A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present invention generally relates to a light emitting device display techniques, and more particularly, to a technique for driving light emitting elements that uses a feedback architecture during programming to compensate for instability and non-uniformity of the pixels.
Recently active-matrix organic light-emitting diode (OLED) displays have become more attractive due to advantages over conventional liquid crystal flat displays. These advantages include the ability to fabricate OLED displays at a relatively low cost and high efficiency. Further the displays do not require backlighting and provide a wide viewing angle.
An active-matrix organic light-emitting diode (AMOLED) display compromises an array of rows and columns of pixels, each having an OLED and some active devices such as thin film transistors. Since OLEDs are current driven devices the pixel circuit of an AMOLED should be capable of providing an accurate and constant drive current to achieve a consistent and uniform luminance.
As disclosed in U.S. Pat. No. 5,748,160, a simple pixel circuit comprises two thin film transistors (TFTs) and an OLED. In this circuit, the OLED is connected to the drain terminal of a driving TFT and a gate terminal of the driving TFT is connected to a column line through a switching TFT. A storage capacitor connected between the gate terminal of the driving TFT and ground is used to maintain the voltage at the gate terminal of the driving TFT when the pixel circuit is disconnected from column line. For this circuit the current through OLED strongly depends on the characteristic parameters of the driving TFT. Since the characteristic parameters of a TFT, particularly, the threshold voltage under bias stress, vary by time, and such changes may differ from pixel to pixel, the induced image distortion may be unacceptably high.
One of the methods that has been employed to make the current driving circuit less sensitive to the shift in the threshold voltage is programming the pixel with current instead of voltage. In this method, the OLED current is less dependent on the voltage-current characteristics of driving transistors. Implementations of current programmed pixel circuits for OLEDs have been disclosed e. g. Yi HE et al.,“Current Source a-Si: H Thin-Film Transistor Circuit for Active Matrix Organic Light-Emitting Displays”, IEEE Electro Device Letters, Vol. 21, No. 12, p 590-592, December 2000). A drawback of the current programming method is that it is slow, particularly for low programming current levels, due to the large line capacitance. As a result, voltage programming methods are desirable considering their speed. This is particularly true for large area TVs and displays.
Another method to make the drive current less sensitive to transistor parameters is to use current feedback. United States patent application 20020101172A1 provides a driving system with current feedback. An external current comparator compares the pixel current with a reference current and generates an appropriate signal to control the pixel current. One drawback of the disclosed method is that the control signal is a current, Which can limit the programming speed. Another drawback of the method is that the anode and cathode electrode of each OLED have to be patterned, which creates reliability concerns in the currently used OLED fabrication process.
Luminance feedback is another method that has been used to stabilize OLED luminance. As described in U.S. patent application 20030151569 feedback readout circuits responsive to the feedback signal representing the light output of the OLED can be used to provide brightness control. A drawback of the disclosed method is that every pixel requires a photo-sensor that is optically coupled to the OLED. This results in integration issues. Another drawback is that the low level of the feedback signal generated by a photo-sensor may lead to the poor signal-noise ratio, thereby narrowing the dynamic range of the system.
The present invention provides several driving circuits having a feedback control-system architecture that can be used for driving a column of the light emitting devices and are suitable for use in SMOLED displays. In the present invention, a feedback voltage is generated by an on-pixel feedback circuit or element. This voltage is used to adjust the programming voltage of the pixel.
According to an aspect of the invention each pixel in the column is connected to the feedback-type control unit via signal line and feedback lines, and receives a scanning clock signal via select line connection terminal. The programming voltage applied to the pixel through the signal line sets the driving current through the light emitting element. The programming voltage can be accurately adjusted by an external control unit through the use of feedback voltage generated by the on-pixel feedback circuit. The feedback voltage is proportional to the driving current of the light emitting element and is used to set the programming voltage so as to achieve the desired driving current despite presence of any instability (shift in characteristics of transistors and light emitting element) and non-uniformity across pixels
The column control unit may be connected to the block of reference elements formed on the display substrate in order to correct an error in the output current level caused by inaccuracy of the pixel components or temperature drift. The block of reference elements may also include a photo-sensor optically coupled to the light emitting element in order to provide a luminance feedback compensation for brightness variations induced by instability of organic material or temperature changes.
According to another aspect of the invention a pixel circuit for use in a display is provided. The display comprising a plurality of pixels with each pixel having a select line, a signal line, a feedback line. The pixel circuit comprising a light emitting element, a drive part for providing a drive current to the light emitting element, the drive part having a storage capacitor and a switch use transistor having a gate terminal connected to the select line, and a first terminal connected to the signal line, and a second terminal, and an on-pixel feedback element for generating a feedback voltage representing a drive current provided to the light emitting element, the feedback signal being provided to the feedback line.
According to another aspect of the invention a pixel circuit for use in a display is provided. The display comprising a plurality of pixels with each pixel having a first select line, a second select line, a signal line, a feedback line. The pixel circuit comprising a light emitting element, a drive part for providing a drive current to the light emitting element, the drive part comprising a storage capacitor, a switch use transistor having a gate, terminal connected to the first select line, a first terminal connected to the signal line and a second terminal, a drive use transistor having a gate terminal connected to the second terminal of the switch use transistor, a first terminal and a second terminal connected to the light emitting element, and an on-pixel feedback circuit for generating a feedback voltage representing a drive current provided to the light emitting element. The feedback circuit comprising a resistor connected between the second terminal of said drive use transistor and a potential, and a feedback transistor having a gate connected to the second select line, a first terminal connected to the first terminal of the drive use transistor and a second terminal connected to the feedback line.
According to another aspect of the invention a pixel circuit for use in a display is provided. The display comprising a plurality of pixels with each pixel having a select line, a signal line, a feedback line. The pixel circuit comprising a light emitting element, a drive part for providing a drive current to the light emitting element, the drive part comprising, a storage capacitor, a switch use transistor having a gate terminal connected to the select line, a first terminal connected to the signal line and a second terminal, a drive use transistor having a gate terminal connected to the second terminal of the switch use transistor, a first terminal and a second terminal connected to the light emitting element, and an on-pixel feedback circuit for generating a feedback voltage representing a drive current provided to the light emitting element. The feedback circuit comprising a resistor connected between the second terminal of said drive use transistor and a potential, and a feedback transistor having a gate connected to the select line, a first terminal connected to the first terminal of the drive use transistor and a second terminal connected to the feedback line.
