The present invention relates to a pressure exchanger for the transfer of pressure energy from a first liquid of a first liquid system to a second liquid of a second liquid system, comprising a housing with connector openings in the form of inlet and outlet openings for each liquid and a rotor arranged inside the housing to rotate about its longitudinal axis, said rotor having a plurality of continuous rotor channels with openings arranged around its longitudinal axis on each rotor end face, the rotor channels communicating with the connector openings of the housing through flow openings in the housing such that they alternately carry liquid at a high pressure and liquid at a low pressure to the respective systems during the rotation of the rotor.
A pressure exchanger of this general type is known from U.S. Pat. No. 6,540,487 B2. This type of pressure exchanger is not equipped with an external drive. To start operation, a complex method is required to cause such a pressure exchanger to start rotation of the rotor. The liquid stream is primarily responsible for the rotational movement of the rotor, passing through the flow openings in the housing from an oblique direction and striking the end faces of the rotor and the openings therein. During ongoing operation in a continuously operated system, an equilibrium state will develop in the pressure exchanger, so that the rotor rotates at an approximately constant rotational speed. Disadvantages of this design include a restricted operating range and mixing of the two liquids, which are found alternately in the rotor channels during operation.
U.S. Pat. No. 3,431,747 A and U.S. Pat. No. 6,537,035 B2 describe pressure exchangers in which the movement of the rotor is started by an external drive, and the rotor channels are constructed as bores with a ball arranged in each bore. This ball serves to separate the liquids flowing alternately into the rotor channels with a high pressure or a low pressure and to prevent mixing of the liquids in the bores. However, the disadvantages of this design include the arrangement, sealing and design of the ball, which acts as a separating element, and the respective seating. In addition, a complex high-pressure seal is required as a shaft seal in the area of a shaft bushing for the external drive.
It is an object of the present invention to provide an improved rotating pressure exchanger.
Another object of the invention is to provide a pressure exchanger in which reduced mixing losses occur during a pressure exchange.
A further object of the invention is to provide a rotating pressure exchanger rotor channel configuration which generates a force for driving the rotor.
These and other objects are achieved in accordance with the present invention by providing a pressure exchanger for transferring pressure energy from a high pressure liquid of a first liquid system to a low pressure liquid of a second liquid system, comprising a housing with inlet and outlet connection openings for each liquid and a rotor arranged in the housing to rotate about a longitudinal axis; the rotor having a plurality of continuous rotor channels having openings on each rotor end face arranged around the longitudinal axis of the rotor with the rotor channels communicating with the connection openings of the housing via flow openings formed in the housing such that during the rotation of the rotor the rotor channels alternately carry high pressure liquid and low pressure liquid from the respective first and second liquid systems, wherein oncoming liquid flow to the rotor through the flow openings formed in the housing in the rotating relative system of the rotor establishes a circumferential force component that drives the rotor, and wherein a flow guiding shape in the form of a channel contour that deflects the rotor channel flow is arranged in the inlet area of the rotor channels starting at or downstream from the channel openings.
In accordance with the invention, a flow guiding shape in the form of a channel contour that deflects the rotor channel flow is provided in the rotor channels, starting from or downstream from the openings. This flow guiding shape ensures impact-free oncoming flow to the rotor channels. As a result of this, flows with a uniform velocity distribution over a channel cross section are established in the rotor channels. Due to the uniform velocity distribution, development of flow components running across the channel flow in the channel cross section is prevented. Such flow components running transversely initiate development of eddies within a flowing column of liquid and running across the column, ultimately causing the mixing effect which occurs within the rotor channels. In systems, particularly desalination systems, in which production of a pure liquid is the goal, mixing is a deleterious aspect. The driving torque for the rotor is achieved by a direct transfer of momentum from the incoming flow and to a rotor end face through the impact-free flow deflection in the area of the channel openings. This is in complete contradiction with the approaches known in the past.
The risk of mixing in the rotor channels is further reduced if the shape provided in the inlet area of the rotor channels is constructed as a channel contour that makes the channel flow more uniformly. As a result, a velocity profile having an approximately homogeneous velocity field is established in 20-30% of the total length of a tube channel within a rotor channel downstream from the inlet area.
