Body area network facilitated authentication or payment authorization

Information

  • Patent Grant
  • 10733601
  • Patent Number
    10,733,601
  • Date Filed
    Wednesday, July 17, 2019
    4 years ago
  • Date Issued
    Tuesday, August 4, 2020
    3 years ago
Abstract
Disclosed are examples of a method, a wearable device and a system enabling authentication of a user of a payment account or completion of a purchase transaction via signals generated by the wearable device. A process may include a wearable device generating a modulated signal using an encryption algorithm. The modulated signal may contain authentication information related to the wearable device including a cryptographic authentication message. The modulated signal is output to a biological medium interface of the wearable device that is coupled to a biological medium of a wearer of the wearable device. The biological medium is operable to conduct the modulated signal. A receiving device processes including decrypting and demodulating the modulated signal received from the biological medium. Using the demodulated signal, the authentication information transmitted from the wearable device is obtained. Based on the obtained authentication information, a transaction may be authorized, or a user authenticated.
Description
BACKGROUND

Wireless communication devices are becoming the prevalent devices for performing transactions and identifying a user. The ease with which a portable device or mobile device can establish a wireless connection while in a user's pants pocket, jacket pocket, or purse enables a user to enter buildings, perform transactions and authenticate themselves to systems without having to actually contact an interface.


However, the increased use of wireless communication devices, also draws the attention of less scrupulous persons who develop their own wireless devices to intercept the wireless communications to either steal identifying information or, perhaps, decrypt the signals for use to generate false signals that may be used to manipulate a wireless transaction system.


A supposed advantage of some wireless communication systems, like near-field communication (NFC), is their relatively short range, such as 5 centimeters. However, there have been descriptions of devices capable of intercepting the exchange of NFC signals from as far away as 60 centimeters. In addition, devices that utilize NFC communication require a user to take out an NFC-equipped payment card or NFC-equipped mobile device to complete the transaction or authentication. Touchpads also have difficulty because they often require a resistance or capacitance reading.


To combat eavesdropping hardware and software developers have resorted to different forms of biometrics, such as fingerprint detection, facial recognition or voice recognition. The use of biometrics, in particular, fingerprint technology effectively eliminates any chance of a surreptitious interception of an authentication signal because the fingerprint is used as the authentication means and also eliminates the need for a user to remove a device from their pocket or purse. However, even fingerprint readers may be exploited by thieves, for example, there are devices configured to overlay on a fingerprint scanner and copy of the user's fingerprint for later use by the thieves.


Transaction and authentication system developers continually innovate to maintain an advantage over those who aim to steal money and information. However, the less scrupulous persons also continue to innovate for ways to thwart the increased security devices and procedures. There is a need for a more secure system for completing transactions and authenticating identities.


SUMMARY

Disclosed is an example of a method including a step of determining, based on receipt of a control signal, that an authentication signal is required to authorize a transaction. In response to the determination that the authentication signal is required, a wearable device may generate a modulated signal using an encryption or digital signing algorithm. The modulated signal may contain authentication information related to the wearable device including a cryptographic token related to the encryption or digital signing algorithm. The modulated signal is output to a biological medium interface of the wearable device. The biological medium interface is coupled to a biological medium of a wearer of the wearable device, and the biological medium is operable to conduct the modulated signal. A receiving device receives the modulated signal. The modulated signal is demodulated. Using the demodulated signal, the authentication information including the cryptographic token related to the wearable device is obtained. Based on the obtained authentication information, the transaction is authorized. An indication that the transaction has been authorized is provided.


Also disclosed is an example of a wearable device. The wearable device may include a logic circuit, a memory, a modulated signal generator, and a biological medium interface. The logic circuit includes an input interface and is operable to perform functions. The memory is operable to store authentication information. The logic circuit, the memory, and the modulated signal generator are coupled to one another. The biological medium interface is coupled to the modulated signal generator. Functions the logic circuit is operable to perform, include functions to, in response to an input received via the input interface, generate an authentication control signal. The logic circuit is also operable to forward the authentication control signal to the modulated signal generator. The modulated signal generator is operable to generate an authentication signal in response to the authentication control signal received from the logic circuit. The authentication signal is a modulated signal containing an encrypted message. The authentication signal is output from the biological medium interface to a biological medium of a wearer of the wearable device. The biological medium interface of the wearable device is substantially in physical contact with the biological medium of the wearer.


A system is disclosed including a wearable device and a signal detector. The wearable device includes a logic circuit, a wearable device communication interface, a memory, a modulated signal generator, and a biological medium interface. The logic circuit, the memory, the wearable device communication interface, modulated signal generator, and the biological medium interface are communicatively coupled to one another. The signal detector includes a processor, a signal detector communication interface, and an input device operable to detect signals. The modulated signal generator is operable to generate an authentication signal in response to a control signal received via the wearable device communication interface. The authentication signal is a modulated signal containing an encrypted message including a cryptographic token. The modulated signal generator outputs the authentication signal from the biological medium interface to a biological medium of a wearer of the wearable device. The biological medium of the wearer is in physical contact with the biological medium interface of the wearable device. The signal detector is operable to receive at the input device the authentication signal emitted via the biological medium of the wearer. The signal detector may demodulate the authentication signal to extract the encrypted message. The encrypted message may be forwarded, via the signal detector communication interface, for processing to authenticate that the wearable device is associated with an authorized user of a payment card account.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example of an implementation of a system for utilizing a body area network for wireless authentication and payment authorizations as described herein.



FIG. 2A illustrates an example of a wearable device usable in the wireless authentication and payment authorizations system disclosed in FIG. 1.



FIG. 2B illustrates a more detailed example of a wearable device usable in the wireless authentication and payment authorizations system examples disclosed in the FIGS. 1 and 2A.



FIG. 2C illustrates another example of a wearable device usable in the wireless authentication and payment authorizations system disclosed in FIG. 1.



FIG. 3 presents a flow chart for a process example of authenticating and authorizing transactions implementable in the system example of FIG. 1 and the wearable device examples of FIGS. 2A and 2B.



FIG. 4 illustrates an example of a computing architecture suitable for implementing the examples illustrated in FIGS. 1-3.





DETAILED DESCRIPTION

The various examples disclose a system, devices, and techniques that utilize a wearer's body to conduct authentication signals to a signal detector. Since the authentication signals are conducted through the body, any eavesdropping of the authentication signal and the respective content is mitigated. Disclose are examples that transmit an authentication signal that are radio-frequency signals, or sonic or ultrasonic signals embedded in the skin and/or tissue including bone, which are in general referred to as “a biological medium.” The authentication signal, whether radio-frequency, sonic or ultrasonic, may be received by a signal detector, which may amplify and process the received signal.


The authentication signal may be encrypted according to examples described herein as well as examples of the encryption key generation techniques described in U.S. patent application Ser. No. 16/205,119, filed Nov. 29, 2018, the entire contents of which is incorporated by reference herein in its entirety.


The examples described herein include wireless methods of providing authentication information having an increased security factor of being transmitted via a biological medium that minimizes the possibility of surreptitious eavesdropping of the authentication signal. It may be helpful to describe a system implementation.



FIG. 1 illustrates an example of a system operable to execute an authentication operation or purchase transaction using a biological medium for signal transmission.


The system 100 may include a number of components. In the FIG. 1 example, the system 100 includes a signal detector 110, a wearable device 120, and a biological medium 130. In addition, the system 100 may, in more detailed examples, include a service provider 140, a network 188, a merchant server 103, and a mobile device 170. A user 101 may be wearing or carrying the wearable device 120. The user 101 may be a user associated with a payment account which is also associated with the wearable device 120. The service provider 140 includes a service provider network 147, an authentication server 145 and data storage 149.


The user 101 may also have a mobile device 170 that is communicatively coupled with the network 188 via a cellular/wireless link 133 and the wearable device 120. The mobile device 170 may include a mobile device communication interface 176, a processor 174, a memory 172 and other components (shown in other examples). The mobile device memory 172 may securely store authentication information 173. The mobile device communication interface 176 may be coupled to one or more transmitters, receivers or transceivers, such as a cellular transceiver, one or more wireless transceivers, such as Bluetooth™, Wi-Fi, near-field communication (NFC), or the like. The mobile device 170 may communicate with the wearable device 120 via wireless communication link 133, which may be a link using one of: Bluetooth, Wi-Fi, NFC, or the like. For example, the mobile device 170 may receive via the mobile device communication interface 176 a message indicating authentication information is required from a point of sale device 180. In response, the mobile device 170 may issue a control signal to the wearable device via the wireless communication link 133 instructing the wearable device to output an authentication signal. Additional details are described below.