According to another aspect of the invention a display device is provided. The display device comprising a select line, signal line to which a voltage signal in accordance with both brightness and feedback information is supplied, a feedback line to which a feedback voltage signal in accordance with current level of drive current is supplied, a plurality of pixels forming an array of pixels, each pixel of the plurality formed on a substrate at an intersecting portion of said scanning line and said signal and feedback lines, each pixel comprising a light emitting element, a current driving circuit having a storage capacitor and a switch use transistor, and a feedback circuit to provide feedback signals representing a current output of said current driving circuit, a display column control circuit for receiving input signals, adjusting the input signals using a reference circuit formed on the substrate at each column, and modifying the input signals in response to the feedback signals from pixels in the column to produce a desired brightness level of said light emitting element in a selected pixel, and a selecting line drive circuit for successively activating selecting lines.
According to another aspect of the invention a method of driving a plurality of light emitting elements arranged in a column at a desired brightness is provided. The method comprising the steps of selecting one pixel of a plurality of pixels in the column, establishing the desired brightness of a reference light emitting element by adjusting a reference current flowing through the light emitting element in response to a photocurrent from a photo-sensor that is optically coupled with the reference light emitting element, converting the reference current into a corresponding voltage level, transmitting the voltage level to the selected pixel, converting the voltage level into a drive current and generating a feedback signal representing a drive current level, adjusting the voltage level in response to the feedback signal from the selected pixel to establish a drive current substantially equal to the reference current, storing the adjusted voltage level, and driving the light emitting element with the drive current in accordance with the adjusted voltage level to produce the desired brightness level in the pixel.
Advantages of the present invention include the ability to provide a stable current to the light emitting diode over time, thereby maintaining image quality. Moreover, the combination of the external current feedback for pixel programming and luminance feedback for data signal preprocessing provides brightness control and compensation despite instability and non-uniformity in pixels. The circuits occupy a small area and are voltage programmed with voltage feedback. The use of voltage for programming and feedback improves the programming speed, which is necessary for large area displays and TVs.
This summary of the invention does not necessarily describe all features of the invention.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
The present invention encompasses a technique for driving of columns of pixels where each pixel comprises a light emitting element, in particular, an organic light emitting diode (OLED).
The structure of a given pixel 11, according to an embodiment of the invention is shown in
The pixel drive circuit comprises three transistors 34,36 and 38, a resistor 32, a storage capacitor Cs and an OLED 31. The pixel drive circuit is connected to a select line, a feedback line, and a signal line. A power supply node having a positive potential Vdd and common ground are also shown.
Transistors 34,36 and 38 can be fabricated using amorphous silicon, poly silicon, appropriate organic semiconductors and NMOS or CMOS technologies. The on-pixel feedback circuit is consisted of a thin film resistor 32 that can be fabricated with any appropriate material and technology, which provides sufficient stability. For instance, in amorphous silicon technology the resistor 32 can be fabricated using N+ amorphous silicon or N+ microcrystalline silicon.
The drain terminal of driving transistor 36 is connected to the cathode of OLED 31. The source terminal of transistor 36 is connected to resistor 32 and the gate terminal is connected to the signal line through transistor 34. Resistor 32 is connected between the source terminal of transistor 36 and the common ground.
Transistors 34 and 38 are driving switch and feedback switch transistors, respectively. The gate terminals of transistors 34 and 38 are connected to the select line. The source terminal of transistor 34 is connected to the signal line and the drain terminal is connected to the gate terminal of transistor 36. The source terminal of transistor 38 is connected to the feedback line and the drain terminal is connected to resistor 32. All OLEDs of the different pixels have a common anode electrode, connected to the voltage supply node (Vdd). Storage capacitor Cs is connected between the gate terminal of transistor 36 and common ground. IL can be connected between gate and source terminals of transistor 36. For the latter, capacitor Cs can be implemented by the gate-source capacitance of transistor 36.
The external controlling unit 33 in its simplest form is a high-gain, low offset difference amplifier with a negative feedback connection.
During the writing mode, the select signal goes high, turning on transistors 34 and 38, As a result, the driving transistor 36, along with the external difference amplifier 33 and resistor 32 make a circuit with negative feedback. The difference in the voltage level between an input signal voltage and a voltage drop across the resistor 32 is amplified by the difference amplifier 33, adjusting the potential on the gate of transistor 36. After the initial transients the output current stabilizes and in the case of a high-gain feedback loop the current passing through the OLED 31 is:
During the hold mode, the select line goes low, so transistors 34 and 38 are turned off and the pixel is disconnected. Since the gate voltage of driving transistor 36 is stored in capacitor Cs, the drive current does not change during the hold mode.
In the configuration shown in
where Rr is the resistance of the reference resistor 42, and Rf is the resistance of the feedback resistor 32. The above equation indicates a considerable improvement in the accuracy of the programming current because of insensitivity of the resistance ratio to the temperature variations.
A current pixel drive circuit according to another embodiment of the invention and a section of the column driver circuitry are shown in
The anode of OLED 51 is connected to the source terminal of transistor 56. The feedback resistor 32 is connected between the drain terminal of transistor 56 and ground node. The voltage level of the select line during the writing mode should be high enough to guarantee that transistor 54 is in“on”state for the entire output current range. The feedback line in this configuration is connected to the non-inverting input of the difference amplifier 33 to provide a negative feedback.