With the rotor channels, the inlet openings and/or the channel beginnings downstream from them have a shape that equalizes the flows in the rotor channels. This also yields a uniform velocity profile in the rotor channels, so that mixing of the two different pressure exchanging liquids in the rotor channels is minimized.
In the design stage for inlets into the rotor channels, the flow ratios are based on velocity triangle diagrams in which the circumferential component cu generates a driving torque for the rotor as a momentum force. This circumferential component is designed to be larger than the circumferential velocity U of the rotor. The rotor inlet edges formed between the openings of the rotor channels with the wall surfaces which follow in the direction of flow are constructed so that the resulting relative flow of the rotor is received without impact by the rotor channels and is deflected in the direction of the rotor channel length.
Such a design of the inlet of the rotor channels also includes the advantage that when there is a change in volume flow, the triangle diagram of the velocity at the inlet of the rotor channels undergoes an affine change, i.e., the circumferential component cu changes to the same extent as the oncoming flow velocity c of the liquid. Thus the driving torque acting on the rotor also increases, leading to an increase in the rotor rpm. With an increase in rotor rpm, the frictional moment acting on the rotor and having a retarding effect also increases. Due to the linear relationship between the driving torque MI which increases with an increase in the circumferential component cu and the frictional moment MR which increases in proportion to the rotational speed, the circumferential velocity of the rotor is always established so that the triangle diagrams of the velocity conditions which prevail at the rotor inlet are similar for all volume flows. There is thus a self-regulating effect which guarantees the condition of impact-free oncoming flow for each volume flow established. The rotational speed of the rotor is thus corrected based on the congruent velocity triangle diagrams and an impact-free oncoming flow of the rotor channels for volume flows of the main flows that are altered due to system conditions.
According to another embodiment, a rotor is constructed in multiple parts, whereby a rotor part having straight rotor channels on its end faces is provided with one or two incoming flow plates, and inlet openings and/or downstream channel beginnings which make the channel flows uniform are arranged in the incoming flow plates.
The invention will be described in further detail hereinafter with reference to illustrative preferred embodiments shown in the accompanying drawing figures, in which:
Because of the relative oncoming flow angle β, which is different from zero, the oncoming flow of the rotor channels 2 in the relative system is not free of impact. Consequently, separations 6 in the form of eddies are constantly developing in the openings 5 in the rotor channels 2 and as a result an irregular velocity profile 7 is established within the flow in the remaining path of the rotor channels 2. These irregular velocity profiles 7 lead to the mixing problems associated with pressure exchangers known previously.
As the developed view of a new rotor form,
In
Due to the linear relationship between the circumferential component cu and thus the difference Δcu=cu−U, and the driving angular momentum MI according to the equation
MI˜Δcu·cx (1)
and the linear relationship between the friction torque MR braking the rotor 1 with the rotor circumferential velocity U according to the equation
MR˜ν·U (2)
where ν represents the dynamic viscosity, the rotor rpm in this inlet design of a rotor channel form is always established as a function of the volume flow, so that the state of impact-free oncoming flow remains guaranteed for each operating point.
In similar vein,
The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to be limiting. Since modifications of the described embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed broadly to include all variations within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 038 439 | Aug 2004 | DE | national |
This application is a continuation of international patent application no. PCT/EP2005/007644, filed Jul. 14, 2005 designating the United States of America, and published in German on Feb. 16, 2006 as WO 2006/015681, the entire disclosure of which is incorporated herein by reference. Priority is claimed based on Federal Republic of Germany patent application no. DE 10 2004 038 439.8, filed Aug. 7, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2399394 | Claude Seippel | Apr 1946 | A |
2867981 | Berchtold | Jan 1959 | A |
3431747 | Hasheml et al. | Mar 1969 | A |
4887942 | Hauge | Dec 1989 | A |
4900222 | Meng et al. | Feb 1990 | A |
5338158 | Hauge | Aug 1994 | A |
5988993 | Hauge | Nov 1999 | A |
6537035 | Shumway | Mar 2003 | B2 |
6540487 | Polizos et al. | Apr 2003 | B2 |
Number | Date | Country |
---|---|---|
344872 | Feb 1960 | CH |
803659 | Oct 1958 | GB |
921686 | Mar 1963 | GB |
WO 9106781 | May 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20070212231 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2005/007644 | Jul 2005 | US |
Child | 11703226 | US |