In the example of FIG. 1, the wearable device 120 includes a logic circuit 124, a wearable device communication interface 126, a memory 122, a modulated signal generator 125, and a biological medium interface 127. The logic circuit 124, the memory 122, the wearable device communication interface 126, modulated signal generator 125, and the biological medium interface 127 are communicatively coupled. The wearable device 120 may be, for example, a ring, eye glasses, a necklace, a wristwatch or the like. The logic circuit 124 may include a demodulation component 199 that is operable to demodulate a modulated signal (described in more detail below) output from a biological member. In an example, the wearable device 120 may include an input interface 192 that is operable to receive inputs from a user 101 (or wearer) of the wearable device 120.


The signal detector 110 may, for example, include a processor 112, a signal detector communication interface 116, and an input device 115 operable to detect signals. In an example, the signal detector 110 may be coupled to a point of sale device 180, a payment receipt device 182 (such as a portable payment device with a touchpad and card reader or the like), an automatic teller machine (ATM) 184, or the like.


The input device 115 may detect either sonic, ultrasonic or radio frequency signals, and may be operable to detect an electrical signal, a sonic signal or an ultrasonic signal. For example, the input device 115 may include a piezo-electric transducer, a micro-electro-mechanical microphone, a radio-frequency antenna, an ultrasonic transducer, or the like and related circuitry, such as an amplifier or the like.


The network 188 may be operable to exchange data and enable communications to be exchanged between the various components of the system 100. For example, the network 188 may include at least one of: a cellular network, a data network, or an enterprise network. In an example, the network 188 may a combination of a cellular network and a data network such as the internet. The network 188 may be communicatively coupled to the signal detector communication interface 116 of the signal detector 110 and also to the mobile device 170 as well as a merchant server 103. For example, purchase transactions between the wearable device 120, via the signal detector 110 and either the point of sale device 180 or the payment receipt device 182, and the merchant server 103 may authenticated via network 188.


The authentication server 145 may also be coupled to the signal detector 110 via the network 188. The authentication server 145 is operable to perform a various functions. With respect to the present example, the authentication server 145 may receive an encrypted message sent by the signal detector 110 via the data network. The authentication server 145 may process the received encrypted message to extract authentication information related to an authorized user 101 of a payment account associated with the wearable device 120. The authentication server may for example, analyze the extracted authentication information to determine the validity of the authentication information. For example, the authentication server 145 may access a data storage 149 coupled to the authentication server 145 to obtain information related the authorized user of a payment account associated with the wearable device 120. The authentication information may be processed, for example, decrypted or some other process, by the authentication server and the decrypted authentication information may be compared to the obtained information to confirm the validity of the information. The authentication server 145 may confirm, using the authentication information, that the wearable device 120 is associated with an authorized user 101 of a payment card account. In response to a confirmation that the wearable device is associated with an authorized user 101 of a payment card account, the authentication server 145 may send, via the network 188, an authorization signal authorizing completion of a transaction to a point of sale device 180, a payment receipt device 182 (which may be a mobile or portable payment receipt device), or an automatic teller machine 184. In the following examples, the authentication signal is a modulated radio frequency signal or a modulated ultrasonic signal.


In an example, the signal detector 110 may be coupled to the point of sale (POS) device 180, the payment receipt device 182 or the ATM 184. For example, the signal detector 110 may be a stand-alone device located in proximity to the POS device 180. Whenever any user interacting with one of the point of sale device 180, the payment receipt device 182 or the ATM 184, the respective device may emit a control signal, which may be transmitted via the signal detector communication interface 116 over a wireless link 136. For example, the signal detector communication interface may include an NFC, Bluetooth, Wi-Fi, short range LTE transmitter or the like.


The modulated signal generator 125 is operable to generate an authentication signal which is a modulated signal generated using an encryption algorithm 121. The authentication signal, for example, may contain authentication information 123 related to the wearable device including, for example, a cryptographic token related to the encryption or a digital signing algorithm 121. The authentication information may, for example, further include at least one of: a payment card identifier, an account identifier, an issuer identifier, a cryptographic token, or biometric data. For example, a cryptographic token may be included in the encrypted message (whether transaction, or authentication only message) and may generated using any authentication protocol. Examples of a cryptographic token include digital signatures of the transaction message, encryptions of the authentication information, as well as two-way protocols where the wearable device 120 could sign a challenge from the service (e.g., a purchase point of sale device, an ATM or the like) being authenticated to.


In another example, a digital signing algorithm, such as 121, may be an algorithm that enables authentication of the wearer of the wearable device as an authorized user of a payment account while the wearer uses their finger to “sign” a touchpad, touchscreen, fingerprint reader, or the like to authorize a purchase or complete a transaction.


The authentication signal may include an encrypted message based on, or including part of, the authentication information. The encrypted message may, for example, include information usable to authenticate that the wearable device 120 is associated with a payment account of a user. In another example, the encrypted message may include at least one of: an encrypted payment card identifier, an encrypted account identifier, an encrypted issuer identifier, or encrypted biometric data. The authentication signal may be output from the biological medium interface 127 to a biological medium 130 of a wearer of the wearable device 120. The biological medium interface 127 of the wearable device may be substantially in physical contact with the biological medium 130 of the wearer. In an example, “substantially in physical contact” may be within a range of 0.0-0.5 millimeters, 1-3 millimeters, 1-5 centimeters, or the like.


The signal detector 110 may be operable to receive at the input device 115 the authentication signal emitted via the biological medium 130 of the wearer (e.g. user 101). The signal detector 110 via the processor 112 may demodulate the authentication signal to extract the encrypted message. The signal detector 110 in response to extracting the message, may forward, via the signal detector communication interface 116, the encrypted message for processing to authenticate that the wearable device is associated with an authorized user (e.g., user 101) of a payment card account.


In a further example, the logic circuit 124 may an input interface 192. The input interface 192 may receive inputs from an input device 193. In response to the received inputs, the logic circuit 124 may retrieve the authentication information 123 stored in the memory 122. The authentication information 123 stored in the memory 122 may include at least one of: a cryptographic token, a payment card number, an account number, an issuer identifier, or biometric data. The logic circuit 124 may use the authentication information 123 in the generation of an authentication control signal. In an example, the authentication control signal may include a cryptographic authentication message that may contain at least the cryptographic token. The cryptographic authentication message may include other authentication information either in addition to, or in place of, the cryptographic token. In an example, the authentication control signal may be provided to the modulated signal generator 125 for use in generating a modulated signal for output.



FIG. 2A illustrates an implementation of elements of the system 100 shown in FIG. 1. In the example of FIG. 2A, a wireless wearable device 210 is secured to a wearer's arm 276 by a wristband 212. The wireless wearable device 210 is operable to transmit a radio frequency signal via a wearer's hand 275. The wireless transmit wearable device 210 may be configured similar to the wearable device 120 of FIG. 1 to embed a radio frequency signal, such as embedded RF signal 230, via the wearer's hand 275. The embedded RF signal 230 is received by the signal detector 204. The signal detector 204 may include an input device 203, logic circuit 202 and a signal detector (SD) communication interface 205. The input device 203 may, for example, have an antenna tuned to a frequency of the embedded RF signal 230 emitted from the finger 277. The finger 277 may be touching the input device 203 or be at least within a distance less than distance X, where X is, for example, 1.3 centimeters, 1.0 centimeter, 5 millimeters or the like. The input device 203 may receive the embedded RF signal 230. The embedded RF signal 230 may be a modulated signal, which is described in more detail with reference to FIG. 2B below.


The input device 203 may deliver an amplified modulated signal to the logic circuit 202. The logic circuit 202 may demodulate the modulated signal and extract the authentication information embedded in the embedded RF signal 230. The extracted authentication information may be forwarded to the signal detector (SD) communication interface 205. The SD communication interface 205 may forward the signal to either a POS device, such as 180 of FIG. 1, to complete a purchase or to a network, such as 188, for authentication.


It may be helpful to describe the wireless wearable device 210 of FIG. 2A with reference to a biological medium, such as finger. FIG. 2B illustrates an example of system that includes a wireless wearable device, a modulated signal detector and a biological medium. In the example, the wireless wearable device 220 includes a logic circuit 221, a memory 222, a modulated signal generator 224 and a biological medium interface referred to in this example as an antenna coupling 225. The biological medium 235 may include bone segment 233A, bone segment 233B, bone segment 233C, tissue 240 and fingernail 237. The signal detector 204 is the same as the signal detector of FIG. 2A; therefore, no additional details related to the structure or function of the signal detector are provided.


The modulated signal generator 224 may also function similar to the modulated signal generator 125 discussed with reference to FIG. 1. However, the modulated signal generator 224 is operable to output a modulated radio frequency signal via the antenna coupling 225 onto (or into) the biological medium 235. The biological medium 235 may be any body part of a wearer of the wireless wearable device 220. For example, a wearer (such as user 101 of FIG. 1) may wear the wireless wearable device 220 on a shoulder strap, an armband, a fanny pack, a finger (as in a ring), wrist as in FIG. 2A, or the like.