In the pixel circuit shown in
In
During writing mode, the transistors 104 and 108 are in an“on”state, thus the transistor 106 alone with feedback resistor 32 and external control unit (the difference amplifier 33) form a feedback loop. The transistor 110 does not directly take part in the feedback loop, but since the transistors 110 and 106 have same gate-source voltage, the current, of the transistor 110 is proportional to the current of the transistor 106. The ratio of current through transistors 110 to 106 is determined by the aspect ratios of these transistors. In these circuits, the feedback resistor 32 and the OLED 31 of
Several methods have been used to reduce the charge injection and clock feed-through effects in integrated circuits. As the simplest approach, a dummy transistor that is driven by the inverse signal of the select line connected to the gate of driving transistor can reduce both charge injection and clock feed-through errors caused by the driving switch. The drain and source terminals of the dummy transistor are connected to the gate of the driving transistor.
A schematic diagram of a circuit according to another embodiment of the invention is shown in
Although the exemplary embodiments of the present invention are described in conjunctions with OLEDs, it is also contemplated other similar display elements such as a light emitting diode (LED) could be used in other embodiments.
The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2443206 | Sep 2003 | CA | national |
2472689 | Jun 2004 | CA | national |
This application is a U.S. continuation application of U.S. application Ser. No. 14/568,517, filed Dec. 12, 2014, now allowed, which is a continuation of U.S. application Ser. No. 14/046,480, filed Oct. 4, 2013, now U.S. Pat. No. 8,941,697, which is a continuation of U.S. application Ser. No. 13/113,651, filed May 23, 2011, now U.S. Pat. No. 8,553,018, which is a continuation of U.S. application Ser. No. 10/554,754, filed Oct. 28, 2005, now U.S. Pat. No. 7,978,187, which is a U.S. national phase of International Application No. PCT/CA2004/001742, filed Sep. 23, 2004, which claims the benefit of priority of Canadian Patent Application No. 2,472,689, filed Jun. 29, 2004, and Canadian Patent Application No. 2,443,206, filed Sep. 23, 2003, each of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3774055 | Bapat | Nov 1973 | A |
4090096 | Nagami | May 1978 | A |
4160934 | Kirsch | Jul 1979 | A |
4354162 | Wright | Oct 1982 | A |
4943956 | Noro | Jul 1990 | A |
4996523 | Bell | Feb 1991 | A |
5153420 | Hack | Oct 1992 | A |
5198803 | Shie | Mar 1993 | A |
5204661 | Hack | Apr 1993 | A |
5266515 | Robb | Nov 1993 | A |
5477858 | Norris | Dec 1995 | A |
5489918 | Mosier | Feb 1996 | A |
5498880 | Lee | Mar 1996 | A |
5557342 | Eto | Sep 1996 | A |
5572444 | Lentz | Nov 1996 | A |
5589847 | Lewis | Dec 1996 | A |
5619033 | Weisfield | Apr 1997 | A |
5648276 | Hara | Jul 1997 | A |
5670973 | Bassetti | Sep 1997 | A |
5684365 | Tang | Nov 1997 | A |
5691783 | Numao | Nov 1997 | A |
5714968 | Ikeda | Feb 1998 | A |
5723950 | Wei | Mar 1998 | A |
5744824 | Kousai | Apr 1998 | A |
5745660 | Kolpatzik | Apr 1998 | A |
5748160 | Shieh | May 1998 | A |
5815303 | Berlin | Sep 1998 | A |
5870071 | Kawahata | Feb 1999 | A |
5874803 | Garbuzov | Feb 1999 | A |
5880582 | Sawada | Mar 1999 | A |
5903248 | Irwin | May 1999 | A |
5917280 | Burrows | Jun 1999 | A |
5923794 | McGrath | Jul 1999 | A |
5945972 | Okumura | Aug 1999 | A |
5949398 | Kim | Sep 1999 | A |
5952789 | Stewart | Sep 1999 | A |
5952991 | Akiyama | Sep 1999 | A |
5982104 | Sasaki | Nov 1999 | A |
5990629 | Yamada | Nov 1999 | A |
6023259 | Howard | Feb 2000 | A |
6069365 | Chow | May 2000 | A |
6091203 | Kawashima | Jul 2000 | A |
6097360 | Holloman | Aug 2000 | A |
6144222 | Ho | Nov 2000 | A |
6177915 | Beeteson | Jan 2001 | B1 |
6229506 | Dawson | May 2001 | B1 |
6229508 | Kane | May 2001 | B1 |
6246180 | Nishigaki | Jun 2001 | B1 |
6252248 | Sano | Jun 2001 | B1 |
6259424 | Kurogane | Jul 2001 | B1 |
6262589 | Tamukai | Jul 2001 | B1 |
