Braided stent with expansion ring and method of delivery

Information

  • Patent Grant
  • 10561509
  • Patent Number
    10,561,509
  • Date Filed
    Wednesday, March 13, 2013
    12 years ago
  • Date Issued
    Tuesday, February 18, 2020
    5 years ago
Abstract
A self-expanding braided stent includes at least a distal radial expansion ring added to a distal end of the stent body to increase a radial expansion force of the self-expanding braided stent in deployment of the stent, and to facilitate advancement of the stent through a delivery sheath by a core advancement wire. A proximal radial expansion ring is optionally added to a proximal end of the stent body to allow the stent to be recaptured following partial deployment by retraction of the core advancement wire, prior to full deployment of a proximal portion of the stent body.
Description
BACKGROUND OF THE INVENTION

This invention relates generally to devices for interventional therapeutic treatment or vascular surgery for treatment of defects in the vasculature, and more particularly concerns a system and method for delivering a self-expanding braided stent to a treatment site in a vasculature of a patient.


Stents, which are tubular reinforcements inserted into a blood vessel to provide an open path within the blood vessel, have been widely used in intravascular angioplasty treatment of occluded cardiac arteries. In such applications, the stent is inserted after an angioplasty procedure or the like in order to prevent restenosis of the artery. In these applications, the stents are often deployed by use of inflatable balloons, or mechanical devices which force the stent open, thereby reinforcing the artery wall and provide a clear through-path in the center of the artery after the angioplasty procedure to prevent restenosis.


While such procedures may be useful in certain aspects of vascular surgery in which vasoocclusive devices are used, the weakness and tortuosity of the neurovasculature places limits on the applicability of such stents in procedures to repair neurovascular defects. Furthermore, the use of placement techniques, such as balloons or mechanical expansions of the type often found to be useful in cardiac surgery, are relatively less useful in vasoocclusive surgery, particularly when tiny vessels, such as those found in the brain, are to be treated. Hence, those skilled in the art have recognized a need for a stent compatible with techniques in vasoocclusive treatment of neurovascular defects that provides selective reinforcement in the vicinity of a neurovascular defect, while avoiding any unnecessary trauma or risk of rupture to the blood vessel.


Braided stents, typically formed from a plurality of elongate members, such as two or more metal wires, or polymeric fibers or strands of material, for example, can be very useful in treatment of neurovascular defects. However, one of the problems in deploying a self-expanding braided stent in a body lumen is activation of the initially expanding end, typically the distal end of the braided stent, to fully open. It is important that the initially expanding end should open fully, easily, and quickly, so that the rest of the length of self-expanding braided stent can be deployed, using the initially expanding end as an anchor point.


Stents made of braided wire also commonly have a high internal friction that resists the inherent radial expansion force of the self-expanding braided stent to open, particularly resisting opening of the initially expanding end, which can cause problems in anchoring and deployment of such self-expanding braided stents. Another common problem with deployment of braided stents is difficulty in advancing the compressed or crimped braided stent through a delivery sheath or microcatheter, typically also due to friction between the braided stent and the delivery sheath or microcatheter. Traditional delivery systems for braided stents push the braided stent in a distal direction by advancing a blunt surface against a proximal end of the braided stent, and consequently the application of force on the proximal end of the braided stent tends to axially compress the braided stent, causing the braided stent to expand radially. As a result, as the braided stent expands within the delivery sheath or microcatheter, an increased normal force is applied to the inner surface of the delivery sheath or microcatheter, increasing friction between the braided stent and the delivery sheath or microcatheter.


Current self-expanding braided stents typically depend solely on their material, dimension, cell design, and internal friction to expand. Deployment of such self-expanding braided stents commonly requires extra manipulation by a user to fully open the self-expanding braided stents, which affects placement accuracy and adds risk to the procedure. Proper deployment and fixation of the initial deployment end or distal end of a self-expanding braided stent are necessary for the subsequent proper alignment and positioning of the remainder of the stent body.


Another problem with deployment of self-expanding braided stents involves difficulty in recapturing a self-expanding braided stent after partial deployment and prior to full deployment of the stent. Currently, a self-expanding braided stent typically is advanced through a delivery sheath or microcatheter until the self-expanding braided stent emerges. When the self-expanding braided stent is unrestrained outside of the sheath or microcatheter, the self-expanding braided stent typically then expands and is deployed in the vasculature, making recapturing of the self-expanding braided stent difficult.