The carrier signal upon which is modulated with the authentication information including the cryptographic token or with an encrypted or digitally signed message may be any frequency that enables transmission via the biological medium. For example, since the biological medium is substantially made up of water, low radio frequency carrier signals in the example propagate through the biological medium with less loss. Alternatively, higher frequency carrier signals may be used but with more power than the lower frequency signals and for short durations. Examples of radio frequencies that may be used include 1 kHz, 10, kHz, 100 kHz, a range such as 23 kHz-1 GHz, 2.4 GHz or the like.


The modulation scheme used to generate the embedded RF signal may be an amplitude shifting keying (ASK), a frequency-shift keying (FSK), phase shift keying (PSK), complimentary code keying (CCK), a pulse code modulation (PCM), techniques that include amplitude shifting across multiple frequencies, or the like. Alternatively, particular phase-shift modulation schemes such as differential PSK (DPSK) or coherent PSK (CPSK), or more specifically, Binary PSK (BPSK), Quaternary PSK (QPSK), 8PSK, 16PSK, Offset Quaternary PSK (OQPSK), SOQPSK (Shaped OQPSK) may be used. Of course, the various modulation schemes may be combined to provide a custom modulation scheme more suited for signal transmission through the biological medium, such as 235 of FIGS. 2B and 2C.


For example, the data rate for providing the authentication signal may be low, such as, for example, less than 1 kilobit per second. To provide this data rate, it may be beneficial to utilize a hybrid modulation scheme that combines a temporal modulation scheme, such as a pulse width modulation (PWM) scheme, or the like, with one of the above referenced phase-shift modulation or frequency-modulation schemes. In an example, the combined (temporal with PSK) modulation scheme may be utilized to provide accurate data transmission, acceptable signal loss as the signal passes through the biological medium, and an acceptable data rate. Alternatively, a combined modulation scheme may include a temporal modulation scheme with one of the other modulation schemes ASK, FSK, CCK, PCM or the like.


In addition, one or more short-range wireless communication protocols and frequencies such as near-field communication (NFC), the EMV standard, Bluetooth or the like, and in conformance with ISO/IEC 14443, may be used in the transmission of the modulated signal.


Upon generation of the modulated signal containing the authentication information, the modulated signal generator 224 may forward the modulated signal to the antenna coupling 225 for output to the biological medium 235. The antenna coupling 225 may, for example, be an antenna that has a conductive pad (not shown) configured for maximum power transfer of power with respect to the frequency of the modulated signal. The antenna coupling 225 may be within a distance E of the biological medium 235. The distance E may be less than 1.0 centimeter, for example, 0.5 centimeters, 0.0 centimeters (i.e., essentially touching the biological medium 235) or the like. Alternatively, the distance E may be a range of distances, such as 0.3-0.5 centimeters, 0.0-2.0 millimeters, or the like.


The antenna coupling 225 may output the modulated radio frequency signal 245 which is input to the biological medium 235. The modulated radio frequency signal 245 is transmitted through the bone segments 233A, 233B, 233C, fingernail 237 and tissue 240 including connective tissue. The embedded radio frequency signal 279 is output from the biological medium for detection by the signal detector 204. As discussed with reference to other examples, the signal detector 204 may receive and process the embedded radio frequency signal 279 to obtain the authentication information. The signal detector 204 may forward the authentication information to a point of sale or another device (or to the network).


The system 100 of FIG. 1 may also included other examples of a modulated signal. FIG. 2C illustrates an example in which the modulated signal is a sonic or ultrasonic signal. In the example of FIG. 2C, the wireless wearable device 229 may include elements like those in the wireless wearable device 220 of FIG. 2B, such as the logic circuit 221, the memory 222, the wearable device communication interface 223, the modulated signal generator 224. The biological medium 235 is the same in both examples shown in FIGS. 2B and 2C. In the case of sonic or ultrasonic signals, the above-mentioned modulation schemes may also be utilized but the output from the wireless wearable device 229, in this example, is a modulated sound signal (e.g., sonic or ultrasonic). For example, sound waves above 20 kHz are above, or nearly above, the range of typical human hearing and are considered “ultrasonic.” Ultrasound exams are performed at frequencies from 10 MHz and above. Sonic sound waves may be considered those below 20 kHz, but that may still be difficult for humans to hear. For example, the modulated sound signal 248 may be a beeping sound or the like that is not offensive to humans or animals.


Like the wireless wearable device 229, the biological medium interface 226 may include be a transducer that generates modulated sound waves in response the modulated signal output by the modulated signal generator 224. The distance between the biological medium interface 226 and the biological medium 235 may be a distance D. The distance D may be in the range of approximately 0.0-5.0 millimeters, approximately 0.0-5.0 centimeters, or the like. The biological medium interface 226 may output the modulated sound signal 248 for embedding on or into the biological medium 235. The embedded sound signal 278 may propagate through the bone segments 233A-C, tissue 240 including connective tissue, and fingernail 237 for output to the signal detector 204. The signal detector 204 may include a processor 242, a signal detector communication interface 243, and an input device 244. The input device 244 may be a micro-electro-mechanical device, a piezo-electric device, or a similar device that outputs an electrical signal in response to detected sound. The distance between the biological medium 235 and the signal detector 204 for detection of the embedded sound signal by the input device 244 may be a distance less than the distance Y. The distance Y may be, for example, approximately 1.0 centimeter, 5.0 millimeters, 2 centimeters or the like.


The signal detector 204 may be similar to the signal detector 110 of FIG. 1. In the example of FIG. 2C, the processor 242 may be operable to receive the electrical signals output from the input device 244 and process them to perform an authentication process or assist in the completion of a purchase transaction.


It may be beneficial to discuss an example of a process performed by the foregoing system and a device examples to better understand the advantages of the disclosed examples. The described process may be implemented on a non-transitory computer readable medium or the like. FIG. 3 illustrates an example of a process for authenticating a user or assisting in the completion of a purchase request. In the process 300 of FIG. 3, devices such as those described in the examples of FIGS. 1-2C may be used. For example, based on receipt of a control signal, a wearable device may determine that an authentication signal is required to authorize a transaction, for example, by verifying or authenticating a user (310). In response to the determination that the authentication signal is required, a wearable device may generate a modulated signal using an encryption algorithm (320). For example, prior to generating the modulated signal by the wearable device, a menu of one or more authentication options may be presenting on a display device, provided by the wearable device communication interface, of the wearable device. The wearable device may receive an input, such as a touch, gesture, motion or voice input, to the wearable device and cause the presentation of one or more authentication options on the display device of the wearable device. An authentication option may be selected via another input to the wearable device. The authentication information associated with the selected authentication option may be retrieved from a memory of the wearable device. In the example, the selected authentication option utilizes a cryptographic token.


In another example, the modulated signal may contain authentication information related to the wearable device including a cryptographic token related to the encryption or digital signing algorithm. At 330, a modulation signal generator, such as 125 of FIG. 1, may output the modulated signal to a biological medium interface, such as 127 of FIG. 1, of the wearable device, such as 120 of FIG. 1. In the example, the biological medium interface may be coupled to a biological medium (e.g., finger, shoulder, arm, leg, jaw, head or the like) of a wearer of the wearable device. As discussed, the biological medium is operable to conduct the modulated signal, for example as an embedded modulated signal. A received device, such as signal detector 110 including input device 115, or the like, may receive the modulated signal (340). As discussed with respect to the examples of FIGS. 1-2C, a processor within the signal detector, such as 112 of FIG. 1, may be operable to demodulate the modulated signal. Using the demodulated signal, the processor of the signal detector may be further operable to obtain (350), via a signal detector communication interface, such as 116, the authentication information related to the wearable device. The authentication information, which may include a cryptographic token, may be sent to an authentication server, such as 145 of FIG. 1 via the network 188. Based on the obtained authentication information, the transaction may be authorized (360). In the example, the authorizing of the transaction may further include authenticating a wearable device as being associated with a payment card presented for completion of a purchase transaction. Alternatively, the wireless wearable device may be authenticated as being associated with a payment account. In response to the authorization or authentication, an indication may be provided indicating that the transaction has been authorized, the user has been authenticated, or both (370). For example, the indication may be an authorization signal sent, via the data network (e.g., the Internet), in response to a confirmation that the wearable device is associated with an authorized user of a payment card account. Depending upon the usage example, the authorization signal may be sent to a point of sale device, a mobile payment receipt device, or an automatic teller machine authorizing completion of a transaction. In the examples, the point of sale device, the mobile payment receipt device, or the automatic teller machine is coupled to the signal detector.


In an example, the indication that the transaction has been authorized may be presented on a display device coupled to at least one of a mobile device, the receiving device (e.g., signal detector 110), or the wearable device. For example, the indication may be provided to one or more of: a point of sale device, a payment receipt device, an ATM, a mobile device associated with the wireless wearable device, a merchant server, or the like.