6271825 | Greene | Aug 2001 | B1 |
6288696 | Holloman | Sep 2001 | B1 |
6304039 | Appelberg | Oct 2001 | B1 |
6307322 | Dawson | Oct 2001 | B1 |
6310962 | Chung | Oct 2001 | B1 |
6320325 | Cok | Nov 2001 | B1 |
6323631 | Juang | Nov 2001 | B1 |
6329971 | McKnight | Dec 2001 | B2 |
6355965 | He | Mar 2002 | B1 |
6356029 | Hunter | Mar 2002 | B1 |
6373454 | Knapp | Apr 2002 | B1 |
6392617 | Gleason | May 2002 | B1 |
6404139 | Sasaki et al. | Jun 2002 | B1 |
6414661 | Shen | Jul 2002 | B1 |
6417825 | Stewart | Jul 2002 | B1 |
6433488 | Bu | Aug 2002 | B1 |
6437106 | Stoner | Aug 2002 | B1 |
6441560 | Hunter | Aug 2002 | B1 |
6445369 | Yang | Sep 2002 | B1 |
6475845 | Kimura | Nov 2002 | B2 |
6501098 | Yamazaki | Dec 2002 | B2 |
6501466 | Yamagishi | Dec 2002 | B1 |
6518962 | Kimura | Feb 2003 | B2 |
6522315 | Ozawa | Feb 2003 | B2 |
6525683 | Gu | Feb 2003 | B1 |
6531827 | Kawashima | Mar 2003 | B2 |
6542138 | Shannon | Apr 2003 | B1 |
6555420 | Yamazaki | Apr 2003 | B1 |
6577302 | Hunter | Jun 2003 | B2 |
6580408 | Bae | Jun 2003 | B1 |
6580454 | Perner | Jun 2003 | B1 |
6580657 | Sanford | Jun 2003 | B2 |
6583398 | Harkin | Jun 2003 | B2 |
6583775 | Sekiya | Jun 2003 | B1 |
6594606 | Everitt | Jul 2003 | B2 |
6618030 | Kane | Sep 2003 | B2 |
6639244 | Yamazaki | Oct 2003 | B1 |
6663560 | MacAulay | Dec 2003 | B2 |
6668645 | Gilmour | Dec 2003 | B1 |
6677713 | Sung | Jan 2004 | B1 |
6680580 | Sung | Jan 2004 | B1 |
6687266 | Ma | Feb 2004 | B1 |
6690000 | Muramatsu | Feb 2004 | B1 |
6690344 | Takeuchi | Feb 2004 | B1 |
6693388 | Oomura | Feb 2004 | B2 |
6693610 | Shannon | Feb 2004 | B2 |
6697057 | Koyama | Feb 2004 | B2 |
6697316 | Burr | Feb 2004 | B2 |
6714178 | Koyama | Mar 2004 | B2 |
6720942 | Lee | Apr 2004 | B2 |
6724151 | Yoo | Apr 2004 | B2 |
6734636 | Sanford | May 2004 | B2 |
6738034 | Kaneko | May 2004 | B2 |
6738035 | Fan | May 2004 | B1 |
6753655 | Shih | Jun 2004 | B2 |
6753834 | Mikami | Jun 2004 | B2 |
6756952 | Decaux | Jun 2004 | B1 |
6756958 | Furuhashi | Jun 2004 | B2 |
6771028 | Winters | Aug 2004 | B1 |
6777712 | Sanford | Aug 2004 | B2 |
6777888 | Kondo | Aug 2004 | B2 |
6781567 | Kimura | Aug 2004 | B2 |
6806497 | Jo | Oct 2004 | B2 |
6806638 | Lih et al. | Oct 2004 | B2 |
6806857 | Sempel | Oct 2004 | B2 |
6809706 | Shimoda | Oct 2004 | B2 |
6815975 | Nara | Nov 2004 | B2 |
6828950 | Koyama | Dec 2004 | B2 |
6853371 | Miyajima | Feb 2005 | B2 |
6859193 | Yumoto | Feb 2005 | B1 |
6873117 | Ishizuka | Mar 2005 | B2 |
6876346 | Anzai | Apr 2005 | B2 |
6885356 | Hashimoto | Apr 2005 | B2 |
6900485 | Lee | May 2005 | B2 |
6903734 | Eu | Jun 2005 | B2 |
6909243 | Inukai | Jun 2005 | B2 |
6909419 | Zavracky | Jun 2005 | B2 |
6911960 | Yokoyama | Jun 2005 | B1 |
6911964 | Lee | Jun 2005 | B2 |
6914448 | Jinno | Jul 2005 | B2 |
6919871 | Kwon | Jul 2005 | B2 |
6924602 | Komiya | Aug 2005 | B2 |
6937215 | Lo | Aug 2005 | B2 |
6937220 | Kitaura | Aug 2005 | B2 |
6940214 | Komiya | Sep 2005 | B1 |
6943500 | LeChevalier | Sep 2005 | B2 |
6947022 | McCartney | Sep 2005 | B2 |
6954194 | Matsumoto | Oct 2005 | B2 |
6956547 | Bae | Oct 2005 | B2 |
6975142 | Azami | Dec 2005 | B2 |
6975332 | Arnold | Dec 2005 | B2 |
6977685 | Acosta-Serafini | Dec 2005 | B1 |
6995510 | Murakami | Feb 2006 | B2 |
6995519 | Arnold | Feb 2006 | B2 |
7023408 | Chen | Apr 2006 | B2 |
7027015 | Booth, Jr. | Apr 2006 | B2 |
7027078 | Reihl | Apr 2006 | B2 |
7034793 | Sekiya | Apr 2006 | B2 |
7038392 | Libsch | May 2006 | B2 |
7057359 | Hung | Jun 2006 | B2 |
7061451 | Kimura | Jun 2006 | B2 |
7064733 | Cok | Jun 2006 | B2 |
7071932 | Libsch | Jul 2006 | B2 |
7088051 | Cok | Aug 2006 | B1 |
7088052 | Kimura | Aug 2006 | B2 |
7102378 | Kuo | Sep 2006 | B2 |
7106285 | Naugler | Sep 2006 | B2 |
7112820 | Change | Sep 2006 | B2 |
7116058 | Lo | Oct 2006 | B2 |
7119493 | Fryer | Oct 2006 | B2 |
7122835 | Ikeda | Oct 2006 | B1 |
7127380 | Iverson | Oct 2006 | B1 |
7129914 | Knapp | Oct 2006 | B2 |
7161566 | Cok | Jan 2007 | B2 |
7164417 | Cok | Jan 2007 | B2 |
7193589 | Yoshida | Mar 2007 | B2 |
7224332 | Cok | May 2007 | B2 |
