1. Field of the Invention
The present invention generally relates to a card edge connector for receiving a module and more particularly to a card edge connector having a latch for removing the module from the connector.
2. Description of Related Art
A conventional card edge connector is fixed in an electronic device such as a computer for receiving a memory module. Such connector is mounted on a printed circuit board (PCB), and comprises an elongated insulative housing, a plurality of terminals received therein and a pair of metal latches attached thereto. The insulative housing has a slot for receiving the memory module and a pair of side frames on two lateral sides thereof. Each side frame includes a buckling arm for locking the memory module. The latches are individually mounted on free ends of the side frames. Each latch has an elongated main portion, a restrictive body extending upwardly from an inner side of the main portion for restraining the inward movement of the side frame and a resilient arm extending from the upper surface of the main portion. The resilient arm extends along an outside face of the side frame and further has a stopping plate. The stopping plate is folded inwardly from the resilient arm and formed by further bending downwardly. The stopping plate is disposed at a proper position for limiting the movement of the restrictive body. When the memory module is removed from the slot of the insulative housing, the two side frames can be moved outwardly to release the embossment, which has been secured the memory module. The two side frames push the resilient arms outwardly in order to move the stopping plates to abut against the restrictive bodies for an orientation. Therefore, the side frames will not over extend in order to prevent breakage or deformation thereof since each side frame is only capable of moving a distance dictated by the distance between the restrictive body and the stopping plate.
However, the stopping plate and the restrictive bodies are integrally formed on the latch which results in the complexity of the latch structure and will increase the manufacturing costs. Furthermore, the movement and the vibration of the resilient arm will lead to breakage or deformation between the resilient arm and the main portion thereof.
Hence, an improvement over the prior art is required to overcome the problems thereof.
According one aspect of the present invention, a card edge connector for receiving a module, comprises an insulative housing having a receiving slot for receiving the module and a pair of arm portions located at opposite ends thereof. Said arm portion has a pair of side walls and a resilient arm with a retaining embossment for locking the module. The side walls are integrally formed on the insulative housing and include a projection. A plurality of terminals are mounted on said insulative housing and extend into the receiving slot thereof. A pair of latches are attached to the arm portions and move with the resilient arms. Each latch includes a base and a stopping plate extending from the base. The stopping plates engage with said projections of the side walls thereby open said resilient arms when the module detaches from the card edge connector.
According to another aspect of the present invention, a card edge connector comprises an elongated insulative housing having a pair of arm portions at opposite ends thereof. Each arm portion has a pair of side walls defining a retaining slot for receiving a module therein, and a resilient arm located between the side walls. The resilient arm comprises a retaining embossment for locking the module. A plurality of terminals are assembled to the insulative housing. A pair of metal latches are attached to the arm portions and each has a base and a pair of positioning portions at opposite sides thereof for fixing to the corresponding arm portion. Each latch has a gripping portion at a top end thereof for urging the corresponding resilient arm.
These and additional objects, features, and advantages of the present invention will become apparent after reading the following detailed description of the preferred embodiment of the invention taken in conjunction with the appended drawings.
Reference will now be made to the drawing figures to describe the preferred embodiment of the present invention in detail.
Referring to
Each terminal 2 includes a contact portion 21 extending into the receiving slot 12 for engaging with a plurality of conductive pads on opposite sides of the memory module 200, a tail portion 23 projecting out of the insulative housing 1 for connection to the printed circuit board, and a connection portion 22 engaging with the terminal cavity 13.
Referring to
Referring to
When removing the memory module 200, the gripping portions 32 are pulled outwardly and driving the free end of the resilient arms 16 away from each other to release the memory module 200. Because the limiting portion 155 can prevent overmovement of the stopping plate, the stopping plates 37 are moved over the projections 157 and restrained between the projections 157 and the limiting portions 155. When the gripping portions 32 are released, the stopping plates 37 abut against an outer face of the projections 157 and can not go back to the original positions. Therefore, the pair of resilient arms 16 are opened and the memory module 200 is easy to be removed therefrom.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2007 2 0035284 | Mar 2007 | CN | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 5413497 | Lwee | May 1995 | A |
| 5632640 | Noda et al. | May 1997 | A |
| 5997331 | Tu | Dec 1999 | A |
| 6146177 | Wu et al. | Nov 2000 | A |
| 7048565 | Lin et al. | May 2006 | B2 |
| 7074067 | Yang et al. | Jul 2006 | B2 |
| 7252523 | Pennypacker et al. | Aug 2007 | B1 |
| Number | Date | Country | |
|---|---|---|---|
| 20080220642 A1 | Sep 2008 | US |