As mentioned in the examples of FIGS. 2A and 2B, the modulated signal may be a modulated radio frequency signal. In this specific example, the process 300 and receiving the modulated signal, via the biological medium at the receiving device at 340, may include specific steps of detecting the modulated radio frequency signal when emitted from the biological medium of the wearer of the wearable device. The detected modulated radio frequency signal to a demodulation component, such as 199 in FIG. 1, within the logic circuits 202 or 221.


In addition, in the example of FIGS. 2A and 2B, the signal detector when the receiving, via the biological medium at the receiving device, may further include detecting by an antenna (within input device 203) in the receiving device (e.g., signal detector 204) the modulated radio frequency signal upon emission from the biological medium of the wearer of the wearable device. The detected modulated radio frequency signal may be provided to a signal processing component.


In another example of process 300, the modulated signal may be a modulated ultrasonic signal as in the example of FIG. 2C. When the modulated signal is a modulated ultrasonic signal, the step of receiving, via the biological medium at the receiving device may include additional details. For example, in response to the modulated ultrasonic signal, a modulated electrical signal may be generated by a transducer of the receiving device. For example, the transducer may be an input device, such as 244 described above with reference to FIG. 2C. The modulated electrical signal may be provided to a demodulation component, such as within the processor 242.



FIG. 4 illustrates an example of an exemplary computing architecture 400 suitable for implementing various examples as previously described. In one example, the computing architecture 400 may be incorporate elements as may be typically used to implement a server or network platform, if appropriately programmed, as part of system 100. In another example, the computing architecture 400 may be incorporate optional elements that may be typically used to implement a smart digital device or a computing device that may be implemented as part of system 100.


The computing architecture 400 includes various common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components, power supplies, and so forth. The examples, however, are not limited to implementation by the computing architecture 400.


As shown in FIG. 4, the computing architecture 400 includes a processing unit 404, a system memory 406 and a system bus 408. The processing unit 404 can be any of various commercially available processors or number of processors.


The system bus 408 provides an interface for system components including, but not limited to, the system memory 406 to the processing unit 404. The system bus 408 can be any of several types of bus structures that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. Interface adapters may connect to the system bus 408 via slot architecture. Example slot architectures may include without limitation Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and the like.


The computing architecture 400 may include or implement various articles of manufacture. An article of manufacture may include a computer-readable storage medium to store logic. Examples of a computer-readable storage medium may include any tangible media capable of storing electronic data, including volatile memory or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth. Examples of logic may include executable computer program instructions implemented using any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, object-oriented code, visual code, and the like. Examples may also be at least partly implemented as instructions contained in or on a non-transitory computer-readable medium, which may be read and executed by one or more processors to enable performance of the operations described herein.


The system memory 406 may include various types of computer-readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information. In the illustrated example shown in FIG. 4, the system memory 406 can include non-volatile memory 410 and/or volatile memory 412. A basic input/output system (BIOS) can be stored in the non-volatile memory 410.


The computer 402 may include various types of computer-readable storage media in the form of one or more lower speed memory units, including an internal hard disk drive (HDD) 414 (or, optionally, external hard disk drive (HDD) 413), a magnetic floppy disk drive (FDD) 416 to read from or write to a removable magnetic disk 418, and an optical disk drive 420 to read from or write to a removable optical disk 422 (e.g., a CD-ROM or DVD). The HDD 414 or 413, FDD 416 and optical disk drive 420 can be connected to the system bus 408 by an HDD interface 424, an FDD interface 426 and an optical drive interface 428, respectively. The HDD interface 424 for external drive implementations can include at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies.


The drives and associated computer-readable media provide volatile and/or nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For example, a number of computer program modules can be stored in the drives and memory 410, 412, including an operating system 430, one or more application programs 432, other program modules 434, and program data 436. In one example, the one or more application programs 432, other program modules 434, and program data 436 can include, for example, the various applications and/or components of the computing architecture 400. At least one computer-readable storage medium may include instructions that, when executed, cause a system to perform any of the computer-implemented methods and processes described herein.


Optionally, when configured as a mobile device or the like, the computing architecture 400 may include additional devices to enable data input and output to a user. For example, a user may enter commands and information into the computer 402 through one or more wire/wireless optional input devices, for example, a keypad 438 and a tactile input device, such as a touchscreen 440. Other input devices may include microphones, infra-red (IR) remote controls, radio-frequency (RF) remote controls, game pads, stylus pens, near-field communication devices, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, track pads, sensors, styluses, and the like. These and other input devices are often connected to the processing unit 404 through optional interface 442 that is coupled to the system bus 408 but can be connected by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR interface, and so forth.


Another optionally element may be display 444, which may be an organic light emitting diode (OLED), light emitting display (LED), or other type of display device, that is also connected to the system bus 408 via an interface, such as an optional video adaptor 446. The display 444 may be internal or external to the computer 402. In addition to the display 444, a computer typically includes other peripheral output devices, such as speakers, printers, and so forth which may be coupled to the system bus 408 via the optional interface 442.


The computer 402 may operate in a networked environment using logical connections via wire and/or wireless communications to one or more remote computers, such as a remote computer 448. The remote computer 448 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all the elements described relative to the computer 402, although, for purposes of brevity, only a remote memory/storage device 459 is illustrated. The logical connections depicted include wire/wireless connectivity to a local area network (LAN) 452 and/or larger networks, for example, a wide area network (WAN) 454. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, for example, the Internet.


When used in a LAN networking environment, the computer 402 may be connected to the LAN 452 through a wire and/or wireless communication network interface or adaptor 456. The adaptor 456 can facilitate wire and/or wireless communications to the LAN 452, which may also include a wireless access point disposed thereon for communicating with the wireless functionality of the adaptor 456.


When used in a WAN networking environment, the computer 402 can include a modem 458, or is connected to a communications server on the WAN 454 or has other means for establishing communications over the WAN 454, such as by way of the Internet. The modem 458, which can be internal or external and a wire and/or wireless device, connects to the system bus 408 via the interface 442. In a networked environment, program modules depicted relative to the computer 402, or portions thereof, can be stored in the remote memory/storage device 459. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.


The computer 402 is operable to communicate with wired and wireless devices or entities using the IEEE 802 family of standards, such as wireless devices operatively disposed in wireless communication (e.g., IEEE 802.11 over-the-air modulation techniques). This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™ wireless technologies, near-field communication (NFC), among others. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, n, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire networks (which use IEEE 802.3-related media and functions). The wireless technologies may couple to the computer 402 via one or more transceivers (not shown) within for example the interface 442 or communication interface 456 that facilitate the use of the Wi-Fi, WiMax, NFC, Bluetooth wireless technologies as well as others.


The various elements of the devices as previously described with reference to FIGS. 1-4 may include various hardware elements, software elements, or a combination of both. Examples of hardware elements may include devices, logic devices, components, processors, microprocessors, circuits, processors, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), memory units, logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of software elements may include software components, programs, applications, computer programs, application programs, system programs, software development programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. However, determining whether an example is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints, as desired for a given implementation.


As used in this application, the terms “system” and “component” are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution, examples of which are provided by the exemplary computing architecture 400. For example, a component can be, but is not limited to being, a process running on a processor, a processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers. Further, components may be communicatively coupled to each other by various types of communications media to coordinate operations. The coordination may involve the uni-directional or bi-directional exchange of information. For instance, the components may communicate information in the form of signals communicated over the communications media. The information can be implemented as signals allocated to various signal lines. In such allocations, each message is a signal. Further examples, however, may alternatively employ data messages. Such data messages may be sent across various connections. Exemplary connections include parallel interfaces, serial interfaces, and bus interfaces.


It will be appreciated that the exemplary devices shown in the block diagrams described above may represent one functionally descriptive example of many potential implementations. Accordingly, division, omission or inclusion of block functions depicted in the accompanying figures does not infer that the hardware components, circuits, software and/or elements for implementing these functions would be necessarily be divided, omitted, or included in examples.


Some examples may be described using the expression “one example” or “an example” along with their derivatives. These terms mean that a particular feature, structure, or characteristic described in connection with the example is included in at least one example. The appearances of the phrase “in an example” in various places in the specification are not necessarily all referring to the same example. Moreover, unless otherwise noted the features described above are recognized to be usable together in any combination. Thus, any features discussed separately may be employed in combination with each other unless it is noted that the features are incompatible with each other.


With general reference to notations and nomenclature used herein, the detailed descriptions herein may be presented in terms of program procedures executed on a computer or network of computers. These procedural descriptions and representations are used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art.


A process is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. These operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It proves convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be noted, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to those quantities.


Further, the manipulations performed are often referred to in terms, such as adding or comparing, which are commonly associated with mental operations performed by a human operator. No such capability of a human operator is necessary, or desirable in most cases, in any of the operations described herein, which form part of one or more examples. Rather, the operations are machine operations.


Examples may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not necessarily intended as synonyms for each other. For example, the terms “connected” and/or “coupled” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.