It would be desirable to provide an improved self-expanding braided stent with increased radial expansion force, particularly at the initial deployment end or distal end, that can also reduce the internal friction of the braided stent during delivery of the braided stent through a delivery sheath or microcatheter, for improved ease and reliability of deployment of the self-expanding braided stent, particularly at the initial deployment end or distal end of the self-expanding braided stent. It also would be desirable to provide an improved self-expanding braided stent that can be recaptured following partial deployment of a distal portion of the self-expanding braided stent prior to full deployment of a later deployed portion or proximal portion of the self-expanding braided stent. The present invention meets these and other needs.


SUMMARY OF THE INVENTION

Briefly and in general terms, the present invention provides for an improved self-expanding braided stent with one or more expansion rings, and methods of delivering the self-expanding braided stent through a delivery sheath or microcatheter to a treatment site in a patient's vasculature. The present invention provides for the addition of at least one radial expansion ring to an initial deployment end or distal end of a self-expanding braided stent to increase a radial expansion force of the self-expanding braided stent, for improved ease and reliability of deployment of the self-expanding braided stent, and particularly more reliable expansion and fixing of the initial deployment end or distal end of the self-expanding braided stent in deployment of the self-expanding braided stent. The addition of a radial expansion ring to a later deployed end or proximal end of a self-expanding braided stent allows the self-expanding braided stent to be recaptured following partial deployment of a distal portion of the self-expanding braided stent, and prior to full deployment of a later deployed portion or proximal portion of the self-expanding braided stent.


Accordingly, in a first embodiment, the present invention provides for a braided stent, including a tubular braided stent body formed from a plurality of elongate members, and one or more expansion rings disposed within and fixedly connected to at least one of the proximal end and the distal end of the tubular braided stent body. In a presently preferred aspect, the one or more expansion rings have a compressed configuration having a first diameter and an expanded configuration having a second diameter larger than the first diameter. In another presently preferred aspect, the plurality of elongate members may be formed by a plurality of metal wires, a plurality of polymeric fibers, a plurality of strands of material, or the like. In another presently preferred aspect, the braided stent is a self-expanding stent having a compressed configuration having an unexpanded diameter and an expanded configuration having an expanded diameter larger than the first diameter.


In another presently preferred aspect, the one or more expansion rings include a plurality of elongated connecting arm members having first ends at the first end of the one or more expansion rings and second ends at the second end of the expansion ring, and the plurality of elongated connecting arm members are connected sequentially to adjacent ones of the plurality of elongated connecting arm members alternatingly at the first and second ends to form a plurality of alternating elbow connections at the first and second ends, such as in a zigzag configuration, for example. In another presently preferred aspect, the one or more expansion rings are formed of shape memory material, such as a nickel titanium alloy or a shape memory polymer, for example, having a shape memory position in the expanded configuration. Preferably the one or more expansion rings is heat treated so that the shape memory position is an expanded zigzag type ring, and the plurality of elongated connecting arm members and the alternating elbow connections preferably are configured to be compressed into a small tubular shape during delivery. In another presently preferred aspect, the one or more expansion rings include a plurality of attachment tabs connected to the plurality of alternating elbow connections at the first ends of the one or more expansion rings, and preferably the plurality of alternating elbow connections at the first ends of the one or more expansion rings have exterior ends directed away from the plurality of elongated connecting arm members, and the plurality of attachment tabs are connected to the exterior ends of the plurality of alternating elbow connections at the first ends of the one or more expansion rings. The plurality of attachment tabs preferably are fixedly attached to the tubular braided stent body, such as by welding, soldering or gluing the attachment tabs to an expansion ring, for example. Alternatively, the attachment tabs can include holes in them so that a wire loop can be threaded through the attachment tabs, as well as through interstices of the braided stent to connect the attachment tabs and the braided stent together. In addition, two or more attachment tabs can be included at the ends of each elbow of the expansion ring, and the attachment tabs can then be used to capture a portion of the braided stent between them, after which the two or more attachment tabs can be secured together to be permanently secured to the braided stent by welding, soldering, adhesive, or the like. In another presently preferred aspect, an expansion ring is disposed within and fixedly connected to the initial deployment end or distal end of the tubular braided stent body, and a proximal expansion ring optionally also may be disposed within and fixedly connected to the later deployed end or proximal end of the tubular braided stent body.