7227519 | Kawase | Jun 2007 | B1 |
7239309 | Smith | Jul 2007 | B2 |
7245277 | Ishizuka | Jul 2007 | B2 |
7248236 | Nathan | Jul 2007 | B2 |
7262753 | Tanghe | Aug 2007 | B2 |
7274363 | Ishizuka | Sep 2007 | B2 |
7310092 | Imamura | Dec 2007 | B2 |
7315295 | Kimura | Jan 2008 | B2 |
7321348 | Cok | Jan 2008 | B2 |
7339560 | Sun | Mar 2008 | B2 |
7355574 | Leon | Apr 2008 | B1 |
7358941 | Ono | Apr 2008 | B2 |
7368868 | Sakamoto | May 2008 | B2 |
7397485 | Miller | Jul 2008 | B2 |
7411571 | Huh | Aug 2008 | B2 |
7414600 | Nathan | Aug 2008 | B2 |
7423617 | Giraldo | Sep 2008 | B2 |
7453054 | Lee | Nov 2008 | B2 |
7456812 | Smith | Nov 2008 | B2 |
7474283 | Fish | Jan 2009 | B2 |
7474285 | Kimura | Jan 2009 | B2 |
7502000 | Yuki | Mar 2009 | B2 |
7528812 | Tsuge | May 2009 | B2 |
7535449 | Miyazawa | May 2009 | B2 |
7554512 | Steer | Jun 2009 | B2 |
7569849 | Nathan | Aug 2009 | B2 |
7576718 | Miyazawa | Aug 2009 | B2 |
7580012 | Kim | Aug 2009 | B2 |
7609239 | Chang | Oct 2009 | B2 |
7619594 | Hu | Nov 2009 | B2 |
7619597 | Nathan | Nov 2009 | B2 |
7633470 | Kane | Dec 2009 | B2 |
7656370 | Schneider | Feb 2010 | B2 |
7675485 | Steer | Mar 2010 | B2 |
7791032 | Karim | Sep 2010 | B2 |
7800558 | Routley | Sep 2010 | B2 |
7834824 | Routley | Nov 2010 | B2 |
7847764 | Cok | Dec 2010 | B2 |
7859492 | Kohno | Dec 2010 | B2 |
7868859 | Tomida | Jan 2011 | B2 |
7876294 | Sasaki | Jan 2011 | B2 |
7924249 | Nathan | Apr 2011 | B2 |
7932883 | Klompenhouwer | Apr 2011 | B2 |
7969390 | Yoshida | Jun 2011 | B2 |
7978187 | Nathan | Jul 2011 | B2 |
7994712 | Sung | Aug 2011 | B2 |
8026876 | Nathan | Sep 2011 | B2 |
8049420 | Tamura | Nov 2011 | B2 |
8077123 | Naugler, Jr. | Dec 2011 | B2 |
8115707 | Nathan | Feb 2012 | B2 |
8208084 | Lin | Jun 2012 | B2 |
8223177 | Nathan | Jul 2012 | B2 |
8232939 | Nathan | Jul 2012 | B2 |
8259044 | Nathan | Sep 2012 | B2 |
8264431 | Bulovic | Sep 2012 | B2 |
8279143 | Nathan | Oct 2012 | B2 |
8339386 | Leon | Dec 2012 | B2 |
8441206 | Myers | May 2013 | B2 |
9129552 | Magno | Sep 2015 | B2 |
20010002703 | Koyama | Jun 2001 | A1 |
20010009283 | Arao | Jul 2001 | A1 |
20010020909 | Sakuragi | Sep 2001 | A1 |
20010024181 | Kubota | Sep 2001 | A1 |
20010024186 | Kane | Sep 2001 | A1 |
20010026257 | Kimura | Oct 2001 | A1 |
20010030323 | Ikeda | Oct 2001 | A1 |
20010035863 | Kimura | Nov 2001 | A1 |
20010038367 | Inukai | Nov 2001 | A1 |
20010040541 | Yoneda | Nov 2001 | A1 |
20010043173 | Troutman | Nov 2001 | A1 |
20010045929 | Prache | Nov 2001 | A1 |
20010052606 | Sempel | Dec 2001 | A1 |
20010052940 | Hagihara | Dec 2001 | A1 |
20020000576 | Inukai | Jan 2002 | A1 |
20020011796 | Koyama | Jan 2002 | A1 |
20020011799 | Kimura | Jan 2002 | A1 |
20020012057 | Kimura | Jan 2002 | A1 |
20020014851 | Tai | Feb 2002 | A1 |
20020018034 | Ohki | Feb 2002 | A1 |
20020030190 | Ohtani | Mar 2002 | A1 |
20020047565 | Nara | Apr 2002 | A1 |
20020052086 | Maeda | May 2002 | A1 |
20020067134 | Kawashima | Jun 2002 | A1 |
20020084463 | Sanford | Jul 2002 | A1 |
20020101152 | Kimura | Aug 2002 | A1 |
20020101172 | Bu | Aug 2002 | A1 |
20020105279 | Kimura | Aug 2002 | A1 |
20020117722 | Osada | Aug 2002 | A1 |
20020122308 | Ikeda | Sep 2002 | A1 |
20020158587 | Komiya | Oct 2002 | A1 |
20020158666 | Azami | Oct 2002 | A1 |
20020158823 | Zavracky | Oct 2002 | A1 |
20020167471 | Everitt | Nov 2002 | A1 |
20020167474 | Everitt | Nov 2002 | A1 |
20020180369 | Koyama | Dec 2002 | A1 |
20020180721 | Kimura | Dec 2002 | A1 |
20020181276 | Yamazaki | Dec 2002 | A1 |
20020186214 | Siwinski | Dec 2002 | A1 |
20020190924 | Asano | Dec 2002 | A1 |
20020190971 | Nakamura | Dec 2002 | A1 |
20020195967 | Kim | Dec 2002 | A1 |
20020195968 | Sanford | Dec 2002 | A1 |
20030020413 | Oomura | Jan 2003 | A1 |
20030030603 | Shimoda | Feb 2003 | A1 |
20030043088 | Booth | Mar 2003 | A1 |
20030057895 | Kimura | Mar 2003 | A1 |
20030058226 | Bertram | Mar 2003 | A1 |
20030062524 | Kimura | Apr 2003 | A1 |
20030063081 | Kimura | Apr 2003 | A1 |
20030071821 | Sundahl | Apr 2003 | A1 |
20030076048 | Rutherford | Apr 2003 | A1 |