As used in this application, the terms “system” and “component” are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution, examples of which are provided by the examples in FIGS. 1-4. For example, a component can be, but is not limited to being, a process running on a processor, a processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server or processor and the server or processor can be a component. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers. Further, components may be communicatively coupled to each other by various types of communications media to coordinate operations. The coordination may involve the uni-directional or bi-directional exchange of information. For instance, the components may communicate information in the form of signals communicated over the communications media. The information can be implemented as signals allocated to various signal lines. In such allocations, each message is a signal. Further embodiments, however, may alternatively employ data messages. Such data messages may be sent across various connections. Exemplary connections include parallel interfaces, serial interfaces, and bus interfaces.


Various examples also relate to apparatus or systems for performing these operations. This apparatus may be specially constructed for the required purpose and may be selectively activated or reconfigured by a computer program stored in the computer. The procedures presented herein are not inherently related to a particular computer or other apparatus. The structure for a variety of these machines will appear from the description given.


It is emphasized that the Abstract of the Disclosure is provided to allow a reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features are grouped together in a single example for streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed example. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate example. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” “third,” and so forth, are used merely as labels and are not intended to impose numerical requirements on their objects.


What has been described above includes examples of the disclosed architecture. It is, of course, not possible to describe every conceivable combination of components and/or methodologies, but one of ordinary skill in the art may recognize that many further combinations and permutations are possible. Accordingly, the novel architecture is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.