In another presently preferred aspect, a core advancement wire is provided that is disposed within and extends through the lumen of the tubular braided stent body and the lumen of a distal expansion ring, and when a proximal expansion ring is provided, the core advancement wire extends through the lumen of the proximal expansion ring as well, for delivering and releasing the self-expanding stent through a delivery sheath or microcatheter to a treatment site in a patient's vasculature. The core advancement wire preferably includes a proximal portion, a distal portion, an intermediate portion located between the proximal and distal portions of the core advancement wire, and a stop member positioned between the distal portion and the intermediate portion of the core advancement wire. In a presently preferred aspect, the stop member is formed by an enlarged portion of the core advancement wire having a diameter greater than or equal to the first diameter of the compressed configuration of the expansion member. In another presently preferred aspect, the stop member is configured to engage a proximal, interior side of the distal expansion ring when the core advancement wire is advanced distally, whereby force applied distally to the core advancement wire is transmitted through the distal expansion ring to the initial deployment end or distal end of the braided stent and acts to drag and elongate the braided stent distally. The braided stent is typically configured to be delivered through the delivery sheath or microcatheter, and the core advancement wire is preferably configured to reduce friction of the braided stent with the delivery sheath or microcatheter when force is applied distally to the core advancement wire.


In another presently preferred aspect, when a proximal expansion ring is provided, the core advancement wire includes an intermediate stop member on the core advancement wire positioned on the intermediate portion of the core advancement wire within the lumen of the braided stent distal to the second expansion ring. In a presently preferred aspect, the intermediate stop member includes an enlarged portion of the core advancement wire having a diameter greater than or equal to the first diameter of the compressed configuration of the second expansion member.


In another presently preferred aspect, the present invention provides for a method of delivering and releasing the self-expanding stent through a delivery sheath or microcatheter to a treatment site in a patient's vasculature, including the step of advancing the core advancement wire distally such that the distal stop member engages a proximal, interior side of the distal expansion ring, whereby force applied distally to the core advancement wire is transmitted through the distal expansion ring to the initial deployment end or distal end of the tubular self-expanding braided stent acting to drag and elongate the tubular self-expanding braided stent, reducing friction of the tubular self-expanding braided stent with the delivery sheath or microcatheter when force is applied distally to the core advancement wire. In another presently preferred aspect, the method includes the steps of dragging the distal expansion member of the tubular self-expanding braided stent distally of the delivery sheath or microcatheter while retaining the proximal expansion member of the tubular self-expanding braided stent within the delivery sheath or microcatheter, retracting the core advancement wire proximally such that the intermediate stop member engages a distal, interior side of the proximal expansion ring, retracting the initial deployment end or distal end of the tubular self-expanding braided stent within the delivery sheath or microcatheter such that the distal expansion member and the initial deployment end or distal end of the tubular self-expanding braided stent are reduced in diameter, and recapturing the tubular self-expanding braided stent within the delivery sheath or microcatheter.


These and other features and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments in conjunction with the accompanying drawings, which illustrate, by way of example, the operation of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an expansion ring configured to be affixed within a braided stent, according to the invention.



FIG. 2 is a cross-sectional schematic elevational view of an expansion ring of FIG. 1 affixed within an initial deployment end or distal end of a braided stent, shown contained within a delivery sheath or microcatheter, according to the invention.



FIG. 3 is a cross-sectional schematic elevational view similar to FIG. 2, showing partial deployment of the initial deployment end or distal end of the braided stent from the delivery sheath or microcatheter of FIG. 2.



FIG. 4 is a cross-sectional schematic elevational view of an expansion ring of FIG. 1 affixed within an initial deployment end or distal end of a braided stent, shown contained within a delivery sheath or microcatheter, and including an advance wire extending through the braided stent and expansion ring, according to the invention.



FIG. 5 is a cross-sectional schematic elevational view similar to FIG. 4, showing partial deployment of the initial deployment end or distal end of the braided stent from the delivery sheath or microcatheter of FIG. 4.



