfaces face in the lateral direction, and has two board fixing portions 31H extending vertically and a housing fixing portion 32H bridging between the upper ends of the board fixing portions 31, and doubly constituted by plate pieces 38AH, 38BH facing each other in the plate thickness direction PTD while being held in close contact. A bend 39H having a substantially semicircular cross-section is provided on the upper end of the housing fixing portion 32H, and the plate pieces 38AH, 38BH are coupled unitarily via the bend 39H. The plate pieces 38AH, 38BH specify the outer shapes of the board fixing portions 31H and the housing fixing portion 32H and identically shaped.
Two locking projections 36H protrude on both front and rear ends of the housing fixing portion 32H and are configured to bite into and be locked to front and rear edges of the mounting groove 14. Tip areas 37H are provided on tip sides of the board fixing portions 31H and tapered guide portions 45H are provided on left and right plate surfaces and front and rear end surfaces of the both plate pieces 38AH, 38BH. The board fixing portions 31H are smoothly guided into the fixing holes 102 of the circuit board 100 by the guide portions 45H.
As shown in
Outer end parts of the end surfaces of the plate pieces 38AH, 38BH are corner parts 49H in the form of curved surfaces continuous with the punch-out surfaces 47H. Further, plating drip layers 43H are formed on outer end parts of the end surfaces of the plate pieces 38AH, 38BH. The plating drip layers 43H cover areas including the corner parts 49H.
According to the fifth embodiment, the board fixing portion 31H comprises the two plate pieces 38AH, 38BH. Two plating drip layers 43H are formed on each of the plate pieces 38AH, 38BH, i.e. a total of four plating drip layers 43H are formed, and each plating drip layer 43H can function as a solder adhesion area. Thus, solder wettability can be improved.
The fixing member 30K is configured by doubling pairs of plate pieces 38AK, 38BK separate from each other in a plate thickness direction PTD. Specifically, the fixing member 30K has a side view shape similar to that of the fifth embodiment, is composed of a housing fixing portion 32K including two locking projections 36K on both front and rear sides and board fixing portions 31K including guide portions 45K on tip areas 37K on a lower end side, and is doubly constituted by the plate pieces 38AK, 38BK facing each other in the plate thickness direction PTD. Nothing corresponding to the bend 39H of the fifth embodiment is present on the upper end of the housing fixing portion 32K, and the plate pieces 38AK, 38BK are separable from each other.
Plating layers 46K are formed along the front-back direction on plate surfaces of the plate pieces 38AK, 38BK. Here, the plate pieces 38AK, 38BK are overlapped so that punch-out surfaces 47K face toward one side (upper side of
According to the sixth embodiment, the plating drip layers 43K are formed on the one end part and the intermediate part in the plate thickness direction PTD of each of the end surfaces of the assembly of the plate pieces 38AK, 38BK, a length of non-plated areas 51K formed between the plating drip layers 43K in the plate thickness direction PTD can be made shorter as compared to the case where the plating drip layers 43K are formed on both end parts of the assembly of the plate pieces 38AK, 38BK in the plate thickness direction PTD (see
Other embodiments are briefly described below.
The board fixing portion may be arranged substantially along the surface of the circuit board without being inserted into the fixing hole of the circuit board. In this case, solder on the circuit board has only to be wetted to the plating drip layers formed on the end surfaces of the plate pieces.
The fixing member may be a flat plate such as a rectangular plate and may have a substantially L-shaped cross-section by a board fixing portion and a housing fixing portion.
Three or more plate pieces may be arranged to face each other in the plate thickness direction.
In the second and third embodiments, the entire fixing member may be rounded into a pin.
In the fifth embodiment, the both plate pieces may face each other via a clearance.
Number | Date | Country | Kind |
---|---|---|---|
2015-237192 | Dec 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6086418 | Chang | Jul 2000 | A |
6123580 | Bendorf | Sep 2000 | A |
6343951 | Ono | Feb 2002 | B1 |
6371802 | Smalley, Jr. | Apr 2002 | B1 |
7001212 | Juntwait | Feb 2006 | B1 |
7878848 | Yang | Feb 2011 | B1 |
Number | Date | Country |
---|---|---|
2008-135314 | Jun 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20170162961 A1 | Jun 2017 | US |