Claims
  • 1. A method, comprising: determining, by a logic circuit of a wearable device, based on receipt of a control signal, that an authentication signal is required to authorize a purchase transaction;in response to the determination that the authentication signal is required, generating, by a modulated signal generator of the wearable device, a modulated ultrasonic sound signal using an encryption or digital signing algorithm, wherein the modulated ultrasonic sound signal contains authentication information related to the wearable device including a cryptographic token related to the encryption or digital signing algorithm useable to authenticate that the wearable device is associated with a payment account;outputting the modulated ultrasonic sound signal to a biological medium interface of the wearable device, wherein the biological medium interface is coupled to a biological medium of a wearer of the wearable device by being substantially in physical contact with the biological medium of the wearer and the biological medium is operable to conduct the modulated ultrasonic sound signal; andreceiving, by the wearable device, in response to the outputted modulated ultrasonic sound signal, an indication that the purchase transaction has been authorized.
  • 2. The method of claim 1, further comprises: in response to receiving via the biological medium the modulated ultrasonic sound signal at a receiving device, generating a modulated electrical signal by a transducer of the receiving device;providing the modulated electrical signal to a demodulation component; andextracting an encrypted message including the authentication information from a demodulated electrical signal.
  • 3. The method of claim 1: in response to a payment card being presented for completion of the transaction, authenticating that the wearable device is associated with a payment card, wherein the payment card is presented for completion of the purchase transaction.
  • 4. The method of claim 1, further comprising: presenting the indication that the purchase transaction has been authorized on a display device coupled to the wearable device.
  • 5. The method of claim 1, further comprising: prior to generating the modulated ultrasonic sound signal by the wearable device, presenting a menu of one or more authentication options on a display device of the wearable device;receiving an input to the wearable device selecting one or more authentication options on the display device of the wearable device;selecting an authentication option via another input to the wearable device; andretrieving authentication information associated with the selected authentication option from a memory of the wearable device, wherein the selected authentication option utilizes the cryptographic token.
  • 6. The method of claim 1, wherein: the authentication information further includes at least one of: a payment card identifier, an account identifier, an issuer identifier, or biometric data.
  • 7. A wearable device comprising: a logic circuit including an input interface, wherein the logic circuit is operable to perform functions;a memory operable to store authentication information;a modulated signal generator operable to generate a modulated ultrasonic sound signal, wherein the logic circuit, the memory, and the modulated signal generator are coupled to one another; anda biological medium interface coupled to the modulated signal generator,wherein the functions the logic circuit is operable to perform, include functions to: in response to an input received via the input interface, generate an authentication control signal; andforward the authentication control signal to the modulated signal generator,wherein the modulated signal generator is operable to: generate an authentication signal in response to the authentication control signal received from the logic circuit, wherein the authentication signal is a modulated ultrasonic sound signal containing an encrypted message including information usable to authenticate that the wearable device is associated with a payment account; andoutput the authentication signal from the biological medium interface to a biological medium of a wearer of the wearable device to complete a purchase transaction, wherein the biological medium interface of the wearable device is substantially in physical contact with the biological medium of the wearer.
  • 8. The wearable device of claim 7, wherein the authentication information stored in the memory includes at least one of: a cryptographic token, a payment card number, an account number, an issuer identifier, or biometric data.
  • 9. The wearable device of claim 7, further comprising: an input interface; andwherein the logic circuit is further operable to: in response to the input received via the input interface, retrieve the authentication information stored in the memory; anduse the authentication information in the generation of the authentication control signal, wherein the authentication control signal includes a cryptographic authentication message used to authenticate the wearer.
  • 10. The wearable device of claim 7, wherein the wearable device is a ring, glasses, a necklace, or a wristwatch.
  • 11. A system, comprising: a wearable device including a logic circuit, a wearable device communication interface, a memory, a modulated signal generator, and a biological medium interface, wherein the logic circuit, the memory, the wearable device communication interface, modulated signal generator, and the biological medium interface are communicatively coupled to one another; anda signal detector including a processor, a signal detector communication interface, and an input device operable to detect signals via a transducer,wherein the modulated signal generator is operable to: generate an authentication signal in response to a control signal received via the wearable device communication interface, wherein the authentication signal is a modulated ultrasonic sound signal containing an encrypted message authenticating that the wearable device is associated with an authorized user of a payment card account; andoutput the authentication signal from the biological medium interface to a biological medium of a wearer of the wearable device, wherein the biological medium of the wearer is in physical contact with the biological medium interface of the wearable device,wherein the signal detector is operable to: receive via the transducer at the input device the authentication signal emitted as a modulated ultrasonic sound signal via the biological medium of the wearer;in response to the modulated ultrasonic sound signal, generate a modulated electrical signal by the transducer of the input device;provide the modulated electrical signal to a demodulation component; anddemodulate the modulated electrical signal to extract the encrypted message; andforward, via the signal detector communication interface, the encrypted message for processing to authenticate that the wearable device is associated with an authorized user of a payment card account.
  • 12. The system of claim 11, wherein the encrypted message includes information usable to authenticate that the wearable device is associated with a payment account and further includes at least one of: an encrypted payment card identifier, an encrypted account identifier, an encrypted issuer identifier, a cryptographic token, or encrypted biometric data.
  • 13. The system of claim 11, wherein the wearable device is a ring, glasses, a necklace, or a wristwatch.
  • 14. The system of claim 11, wherein: the signal detector is coupled to a point of sale device, a mobile payment receipt device, or an automatic teller machine, andthe input device is operable to detect an electrical, a sonic signal or an ultrasonic signal, and is a piezo-electric transducer, a micro-electro-mechanical microphone, an antenna, or an ultrasonic transducer.
  • 15. The system of claim 11, further comprises: an authentication server coupled to the signal detector via the signal detector communication interface and a data network,wherein the authentication server is operable to: receive via the data network the encrypted message forwarded by the signal detector;process the received encrypted message to extract authentication information;confirm, using the authentication information, that the wearable device is associated with an authorized user of a payment card account; andin response to a confirmation that the wearable device is associated with an authorized user of a payment card account, send an authorization signal to a point of sale device, a mobile payment receipt device, or an automatic teller machine, wherein the signal detector is coupled to the point of sale device, the mobile payment receipt device, or the automatic teller machine.
  • 16. The system of claim 11, wherein the wearable device is operable to communicate with a mobile device.
US Referenced Citations (553)
Number Name Date Kind
4683553 Mollier Jul 1987 A
4827113 Rikuna May 1989 A
4910773 Hazard et al. Mar 1990 A
5036461 Elliott et al. Jul 1991 A
5363448 Koopman, Jr. et al. Nov 1994 A
5377270 Koopman, Jr. et al. Dec 1994 A
5533126 Hazard Jul 1996 A
5537314 Kanter Jul 1996 A
5592553 Guski et al. Jan 1997 A
5616901 Crandall Apr 1997 A
5666415 Kaufman Sep 1997 A
5763373 Robinson et al. Jun 1998 A
5764789 Pare, Jr. et al. Jun 1998 A
5768373 Lohstroh et al. Jun 1998 A
5778072 Samar Jul 1998 A
5796827 Coppersmith et al. Aug 1998 A
5832090 Raspotnik Nov 1998 A
5883810 Franklin et al. Mar 1999 A
5901874 Deters May 1999 A
5929413 Gardner Jul 1999 A
5960411 Hartman et al. Sep 1999 A
6021203 Douceur et al. Feb 2000 A
6049328 Vanderheiden Apr 2000 A
6058373 Blinn et al. May 2000 A
6061666 Do et al. May 2000 A
6105013 Curry et al. Aug 2000 A
6199114 White et al. Mar 2001 B1
6199762 Hohle Mar 2001 B1
6216227 Goldstein et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6282522 Davis et al. Aug 2001 B1
6324271 Sawyer et al. Nov 2001 B1
6342844 Rozin Jan 2002 B1
6367011 Lee et al. Apr 2002 B1
6402028 Graham, Jr. et al. Jun 2002 B1
6438550 Doyle et al. Aug 2002 B1
6501847 Helot et al. Dec 2002 B2
6631197 Taenzer Oct 2003 B1
6641050 Kelley et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6662020 Aaro et al. Dec 2003 B1
6721706 Strubbe et al. Apr 2004 B1
6731778 Oda et al. May 2004 B1
6779115 Naim Aug 2004 B1
6792533 Jablon Sep 2004 B2
6829711 Kwok et al. Dec 2004 B1
6834271 Hodgson et al. Dec 2004 B1
6834795 Rasmussen et al. Dec 2004 B1
6852031 Rowe Feb 2005 B1
6865547 Brake, Jr. et al. Mar 2005 B1
6873260 Lancos et al. Mar 2005 B2
6877656 Jaros et al. Apr 2005 B1