20030090447 | Kimura | May 2003 | A1 |
20030090481 | Kimura | May 2003 | A1 |
20030107560 | Yumoto | Jun 2003 | A1 |
20030111966 | Mikami | Jun 2003 | A1 |
20030122745 | Miyazawa | Jul 2003 | A1 |
20030122813 | Ishizuki | Jul 2003 | A1 |
20030142088 | LeChevalier | Jul 2003 | A1 |
20030151569 | Lee | Aug 2003 | A1 |
20030156101 | Le Chevalier | Aug 2003 | A1 |
20030169241 | LeChevalier | Sep 2003 | A1 |
20030174152 | Noguchi | Sep 2003 | A1 |
20030179626 | Sanford | Sep 2003 | A1 |
20030185438 | Osawa | Oct 2003 | A1 |
20030197663 | Lee | Oct 2003 | A1 |
20030210256 | Mori | Nov 2003 | A1 |
20030214691 | Magno | Nov 2003 | A1 |
20030230141 | Gilmour | Dec 2003 | A1 |
20030230980 | Forrest | Dec 2003 | A1 |
20030231148 | Lin | Dec 2003 | A1 |
20040032382 | Cok | Feb 2004 | A1 |
20040041750 | Abe | Mar 2004 | A1 |
20040066357 | Kawasaki | Apr 2004 | A1 |
20040070557 | Asano | Apr 2004 | A1 |
20040070558 | Cok | Apr 2004 | A1 |
20040070565 | Nayar | Apr 2004 | A1 |
20040090186 | Yoshida | May 2004 | A1 |
20040090400 | Yoo | May 2004 | A1 |
20040095297 | Libsch | May 2004 | A1 |
20040100427 | Miyazawa | May 2004 | A1 |
20040108518 | Jo | Jun 2004 | A1 |
20040135749 | Kondakov | Jul 2004 | A1 |
20040140982 | Pate | Jul 2004 | A1 |
20040145547 | Oh | Jul 2004 | A1 |
20040150592 | Mizukoshi | Aug 2004 | A1 |
20040150594 | Koyama | Aug 2004 | A1 |
20040150595 | Kasai | Aug 2004 | A1 |
20040155841 | Kasai | Aug 2004 | A1 |
20040174347 | Sun | Sep 2004 | A1 |
20040174349 | Libsch | Sep 2004 | A1 |
20040174354 | Ono | Sep 2004 | A1 |
20040178743 | Miller | Sep 2004 | A1 |
20040183759 | Stevenson | Sep 2004 | A1 |
20040196275 | Hattori | Oct 2004 | A1 |
20040207615 | Yumoto | Oct 2004 | A1 |
20040227697 | Mori | Nov 2004 | A1 |
20040233125 | Tanghe | Nov 2004 | A1 |
20040239596 | Ono | Dec 2004 | A1 |
20040252089 | Ono | Dec 2004 | A1 |
20040257313 | Kawashima | Dec 2004 | A1 |
20040257353 | Imamura | Dec 2004 | A1 |
20040257355 | Naugler | Dec 2004 | A1 |
20040263437 | Hattori | Dec 2004 | A1 |
20040263444 | Kimura | Dec 2004 | A1 |
20040263445 | Inukai | Dec 2004 | A1 |
20040263541 | Takeuchi | Dec 2004 | A1 |
20050007355 | Miura | Jan 2005 | A1 |
20050007357 | Yamashita | Jan 2005 | A1 |
20050007392 | Kasai | Jan 2005 | A1 |
20050017650 | Fryer | Jan 2005 | A1 |
20050024081 | Kuo | Feb 2005 | A1 |
20050024393 | Kondo | Feb 2005 | A1 |
20050030267 | Tanghe | Feb 2005 | A1 |
20050057189 | Kimura | Mar 2005 | A1 |
20050057580 | Yamano | Mar 2005 | A1 |
20050067970 | Libsch | Mar 2005 | A1 |
20050067971 | Kane | Mar 2005 | A1 |
20050068270 | Awakura | Mar 2005 | A1 |
20050068275 | Kane | Mar 2005 | A1 |
20050073264 | Matsumoto | Apr 2005 | A1 |
20050083323 | Suzuki | Apr 2005 | A1 |
20050088103 | Kageyama | Apr 2005 | A1 |
20050110420 | Arnold | May 2005 | A1 |
20050110807 | Chang | May 2005 | A1 |
20050122294 | Ben-David | Jun 2005 | A1 |
20050140598 | Kim | Jun 2005 | A1 |
20050140610 | Smith | Jun 2005 | A1 |
20050145891 | Abe | Jul 2005 | A1 |
20050156830 | Tobita | Jul 2005 | A1 |
20050156831 | Yamazaki | Jul 2005 | A1 |
20050162079 | Sakamoto | Jul 2005 | A1 |
20050168416 | Hashimoto | Aug 2005 | A1 |
20050179626 | Yuki | Aug 2005 | A1 |
20050179628 | Kimura | Aug 2005 | A1 |
20050185200 | Tobol | Aug 2005 | A1 |
20050200575 | Kim | Sep 2005 | A1 |
20050206590 | Sasaki | Sep 2005 | A1 |
20050212787 | Noguchi | Sep 2005 | A1 |
20050219184 | Zehner | Oct 2005 | A1 |
20050225683 | Nozawa | Oct 2005 | A1 |
20050248515 | Naugler | Nov 2005 | A1 |
20050269959 | Uchino | Dec 2005 | A1 |
20050280615 | Cok | Dec 2005 | A1 |
20050280766 | Johnson | Dec 2005 | A1 |
20050285822 | Reddy | Dec 2005 | A1 |
20050285825 | Eom | Dec 2005 | A1 |
20060001613 | Routley | Jan 2006 | A1 |
20060007072 | Choi | Jan 2006 | A1 |
20060007206 | Reddy et al. | Jan 2006 | A1 |
20060007249 | Reddy | Jan 2006 | A1 |
20060012310 | Chen | Jan 2006 | A1 |
20060012311 | Ogawa | Jan 2006 | A1 |
20060015272 | Giraldo | Jan 2006 | A1 |
20060022305 | Yamashita | Feb 2006 | A1 |
20060027807 | Nathan | Feb 2006 | A1 |