FIG. 6 is a cross-sectional schematic elevational view of a braided stent having a distal expansion ring and a proximal expansion ring affixed within the distal and proximal ends of the braided stent, shown contained within a delivery sheath or microcatheter, and including an advance wire extending through the braided stent and expansion ring, according to the invention.



FIG. 7 is a cross-sectional schematic elevational view similar to FIG. 6, showing partial deployment of the initial deployment end or distal end of the braided stent from the delivery sheath or microcatheter of FIG. 6.



FIG. 8 is a cross-sectional schematic elevational view similar to FIG. 6, showing retraction of the initial deployment end or distal end of the braided stent into the delivery sheath or microcatheter of FIG. 6.



FIG. 9 is a cross-sectional schematic elevational view similar to FIG. 6, showing implantation of a braided stent at a treatment site in a patient's vasculature, and withdrawing of the advance wire and delivery sheath or microcatheter.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

While stents have commonly been delivered in in blood vessels such as during intravascular angioplasty treatment of occluded cardiac arteries, by use of inflatable balloons or mechanical devices that force a stent open, the weakness and tortuosity of the neurovasculature places limits on the applicability of such stents in procedures to repair neurovascular defects, and it is desirable to provide an improved self-expanding braided stent with increased its radial expansion force, particularly at the initial deployment end or distal end, that can also reduce the internal friction of the braided stent during delivery of the braided stent through a delivery sheath or microcatheter, that can be more reliably expanded and fixed at the initial deployment end or distal end of the self-expanding braided stent, and that can be recaptured following partial deployment of a distal portion of the self-expanding braided stent prior to full deployment of a later deployed portion or proximal portion of the self-expanding braided stent.


Accordingly, referring to the drawings, which are provided by way of example, and not by way of limitation, in a first embodiment, for treatment of a patient's vasculature, the present invention provides for a braided stent 10 including a tubular braided stent body 11, having a later deployed end or proximal end 12, an initial deployment end or distal end 14, and an inner lumen 16. The tubular braided stent body is preferably formed from a plurality of elongate members 18, typically formed from two or more metal wires, or polymeric fibers or strands of material, for example. In a presently preferred aspect, the braided stent is a self-expanding stent, and includes one or more expansion rings 20, each having a first end 22, a second end 24, and an inner lumen 26. The one or more expansion rings preferably are disposed within and fixedly connected to at least the initial deployment end or distal end of the tubular braided stent body, although one or more expansion rings may also be disposed within and fixedly connected to the later deployed end or proximal end of the tubular braided stent body, as will be further explained below.


Each expansion ring includes a plurality of elongated connecting arm members 30 having first ends 32 at the first end of the expansion ring, and second ends 34 at the second end of the expansion ring. The plurality of elongated connecting arm members are connected sequentially to adjacent ones of the plurality of elongated connecting arm members alternatingly at the first and second ends to form a plurality of alternating elbow connections 36 at the first and second ends of the expansion ring, so that the plurality of elongated connecting arm members of each expansion ring substantially have a zigzag configuration.


Referring to FIGS. 3 and 4, each expansion ring preferably is formed to have a compressed configuration 38, having a first diameter, and an expanded configuration 42, having a second diameter that is larger than the first diameter of the compressed configuration of the expansion ring. Each expansion ring is preferably formed of a shape memory material such as a nickel-titanium alloy, or a shape memory polymer, for example, having a shape memory position in the expanded configuration. For example, the expansion rings may be appropriately heat treated so that the expansion ring forms in the desired shape of the expanded shape memory position, with the plurality of elongated connecting arm members having a substantially zigzag type configuration. Each expansion ring is typically formed by cutting a tube formed of a shape memory material such as a nickel-titanium alloy, or a shape memory polymer, for example, by an appropriate laser. The plurality of elongated connecting arm members and the alternating elbow connections preferably can be compressed in the compressed configuration into a tubular shape that is small enough to comfortably fit within and pass through a delivery sheath or microcatheter 44 to allow delivery of the stent through the delivery sheath or microcatheter.