6889198 Kawan May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6910627 Simpson-Young et al. Jun 2005 B1
6971031 Haab Nov 2005 B2
6990588 Yasukura Jan 2006 B1
7006986 Sines et al. Feb 2006 B1
7085931 Smith et al. Aug 2006 B1
7127605 Montgomery et al. Oct 2006 B1
7128274 Kelley et al. Oct 2006 B2
7140550 Ramachandran Nov 2006 B2
7152045 Hoffman Dec 2006 B2
7165727 de Jong Jan 2007 B2
7175076 Block et al. Feb 2007 B1
7202773 Oba et al. Apr 2007 B1
7206806 Pineau Apr 2007 B2
7232073 de Jong Jun 2007 B1
7246752 Brown Jul 2007 B2
7254569 Goodman et al. Aug 2007 B2
7263507 Brake, Jr. et al. Aug 2007 B1
7270276 Vayssiere Sep 2007 B2
7278025 Saito et al. Oct 2007 B2
7287692 Patel et al. Oct 2007 B1
7290709 Tsai et al. Nov 2007 B2
7306143 Bonneau, Jr. et al. Dec 2007 B2
7319986 Praisner et al. Jan 2008 B2
7325132 Takayama et al. Jan 2008 B2
7373515 Owen et al. May 2008 B2
7374099 de Jong May 2008 B2
7375616 Rowse et al. May 2008 B2
7380710 Brown Jun 2008 B2
7424977 Smets et al. Sep 2008 B2
7453439 Kushler et al. Nov 2008 B1
7472829 Brown Jan 2009 B2
7487357 Smith et al. Feb 2009 B2
7568631 Gibbs et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7597250 Finn Oct 2009 B2
7628322 Holtmanns et al. Dec 2009 B2
7652578 Braun et al. Jan 2010 B2
7689832 Talmor et al. Mar 2010 B2
7703142 Wilson et al. Apr 2010 B1
7748609 Sachdeva et al. Jul 2010 B2
7748617 Gray Jul 2010 B2
7748636 Finn Jul 2010 B2
7762457 Bonalle et al. Jul 2010 B2
7789302 Tame Sep 2010 B2
7793851 Mullen Sep 2010 B2
7796013 Murakami et al. Sep 2010 B2
7801799 Brake, Jr. et al. Sep 2010 B1
7801829 Gray et al. Sep 2010 B2
7805755 Brown et al. Sep 2010 B2
7809643 Phillips et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7828214 Narendra et al. Nov 2010 B2
7848746 Juels Dec 2010 B2
7882553 Tuliani Feb 2011 B2
7900048 Andersson Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7933589 Mamdani et al. Apr 2011 B1
7949559 Freiberg May 2011 B2
7954716 Narendra et al. Jun 2011 B2
7954723 Charrat Jun 2011 B2
7962369 Rosenberg Jun 2011 B2
7993197 Kaminkow Aug 2011 B2
8005426 Huomo et al. Aug 2011 B2
8010405 Bortolin et al. Aug 2011 B1
RE42762 Shin et al. Sep 2011 E
8041954 Plesman Oct 2011 B2
8060012 Sklovsky et al. Nov 2011 B2
8074877 Mullen et al. Dec 2011 B2
8082450 Frey et al. Dec 2011 B2
8095113 Kean et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8103249 Markson Jan 2012 B2
8108687 Ellis et al. Jan 2012 B2
8127143 Abdallah et al. Feb 2012 B2
8135648 Oram et al. Mar 2012 B2
8140010 Symons et al. Mar 2012 B2
8141136 Lee et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150767 Wankmueller Apr 2012 B2
8186602 Itay et al. May 2012 B2
8196131 von Behren et al. Jun 2012 B1
8215563 Levy et al. Jul 2012 B2
8224753 Atef et al. Jul 2012 B2
8232879 Davis Jul 2012 B2
8233841 Griffin et al. Jul 2012 B2
8245292 Buer Aug 2012 B2
8249654 Zhu Aug 2012 B1
8266451 Leydier et al. Sep 2012 B2
8285329 Zhu Oct 2012 B1
8302872 Mullen Nov 2012 B2
8312519 Bailey et al. Nov 2012 B1
8316237 Felsher et al. Nov 2012 B1
8332272 Fisher Dec 2012 B2
8365988 Medina, III et al. Feb 2013 B1
8369960 Tran et al. Feb 2013 B2
8371501 Hopkins Feb 2013 B1
8381307 Cimino Feb 2013 B2
8391719 Alameh et al. Mar 2013 B2
8417231 Sanding et al. Apr 2013 B2
8439271 Smets et al. May 2013 B2
8475367 Yuen et al. Jul 2013 B1
8489112 Roeding et al. Jul 2013 B2
8511542 Pan Aug 2013 B2
8559872 Butler Oct 2013 B2
8566916 Bailey et al. Oct 2013 B1
8567670 Stanfield et al. Oct 2013 B2
8572386 Takekawa et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8583454 Beraja et al. Nov 2013 B2
8589335 Smith et al. Nov 2013 B2
8594730 Bona et al. Nov 2013 B2
8615468 Varadarajan Dec 2013 B2
8620218 Awad Dec 2013 B2
8667285 Coulier et al. Mar 2014 B2
8723941 Shirbabadi et al. May 2014 B1
8726405 Bailey et al. May 2014 B1
8740073 Vijayshankar et al. Jun 2014 B2
8750514 Gallo et al. Jun 2014 B2
8752189 de Jong Jun 2014 B2
8794509 Bishop et al. Aug 2014 B2
8799668 Cheng Aug 2014 B2
8806592 Ganesan Aug 2014 B2
8807440 von Behren et al. Aug 2014 B1
8811892 Khan et al. Aug 2014 B2
8814039 Bishop et al. Aug 2014 B2
8814052 Bona et al. Aug 2014 B2
8818867 Baldwin et al. Aug 2014 B2
8850538 Vernon et al. Sep 2014 B1
8861733 Benteo et al. Oct 2014 B2
8880027 Darringer Nov 2014 B1
8888002 Marshall Chesney et al. Nov 2014 B2
8898088 Springer et al. Nov 2014 B2
8934837 Zhu et al. Jan 2015 B2
8977569 Rao Mar 2015 B2
8994498 Agrafioti Mar 2015 B2
9004365 Bona et al. Apr 2015 B2
9032501 Martin May 2015 B1
9038894 Khalid May 2015 B2
9042814 Royston et al. May 2015 B2
9047531 Showering et al. Jun 2015 B2
9069976 Toole et al. Jun 2015 B2
9081948 Magne Jul 2015 B2
9104853 Venkataramani et al. Aug 2015 B2
9118663 Bailey et al. Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9129280 Bona et al. Sep 2015 B2
9152832 Royston et al. Oct 2015 B2
9203800 Izu et al. Dec 2015 B2
9209867 Royston Dec 2015 B2
9251330 Boivie et al. Feb 2016 B2
9251518 Levin et al. Feb 2016 B2
9258715 Borghei Feb 2016 B2
9270337 Zhu et al. Feb 2016 B2
9306626 Hall et al. Apr 2016 B2
9306942 Bailey et al. Apr 2016 B1
9324066 Archer et al. Apr 2016 B2
9324067 Van Os et al. Apr 2016 B2
9332587 Salahshoor May 2016 B2
9338622 Bjontegard May 2016 B2
9373141 Shakkarwar Jun 2016 B1
9379841 Fine et al. Jun 2016 B2
9413430 Royston et al. Aug 2016 B2
9413768 Gregg et al. Aug 2016 B1
9420496 Indurkar Aug 2016 B1
9426132 Alikhani Aug 2016 B1
9432339 Bowness Aug 2016 B1
9455968 MacHani et al. Sep 2016 B1
9473509 Arsanjani et al. Oct 2016 B2
9491626 Sharma et al. Nov 2016 B2
9553637 Yang et al. Jan 2017 B2
9619952 Zhao et al. Apr 2017 B1
9635000 Muftic Apr 2017 B1
9665858 Kumar May 2017 B1
9674705 Rose et al. Jun 2017 B2
9679286 Colnot et al. Jun 2017 B2
9680942 Dimmick Jun 2017 B2
9710804 Zhou et al. Jul 2017 B2
9740342 Paulsen et al. Aug 2017 B2
9740988 Levin et al. Aug 2017 B1
9763097 Robinson et al. Sep 2017 B2
9767329 Forster Sep 2017 B2
9769662 Queru Sep 2017 B1
9773151 Mil'shtein et al. Sep 2017 B2
9780953 Gaddam et al. Oct 2017 B2
9891823 Feng et al. Feb 2018 B2
9940571 Herrington Apr 2018 B1
9953323 Candelore et al. Apr 2018 B2
9961194 Wiechman et al. May 2018 B1
9965756 Davis et al. May 2018 B2
9965911 Wishne May 2018 B2
9978058 Wurmfeld et al. May 2018 B2
10043164 Dogin et al. Aug 2018 B2
10075437 Costigan et al. Sep 2018 B1
10129648 Hernandez et al. Nov 2018 B1
10133979 Eidam et al. Nov 2018 B1
10217105 Sangi et al. Feb 2019 B1
20010010723 Pinkas Aug 2001 A1
20010029485 Brody et al. Oct 2001 A1
20010034702 Mockett et al. Oct 2001 A1
20010054003 Chien et al. Dec 2001 A1
20020078345 Sandhu et al. Jun 2002 A1
20020093530 Krothapalli et al. Jul 2002 A1
20020100808 Norwood et al. Aug 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20020152116 Yan et al. Oct 2002 A1
20020153424 Li Oct 2002 A1
20020165827 Gien et al. Nov 2002 A1
20030023554 Yap et al. Jan 2003 A1
20030034873 Chase et al. Feb 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030078882 Sukeda et al. Apr 2003 A1
20030167350 Davis et al. Sep 2003 A1
20030208449 Diao Nov 2003 A1
20040015958 Veil et al. Jan 2004 A1
20040039919 Takayama et al. Feb 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040215674 Odinak et al. Oct 2004 A1
20040230799 Davis Nov 2004 A1
20050044367 Gasparini et al. Feb 2005 A1
20050075985 Cartmell Apr 2005 A1
20050081038 Arditti Modiano et al. Apr 2005 A1
20050138387 Lam et al. Jun 2005 A1
20050156026 Ghosh et al. Jul 2005 A1
20050160049 Lundholm Jul 2005 A1
20050195975 Kawakita Sep 2005 A1
20050247797 Ramachandran Nov 2005 A1
20060006230 Bear et al. Jan 2006 A1
20060040726 Szrek et al. Feb 2006 A1
20060041402 Baker Feb 2006 A1
20060044153 Dawidowsky Mar 2006 A1
20060047954 Sachdeva et al. Mar 2006 A1
20060085848 Aissi et al. Apr 2006 A1
20060136334 Atkinson et al. Jun 2006 A1
20060173985 Moore Aug 2006 A1
20060174331 Schuetz Aug 2006 A1
20060242698 Inskeep et al. Oct 2006 A1
20060280338 Rabb Dec 2006 A1
20070033642 Ganesan et al. Feb 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070116292 Kurita et al. May 2007 A1
20070118745 Buer May 2007 A1
20070197261 Humbel Aug 2007 A1
20070224969 Rao Sep 2007 A1
20070241182 Buer Oct 2007 A1
20070256134 Lehtonen et al. Nov 2007 A1
20070258594 Sandhu et al. Nov 2007 A1
20070278291 Rans et al. Dec 2007 A1
20080008315 Fontana et al. Jan 2008 A1
20080011831 Bonalle et al. Jan 2008 A1
20080014867 Finn Jan 2008 A1
20080035738 Mullen Feb 2008 A1
20080071681 Khalid Mar 2008 A1
20080072303 Syed Mar 2008 A1
20080086767 Kulkarni et al. Apr 2008 A1
20080103968 Bies et al. May 2008 A1
20080109309 Landau et al. May 2008 A1
20080110983 Ashfield May 2008 A1
20080120711 Dispensa May 2008 A1
20080156873 Wilhelm et al. Jul 2008 A1
20080162312 Sklovsky et al. Jul 2008 A1
20080164308 Aaron et al. Jul 2008 A1
20080207307 Cunningham, II et al. Aug 2008 A1
20080209543 Aaron Aug 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080285746 Landrock et al. Nov 2008 A1
20080308641 Finn Dec 2008 A1
20090037275 Pollio Feb 2009 A1
20090048026 French Feb 2009 A1
20090132417 Scipioni et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090171682 Dixon et al. Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090235339 Mennes et al. Sep 2009 A1
20090249077 Gargaro et al. Oct 2009 A1
20090282264 Ameil et al. Nov 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100023455 Dispensa et al. Jan 2010 A1
20100029202 Jolivet et al. Feb 2010 A1
20100033310 Narendra et al. Feb 2010 A1
20100036769 Winters et al. Feb 2010 A1
20100078471 Lin et al. Apr 2010 A1
20100082491 Rosenblatt et al. Apr 2010 A1
20100094754 Bertran et al. Apr 2010 A1
20100095130 Bertran et al. Apr 2010 A1
20100100480 Altman et al. Apr 2010 A1
20100114731 Kingston et al. May 2010 A1
20100192230 Steeves et al. Jul 2010 A1
20100207742 Buhot et al. Aug 2010 A1
20100211797 Westerveld et al. Aug 2010 A1
20100240413 He et al. Sep 2010 A1
20100257357 McClain Oct 2010 A1
20100312634 Cervenka Dec 2010 A1
20100312635 Cervenka Dec 2010 A1
20110028160 Roeding et al. Feb 2011 A1
20110035604 Habraken Feb 2011 A1
20110060631 Grossman et al. Mar 2011 A1
20110068170 Lehman Mar 2011 A1
20110084132 Tofighbakhsh Apr 2011 A1
20110101093 Ehrensvard May 2011 A1
20110113245 Varadarajan May 2011 A1
20110125638 Davis et al. May 2011 A1
20110131415 Schneider Jun 2011 A1
20110153437 Archer et al. Jun 2011 A1
20110153496 Royyuru Jun 2011 A1
20110208658 Makhotin Aug 2011 A1
20110208965 Machani Aug 2011 A1
20110211219 Bradley et al. Sep 2011 A1
20110218911 Spodak Sep 2011 A1
20110238564 Lim et al. Sep 2011 A1
20110246780 Yeap et al. Oct 2011 A1
20110258452 Coulier et al. Oct 2011 A1
20110280406 Ma et al. Nov 2011 A1
20110282785 Chin Nov 2011 A1
20110294418 Chen Dec 2011 A1
20110312271 Ma et al. Dec 2011 A1