20060030084 | Young | Feb 2006 | A1 |
20060038758 | Routley | Feb 2006 | A1 |
20060038762 | Chou | Feb 2006 | A1 |
20060044227 | Hadcock | Mar 2006 | A1 |
20060061248 | Cok | Mar 2006 | A1 |
20060066533 | Sato | Mar 2006 | A1 |
20060077134 | Hector et al. | Apr 2006 | A1 |
20060077135 | Cok | Apr 2006 | A1 |
20060077142 | Kwon | Apr 2006 | A1 |
20060082523 | Guo | Apr 2006 | A1 |
20060092185 | Jo | May 2006 | A1 |
20060097628 | Suh | May 2006 | A1 |
20060097631 | Lee | May 2006 | A1 |
20060125740 | Shirasaki et al. | Jun 2006 | A1 |
20060149493 | Sambandan | Jul 2006 | A1 |
20060170623 | Naugler, Jr. | Aug 2006 | A1 |
20060176250 | Nathan | Aug 2006 | A1 |
20060208961 | Nathan | Sep 2006 | A1 |
20060208971 | Deane | Sep 2006 | A1 |
20060214888 | Schneider | Sep 2006 | A1 |
20060231740 | Kasai | Oct 2006 | A1 |
20060232522 | Roy | Oct 2006 | A1 |
20060244697 | Lee | Nov 2006 | A1 |
20060256048 | Fish et al. | Nov 2006 | A1 |
20060261841 | Fish | Nov 2006 | A1 |
20060273997 | Nathan | Dec 2006 | A1 |
20060279481 | Haruna | Dec 2006 | A1 |
20060284801 | Yoon | Dec 2006 | A1 |
20060284802 | Kohno | Dec 2006 | A1 |
20060284895 | Marcu | Dec 2006 | A1 |
20060290614 | Nathan | Dec 2006 | A1 |
20060290618 | Goto | Dec 2006 | A1 |
20070001937 | Park | Jan 2007 | A1 |
20070001939 | Hashimoto | Jan 2007 | A1 |
20070008251 | Kohno | Jan 2007 | A1 |
20070008268 | Park | Jan 2007 | A1 |
20070008297 | Bassetti | Jan 2007 | A1 |
20070057873 | Uchino | Mar 2007 | A1 |
20070057874 | Le Roy | Mar 2007 | A1 |
20070069998 | Naugler | Mar 2007 | A1 |
20070075727 | Nakano | Apr 2007 | A1 |
20070080905 | Takahara | Apr 2007 | A1 |
20070080906 | Tanabe | Apr 2007 | A1 |
20070080908 | Nathan | Apr 2007 | A1 |
20070097038 | Yamazaki | May 2007 | A1 |
20070097041 | Park | May 2007 | A1 |
20070103411 | Cok et al. | May 2007 | A1 |
20070103419 | Uchino | May 2007 | A1 |
20070115221 | Buchhauser | May 2007 | A1 |
20070126672 | Tada et al. | Jun 2007 | A1 |
20070164664 | Ludwicki | Jul 2007 | A1 |
20070164938 | Shin | Jul 2007 | A1 |
20070182671 | Nathan | Aug 2007 | A1 |
20070236134 | Ho | Oct 2007 | A1 |
20070236440 | Wacyk | Oct 2007 | A1 |
20070236517 | Kimpe | Oct 2007 | A1 |
20070241999 | Lin | Oct 2007 | A1 |
20070273294 | Nagayama | Nov 2007 | A1 |
20070285359 | Ono | Dec 2007 | A1 |
20070290957 | Cok | Dec 2007 | A1 |
20070290958 | Cok | Dec 2007 | A1 |
20070296672 | Kim | Dec 2007 | A1 |
20080001525 | Chao | Jan 2008 | A1 |
20080001544 | Murakami | Jan 2008 | A1 |
20080030518 | Higgins | Feb 2008 | A1 |
20080036706 | Kitazawa | Feb 2008 | A1 |
20080036708 | Shirasaki | Feb 2008 | A1 |
20080042942 | Takahashi | Feb 2008 | A1 |
20080042948 | Yamashita | Feb 2008 | A1 |
20080048951 | Naugler, Jr. | Feb 2008 | A1 |
20080055209 | Cok | Mar 2008 | A1 |
20080055211 | Ogawa | Mar 2008 | A1 |
20080074413 | Ogura | Mar 2008 | A1 |
20080088549 | Nathan | Apr 2008 | A1 |
20080088648 | Nathan | Apr 2008 | A1 |
20080111766 | Uchino | May 2008 | A1 |
20080116787 | Hsu | May 2008 | A1 |
20080117144 | Nakano et al. | May 2008 | A1 |
20080136770 | Peker et al. | Jun 2008 | A1 |
20080150845 | Ishii | Jun 2008 | A1 |
20080150847 | Kim | Jun 2008 | A1 |
20080158115 | Cordes | Jul 2008 | A1 |
20080158648 | Cummings | Jul 2008 | A1 |
20080191976 | Nathan | Aug 2008 | A1 |
20080198103 | Toyomura | Aug 2008 | A1 |
20080211749 | Weitbruch | Sep 2008 | A1 |
20080218451 | Miyamoto | Sep 2008 | A1 |
20080231558 | Naugler | Sep 2008 | A1 |
20080231562 | Kwon | Sep 2008 | A1 |
20080231625 | Minami | Sep 2008 | A1 |
20080246713 | Lee | Oct 2008 | A1 |
20080252223 | Toyoda | Oct 2008 | A1 |
20080252571 | Hente | Oct 2008 | A1 |
20080259020 | Fisekovic | Oct 2008 | A1 |
20080290805 | Yamada | Nov 2008 | A1 |
20080297055 | Miyake | Dec 2008 | A1 |
20090058772 | Lee | Mar 2009 | A1 |
20090109142 | Takahara | Apr 2009 | A1 |
20090121994 | Miyata | May 2009 | A1 |
20090146926 | Sung | Jun 2009 | A1 |
20090160743 | Tomida | Jun 2009 | A1 |
20090174628 | Wang | Jul 2009 | A1 |
20090184901 | Kwon | Jul 2009 | A1 |
20090195483 | Naugler, Jr. | Aug 2009 | A1 |