In another presently preferred aspect, each expansion ring includes a plurality of attachment tabs 46 connected to the plurality of alternating elbow connections at the first ends of the expansion ring. The plurality of attachment tabs preferably are connected to exterior ends 48 of the plurality of alternating elbow connections at the first ends of the one or more expansion ring. The plurality of attachment tabs preferably are fixedly connected to a tubular braided stent body, typically at or near a distal or proximal end of the tubular braided stent body, such as by welding, soldering, or gluing by an appropriate adhesive, for example. Alternatively, the attachment tabs can include holes in them so that a wire loop can be threaded through the attachment tabs, as well as through interstices of the braided stent to connect the attachment tabs and the braided stent together. In addition, two or more attachment tabs can be included at the ends of each elbow of the expansion ring, and the attachment tabs can then be used to capture a portion of the braided stent between them, after which the two or more attachment tabs can be secured together to be permanently secured to the braided stent by welding, soldering, adhesive, or the like. At least one first, distal, expansion ring 20a preferably is disposed within and fixedly connected to the initial deployment end or distal end of the tubular braided stent body. As is illustrated in FIGS. 6-9, a second, proximal, expansion ring 20b preferably also is disposed within and fixedly connected to the later deployed end or proximal end of the tubular braided stent body.


Referring to FIGS. 4-9, in a second embodiment, in which like elements are indicated by like reference numbers, the present invention further provides for an apparatus 50 for delivering and releasing a self-expanding braided stent through a delivery sheath or microcatheter to a treatment site in a patient's vasculature 52. The apparatus includes a braided stent including a tubular braided stent body, described above, and also includes a core advancement wire 54, which is disposed within and extends through the lumen of the tubular braided stent body, and is disposed within and extending through the lumen of the distal expansion ring 20a fixedly connected within the initial deployment end or distal end of the tubular braided stent body. When a proximal expansion ring 20b is fixedly connected within the later deployed end or proximal end of the tubular braided stent body, as is illustrated in FIGS. 6-9, the core advancement wire also is disposed within and extends through the lumen of the proximal expansion ring.


The core advancement wire includes a proximal portion 56, a distal portion 58, an intermediate portion 60 located between the proximal and distal portions of the core advancement wire, and a distal stop member 62 positioned between the distal portion and the intermediate portion of the core advancement wire. In one presently preferred aspect, as is shown in FIG. 4, the distal stop member is formed as an enlarged portion of the core advancement wire having a diameter greater than or equal to the first diameter of the compressed configuration of the expansion member. The distal stop member is preferably configured to engage a proximal, interior side 64 of the distal expansion ring when the core advancement wire is advanced distally, so that force applied distally to the core advancement wire is transmitted through the distal stop member to the distal expansion ring, and consequently is transmitted to the initial deployment end or distal end of the braided stent, thereby acting to drag the braided stent in a distal direction, as the braided stent is delivered through the delivery sheath or microcatheter to a treatment site, as well as to elongate the braided stent, advantageously also reducing friction with the delivery sheath or microcatheter through which the braided stent is delivered.


In another preferred aspect, a proximal stop member 66 may also be provided on the core advancement wire positioned outside and proximal to the proximal end of the braided stent. When it is provided, the proximal stop member preferably has a diameter greater than or equal to the unexpanded diameter of the compressed configuration of the braided stent and less than a diameter of the delivery sheath or microcatheter.


The self-expanding braided stent can be delivered and released through the delivery sheath or microcatheter to a treatment site in a patient's vasculature by advancing the core advancement wire distally (to the left as shown), so that the distal stop member of the core advancement wire engages the proximal, interior side of the distal expansion ring. Since the distal expansion ring is attached to the braided stent, force applied distally to the core advancement wire is transmitted through the distal expansion ring to the initial deployment end or distal end of the braided stent, and the force applied to the initial deployment end or distal end of the braided stent in the distal direction therefore tends to drag and elongate the stent, consequently reducing the diameter of the compressed configuration of the braided stent, reducing the friction between the braided stent and the delivery sheath or microcatheter.