20120024947 Naelon Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120030121 Grellier Feb 2012 A1
20120047071 Mullen et al. Feb 2012 A1
20120079281 Lowenstein et al. Mar 2012 A1
20120109735 Krawczewicz et al. May 2012 A1
20120109764 Martin et al. May 2012 A1
20120143754 Patel Jun 2012 A1
20120150737 Rottink et al. Jun 2012 A1
20120178366 Levy et al. Jul 2012 A1
20120196583 Kindo Aug 2012 A1
20120207305 Gallo et al. Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120238206 Singh et al. Sep 2012 A1
20120239560 Pourfallah et al. Sep 2012 A1
20120252350 Steinmetz et al. Oct 2012 A1
20120254394 Barras Oct 2012 A1
20120284194 Liu et al. Nov 2012 A1
20120290472 Mullen et al. Nov 2012 A1
20120296818 Nuzzi et al. Nov 2012 A1
20120316992 Obome Dec 2012 A1
20120317035 Royyuru et al. Dec 2012 A1
20120317628 Yeager Dec 2012 A1
20130005245 Royston Jan 2013 A1
20130008956 Ashfield Jan 2013 A1
20130026229 Jarman et al. Jan 2013 A1
20130048713 Pan Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130065564 Conner et al. Mar 2013 A1
20130080228 Fisher Mar 2013 A1
20130080229 Fisher Mar 2013 A1
20130099587 Lou et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130106576 Hinman et al. May 2013 A1
20130119130 Braams May 2013 A1
20130130614 Busch-Sorensen May 2013 A1
20130144793 Royston Jun 2013 A1
20130171929 Adams et al. Jul 2013 A1
20130179351 Wallner Jul 2013 A1
20130185772 Jaudon et al. Jul 2013 A1
20130191279 Calman et al. Jul 2013 A1
20130200999 Spodak et al. Aug 2013 A1
20130216108 Hwang et al. Aug 2013 A1
20130226791 Springer et al. Aug 2013 A1
20130226796 Jiang et al. Aug 2013 A1
20130232082 Krawczewicz et al. Sep 2013 A1
20130238894 Ferg et al. Sep 2013 A1
20130282360 Shimota et al. Oct 2013 A1
20130303085 Boucher et al. Nov 2013 A1
20130304651 Smith Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130314593 Reznik et al. Nov 2013 A1
20130344857 Berionne et al. Dec 2013 A1
20140002238 Taveau et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140027506 Heo et al. Jan 2014 A1
20140032409 Rosano Jan 2014 A1
20140032410 Georgiev et al. Jan 2014 A1
20140040120 Cho et al. Feb 2014 A1
20140040139 Brudnicki et al. Feb 2014 A1
20140040147 Varadarakan et al. Feb 2014 A1
20140047235 Lessiak et al. Feb 2014 A1
20140067690 Pitroda et al. Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140074655 Lim et al. Mar 2014 A1
20140081720 Wu Mar 2014 A1
20140138435 Khalid May 2014 A1
20140171034 Aleksin et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140172700 Teuwen et al. Jun 2014 A1
20140180851 Fisher Jun 2014 A1
20140208112 McDonald et al. Jul 2014 A1
20140214674 Narula Jul 2014 A1
20140229375 Zaytzsev et al. Aug 2014 A1
20140245391 Adenuga Aug 2014 A1
20140256251 Caceres et al. Sep 2014 A1
20140258099 Rosano Sep 2014 A1
20140258113 Gauthier et al. Sep 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140274179 Zhu et al. Sep 2014 A1
20140279479 Maniar et al. Sep 2014 A1
20140337235 Van Heerden et al. Nov 2014 A1
20140339315 Ko Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140365780 Movassaghi Dec 2014 A1
20140379361 Mahadkar et al. Dec 2014 A1
20150012444 Brown et al. Jan 2015 A1
20150018660 Thomson Jan 2015 A1
20150028996 Agrafioti Jan 2015 A1
20150032635 Guise Jan 2015 A1
20150071486 Rhoads et al. Mar 2015 A1
20150088757 Zhou et al. Mar 2015 A1
20150089585 Novack Mar 2015 A1
20150089586 Ballesteros Mar 2015 A1
20150134452 Williams May 2015 A1
20150140960 Powell et al. May 2015 A1
20150154595 Collinge et al. Jun 2015 A1
20150170138 Rao Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150186871 Laracey Jul 2015 A1
20150205379 Mag et al. Jul 2015 A1
20150302409 Malek et al. Oct 2015 A1
20150317626 Ran et al. Nov 2015 A1
20150332266 Friedlander et al. Nov 2015 A1
20150339474 Paz et al. Nov 2015 A1
20150371234 Huang et al. Dec 2015 A1
20160012465 Sharp Jan 2016 A1
20160026997 Tsui et al. Jan 2016 A1
20160048913 Rausaria et al. Feb 2016 A1
20160055480 Shah Feb 2016 A1
20160057619 Lopez Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160148193 Kelley et al. May 2016 A1
20160232523 Venot et al. Aug 2016 A1
20160239672 Khan et al. Aug 2016 A1
20160253651 Park et al. Sep 2016 A1
20160255072 Liu Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160277383 Guyomarell et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160307187 Guo et al. Oct 2016 A1
20160307189 Zarakas et al. Oct 2016 A1
20160314472 Ashfield Oct 2016 A1
20160330027 Ebrahimi Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160379217 Hamad Dec 2016 A1
20170004502 Quentin et al. Jan 2017 A1
20170011395 Pillai et al. Jan 2017 A1
20170011406 Tunnell et al. Jan 2017 A1
20170017957 Radu Jan 2017 A1
20170017964 Janefalkar et al. Jan 2017 A1
20170024716 Jiam et al. Jan 2017 A1
20170039566 Schipperheijn Feb 2017 A1
20170041759 Gantert et al. Feb 2017 A1
20170068950 Kwon Mar 2017 A1
20170103388 Pillai et al. Apr 2017 A1
20170104739 Lansler et al. Apr 2017 A1
20170109509 Baghdasaryan Apr 2017 A1
20170109730 Locke et al. Apr 2017 A1
20170116447 Cimino et al. Apr 2017 A1
20170124568 Moghadam May 2017 A1
20170140379 Deck May 2017 A1
20170154328 Zarakas et al. Jun 2017 A1
20170154333 Gleeson et al. Jun 2017 A1
20170180134 King Jun 2017 A1
20170230189 Toll et al. Aug 2017 A1
20170237301 Elad et al. Aug 2017 A1
20170257759 Fontana Sep 2017 A1
20170289127 Hendrick Oct 2017 A1
20170295013 Claes Oct 2017 A1
20170316696 Bartel Nov 2017 A1
20170317834 Smith et al. Nov 2017 A1
20170330173 Woo et al. Nov 2017 A1
20170374070 Shah et al. Dec 2017 A1
20180034507 Wobak et al. Feb 2018 A1
20180039986 Essebag et al. Feb 2018 A1
20180068316 Essebag et al. Mar 2018 A1
20180129849 Strohmann May 2018 A1
20180129945 Saxena et al. May 2018 A1
20180160255 Park Jun 2018 A1
20180191501 Lindemann Jul 2018 A1
20180205712 Versteeg et al. Jul 2018 A1
20180240106 Garrett et al. Aug 2018 A1
20180254909 Hancock Sep 2018 A1
20180268132 Buer et al. Sep 2018 A1
20180270214 Caterino et al. Sep 2018 A1
20180294959 Traynor et al. Oct 2018 A1
20180300716 Carlson Oct 2018 A1
20180302396 Camenisch et al. Oct 2018 A1
20180315050 Hammad Nov 2018 A1
20180316666 Koved et al. Nov 2018 A1
20180322486 Deliwala et al. Nov 2018 A1
20180359100 Gaddam et al. Dec 2018 A1
20190014107 George Jan 2019 A1
20190019375 Foley Jan 2019 A1
20190036678 Ahmed Jan 2019 A1
20190130384 Shauh May 2019 A1
20190238517 D'Agostino et al. Aug 2019 A1
20190279199 Sheets Sep 2019 A1
Foreign Referenced Citations (38)
Number Date Country
3010336 Jul 2017 CA
101192295 Jun 2008 CN
103023643 Apr 2013 CN
103417202 Dec 2013 CN
1085424 Mar 2001 EP
1223565 Jul 2002 EP
1265186 Dec 2002 EP
1783919 May 2007 EP
2139196 Dec 2009 EP
1469419 Aug 2012 EP
2852070 Mar 2015 EP
2457221 Aug 2009 GB
2516861 Feb 2015 GB
2551907 Jan 2018 GB
101508320 Apr 2015 KR
0049586 Aug 2000 WO
2006070189 Jul 2006 WO
2008055170 May 2008 WO
2009025605 Feb 2009 WO
2010049252 May 2010 WO
2011112158 Sep 2011 WO
2012001624 Jan 2012 WO
2013039395 Mar 2013 WO
2013155562 Oct 2013 WO
2013192358 Dec 2013 WO
2014043278 Mar 2014 WO
2014170741 Oct 2014 WO
2015179649 Nov 2015 WO
2015183818 Dec 2015 WO
2016097718 Jun 2016 WO
2016160816 Oct 2016 WO
2016168394 Oct 2016 WO
2017042375 Mar 2017 WO
2017042400 Mar 2017 WO
2017157859 Sep 2017 WO
2017208063 Dec 2017 WO
2018063809 Apr 2018 WO
2018137888 Aug 2018 WO
Non-Patent Literature Citations (43)
Entry
Holz et al. (“Biometric Touch Sensing: Seamlessly Augmenting Each Touch with Continuous Authentication”, Yahoo Labs, Nov. 2015, 11 pages (Year: 2015).
Satina, L. and Poll, E., “SmartCards and Rfid”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages.
Haykin, M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988).
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012).
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved fro Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages.
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages.
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages.
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages.
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages.
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages.
Author Unknown, “NFC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages.
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages.
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages.
Kevin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-string-from-nfc-tag, 11 pages.
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page.
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages.
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages.
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages.
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages.
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared—or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big-Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages.
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages.
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages.
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages.
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages.
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_encodi . . . , 2 pages.
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages.
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages.
Van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages.
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages.
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Plafform%3DDesktop&hl=en, 3 pages.
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages.
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?d=576a7b910d2d6&location=browse, 135 pages.
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE AFRICON At Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages.
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007).
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages.
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages.
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 101145/2348543.2348569.
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013).
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages.
Ullmann et al., “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, paper presentation LNI proceedings, (2012) 12 pages.
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of AI-Anbar University or Pure Science, 2(1):23 pages (2008).
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online] May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages.
Author unknown, “NXP NFMI radio NxH2280—NFMI radio for wireless audio and data streaming”, NXP Semiconductors N.V. (Nov. 2015) 2 pages.