In another embodiment illustrated in FIGS. 6-9, in which like elements are indicated by like reference numbers, the present invention further provides for an apparatus for delivering and releasing a self-expanding braided stent through a delivery sheath or microcatheter to a treatment site in a patient's vasculature, in which the core advancement wire also includes an intermediate stop member 68 positioned on the intermediate portion of the core advancement wire, within the lumen of the braided stent distal to the proximal expansion ring. The intermediate stop member preferably is formed as an enlarged portion of the core advancement wire having a diameter that is greater than or equal to the first diameter of the compressed configuration of the proximal expansion member. The intermediate stop member preferably is configured to engage the distal, interior side 70 of the proximal expansion ring when the core advancement wire is retracted proximally, allowing retraction of the braided stent within the delivery sheath or microcatheter.


In this embodiment, the self-expanding braided stent can be delivered and released through the delivery sheath or microcatheter to a treatment site in a patient's vasculature by advancing the core advancement wire distally, as described above, and the core advancement wire may also then be retracted proximally (to the right as shown in FIG. 8), so that the intermediate stop member engages the distal, interior side of the proximal expansion ring. As long as the braided stent is not deployed past the proximal expansion ring, the braided stent can be recaptured in this way. The retraction force applied proximally to the delivery wire is transmitted through the proximal expansion ring to the proximal end of the braided stent, and as the braided stent is recaptured back into the delivery sheath or microcatheter, the initial deployment end or distal end of the braided stent is reduced in diameter by the mouth 72 of the sheath or microcatheter until the braided stent is again fully enclosed by the delivery sheath or microcatheter.


It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims
  • 1. A braided stent, comprising: a tubular self-expanding braided stent body having a proximal end, a distal end, and an inner lumen, said tubular self-expanding braided stent body being formed from a plurality of elongate members; andat least one expansion ring disposed within and fixedly connected to at least one of said proximal end and said distal end of said tubular self-expanding braided stent body, said at least one expansion ring having a first end, a second end, and an inner lumen, said at least one expansion ring having a compressed configuration having a first diameter and an expanded configuration having a second diameter larger than said first diameter.
  • 2. The braided stent of claim 1, wherein said self-expanding tubular braided stent body has a compressed configuration having an unexpanded diameter and an expanded configuration having an expanded diameter larger than said first diameter.
  • 3. The braided stent of claim 1, wherein said at least one expansion ring comprises a plurality of elongated connecting arm members having first ends at said first end of said at least one expansion ring and second ends at said second end of said expansion ring, said plurality of elongated connecting arm members being connected sequentially to adjacent ones of said plurality of elongated connecting arm members alternatingly at said first and second ends to form a plurality of alternating elbow connections at said first and second ends.
  • 4. The braided stent of claim 1, wherein said at least one expansion ring is formed of shape memory material having a shape memory position in said expanded configuration.
  • 5. The braided stent of claim 3, further comprising a plurality of attachment tabs connected to said plurality of alternating elbow connections at said first ends of said at least one expansion ring.
  • 6. The braided stent of claim 5, wherein said plurality of alternating elbow connections at said first ends of said at least one expansion ring have exterior ends directed away from said plurality of elongated connecting arm members and said plurality of attachment tabs are connected to said exterior ends of said plurality of alternating elbow connections at said first ends of said at least one expansion ring.
  • 7. The braided stent of claim 5, wherein said plurality of attachment tabs are fixedly attached to said self-expanding tubular braided stent body.
  • 8. The braided stent of claim 1, wherein said at least one expansion ring comprises a distal expansion ring disposed within and fixedly connected to said distal end of said self-expanding tubular braided stent body.
  • 9. The braided stent of claim 8, further comprising a proximal expansion ring disposed within and fixedly connected to said proximal end of said self-expanding tubular braided stent body, said distal expansion ring and said proximal expansion ring being spaced apart from each other.
  • 10. The braided stent of claim 8, further comprising a core advancement wire disposed within and extending through said lumen of said tubular braided stent body and said lumen of said expansion ring disposed within and fixedly connected to said distal end of said tubular braided stent body, said core advancement wire having a proximal portion, a distal portion, an intermediate portion located between said proximal and distal portions of said core advancement wire, and a stop member positioned between said distal portion and said intermediate portion of said core advancement wire.
  • 11. The braided stent of claim 10, wherein said stop member comprises an enlarged portion of said core advancement wire having a diameter greater than or equal to said first diameter of said compressed configuration of said expansion member.
  • 12. The braided stent of claim 10, wherein said stop member is configured to engage a proximal, interior side of said distal expansion ring when said core advancement wire is advanced distally, whereby force applied distally to said core advancement wire is transmitted through said distal expansion ring to said distal end of said braided stent, acting to drag and elongate said braided stent.
  • 13. The braided stent of claim 10, further comprising a delivery sheath, said braided stent being configured to be delivered through said delivery sheath, and wherein said core advancement wire is configured to reduce friction of said braided stent with said delivery sheath when force is applied distally to said core advancement wire.
US Referenced Citations (175)
Number Name Date Kind
5282824 Gianturco Feb 1994 A
5387235 Chuter Feb 1995 A
5702418 Ravenscroft Dec 1997 A
5961546 Robinson Oct 1999 A
6015432 Rakos Jan 2000 A
6123723 Kónya et al. Sep 2000 A
6168621 Vrba Jan 2001 B1
6264683 Stack et al. Jul 2001 B1
6280465 Cryer Aug 2001 B1
6409755 Vrba Jun 2002 B1
6612012 Mitelberg et al. Sep 2003 B2
6673106 Mitelberg et al. Jan 2004 B2
6740113 Vrba May 2004 B2
6818013 Mitelberg et al. Nov 2004 B2
6833003 Jones et al. Dec 2004 B2
6955685 Escamilla et al. Aug 2005 B2
6945994 Austin et al. Sep 2005 B2
6960227 Jones et al. Nov 2005 B2
6960228 Mitelberg et al. Nov 2005 B2
7001422 Escamilla et al. Feb 2006 B2
7037331 Mitelberg et al. May 2006 B2
7201769 Jones et al. Apr 2007 B2
7309351 Escamilla et al. Dec 2007 B2
7628806 Yampolsky et al. Dec 2009 B2
7655031 Tenne et al. Feb 2010 B2
8043353 Kaufmann et al. Oct 2011 B2
8092510 Metcalf et al. Jan 2012 B2
8182523 Tenne et al. May 2012 B2
8597276 Vongphakdy et al. Dec 2013 B2
8641748 Herbert et al. Feb 2014 B2
8816247 Janardhan et al. Aug 2014 B1
8864811 Kao Oct 2014 B2
9301864 Kao Apr 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman Sep 2017 B2
9770577 Li Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Paterson Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman Nov 2017 B2
9833252 Sepetka Dec 2017 B2
9833604 Lam Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
20050049668 Jones et al. Mar 2005 A1
20050049669 Jones et al. Mar 2005 A1
20050257674 Nishri et al. Nov 2005 A1
20070233224 Leynov Oct 2007 A1
20070255385 Tenne et al. Nov 2007 A1
20080071307 DeBruyne et al. Mar 2008 A1
20090306761 Hebert et al. Dec 2009 A1
20110264186 Berglung Oct 2011 A1
20110307049 Kao Dec 2011 A1
20140277332 Slazas et al. Sep 2014 A1
20140277360 Gimary et al. Sep 2014 A1
20160058524 Ramin et al. Mar 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein Jun 2017 A1
20170165454 Tuohy Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180092766 Gorochow Apr 2018 A1
20180263794 Slazas et al. Sep 2018 A1
Foreign Referenced Citations (12)
Number Date Country
0701800 Mar 1996 EP
2777638 Sep 2014 EP
2777649 Sep 2014 EP
2939637 Jun 2010 FR
3-503246 Jul 1991 JP
11-57010 Mar 1999 JP
2004-267750 Sep 2004 JP
WO 1989008433 Sep 1989 WO
9943379 Sep 1999 WO
2008130530 Oct 2008 WO
2012096687 Jul 2012 WO
2013126299 Aug 2013 WO
Non-Patent Literature Citations (3)
Entry
European Application No. 14159541.3 Search Report dated Aug. 4, 2014.
Examination report No. 1 for standard patent application issued in corresponding Australian Patent Application No. 2014201193 dated Oct. 13, 2017.
Notification of Reasons for Refusal issued in corresponding Japanese Patent Application No. 2014-048609 dated Nov. 21, 2017 (English translation only).
Related Publications (1)
Number Date Country
20140277332 A1 Sep 2014 US