20090201281 | Routley | Aug 2009 | A1 |
20090206764 | Schemmann | Aug 2009 | A1 |
20090207160 | Shirasaki et al. | Aug 2009 | A1 |
20090213046 | Nam | Aug 2009 | A1 |
20090244046 | Seto | Oct 2009 | A1 |
20090262047 | Yamashita | Oct 2009 | A1 |
20100004891 | Ahlers | Jan 2010 | A1 |
20100026725 | Smith | Feb 2010 | A1 |
20100039422 | Seto | Feb 2010 | A1 |
20100039458 | Nathan | Feb 2010 | A1 |
20100045646 | Kishi | Feb 2010 | A1 |
20100045650 | Fish et al. | Feb 2010 | A1 |
20100060911 | Marcu | Mar 2010 | A1 |
20100079419 | Shibusawa | Apr 2010 | A1 |
20100085282 | Yu | Apr 2010 | A1 |
20100103160 | Jeon | Apr 2010 | A1 |
20100134469 | Ogura et al. | Jun 2010 | A1 |
20100134475 | Ogura et al. | Jun 2010 | A1 |
20100165002 | Ahn | Jul 2010 | A1 |
20100207960 | Kimpe | Aug 2010 | A1 |
20100225630 | Levey | Sep 2010 | A1 |
20100251295 | Amento | Sep 2010 | A1 |
20100277400 | Jeong | Nov 2010 | A1 |
20100315319 | Cok | Dec 2010 | A1 |
20110050870 | Hanari | Mar 2011 | A1 |
20110063197 | Chung | Mar 2011 | A1 |
20110069051 | Nakamura | Mar 2011 | A1 |
20110069089 | Kopf | Mar 2011 | A1 |
20110069096 | Li | Mar 2011 | A1 |
20110074750 | Leon | Mar 2011 | A1 |
20110074762 | Shirasaki et al. | Mar 2011 | A1 |
20110149166 | Botzas | Jun 2011 | A1 |
20110169798 | Lee | Jul 2011 | A1 |
20110175895 | Hayakawa | Jul 2011 | A1 |
20110181630 | Smith | Jul 2011 | A1 |
20110199395 | Nathan | Aug 2011 | A1 |
20110227964 | Chaji | Sep 2011 | A1 |
20110242074 | Bert et al. | Oct 2011 | A1 |
20110273399 | Lee | Nov 2011 | A1 |
20110292006 | Kim | Dec 2011 | A1 |
20110293480 | Mueller | Dec 2011 | A1 |
20120056558 | Toshiya | Mar 2012 | A1 |
20120062565 | Fuchs | Mar 2012 | A1 |
20120262184 | Shen | Oct 2012 | A1 |
20120299970 | Bae | Nov 2012 | A1 |
20120299978 | Chaji | Nov 2012 | A1 |
20130057595 | Nathan | Mar 2013 | A1 |
20130112960 | Chaji | May 2013 | A1 |
20130135272 | Park | May 2013 | A1 |
20130162617 | Yoon | Jun 2013 | A1 |
20130201223 | Li et al. | Aug 2013 | A1 |
20130309821 | Yoo | Nov 2013 | A1 |
20130321671 | Cote | Dec 2013 | A1 |
20140015824 | Chaji et al. | Jan 2014 | A1 |
20140043316 | Chaji et al. | Feb 2014 | A1 |
20140055500 | Lai | Feb 2014 | A1 |
20140111567 | Nathan et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
2 109 951 | Nov 1992 | CA |
2 249 592 | Jul 1998 | CA |
2 368 386 | Sep 1999 | CA |
2 242 720 | Jan 2000 | CA |
2 354 018 | Jun 2000 | CA |
2 432 530 | Jul 2002 | CA |
2 436 451 | Aug 2002 | CA |
2 438 577 | Aug 2002 | CA |
2 463 653 | Jan 2004 | CA |
2 498 136 | Mar 2004 | CA |
2 522 396 | Nov 2004 | CA |
2 443 206 | Mar 2005 | CA |
2 472 671 | Dec 2005 | CA |
2 567 076 | Jan 2006 | CA |
2 526 782 | Apr 2006 | CA |
2 541 531 | Jul 2006 | CA |
2 550 102 | Apr 2008 | CA |
2 773 699 | Oct 2013 | CA |
1381032 | Nov 2002 | CN |
1448908 | Oct 2003 | CN |
1682267 | Oct 2005 | CN |
1760945 | Apr 2006 | CN |
101449311 | Jun 2009 | CN |
102656621 | Sep 2012 | CN |
0 158 366 | Oct 1985 | EP |
1 028 471 | Aug 2000 | EP |
1 111 577 | Jun 2001 | EP |
1 130 565 | Sep 2001 | EP |
1 194 013 | Apr 2002 | EP |
1 335 430 | Aug 2003 | EP |
1 372 136 | Dec 2003 | EP |
1381019 | Jan 2004 | EP |
1 418 566 | May 2004 | EP |
1 429 312 | Jun 2004 | EP |
145 0341 | Aug 2004 | EP |
1 465 143 | Oct 2004 | EP |
1 469 448 | Oct 2004 | EP |
1 521 203 | Apr 2005 | EP |
1 594 347 | Nov 2005 | EP |
1 784 055 | May 2007 | EP |
1854338 | Nov 2007 | EP |
1 879 169 | Jan 2008 | EP |
1 879 172 | Jan 2008 | EP |
2395499 | Dec 2011 | EP |
2 389 951 | Dec 2003 | GB |
1272298 | Oct 1989 | JP |
4-042619 | Feb 1992 | JP |
6-314977 | Nov 1994 | JP |
8-340243 | Dec 1996 | JP |
09-090405 | Apr 1997 | JP |
10-254410 | Sep 1998 | JP |
11-202295 | Jul 1999 | JP |
11-219146 | Aug 1999 | JP |
11 231805 | Aug 1999 | JP |
11-282419 | Oct 1999 | JP |
2000-056847 | Feb 2000 | JP |
2000-81607 | Mar 2000 | JP |
2001-134217 | May 2001 | JP |
2001-195014 | Jul 2001 | JP |
2002-055654 | Feb 2002 | JP |
2002-91376 | Mar 2002 | JP |
2002-514320 | May 2002 | JP |
2002-229513 | Aug 2002 | JP |
2002-278513 | Sep 2002 | JP |
2002-333862 | Nov 2002 | JP |
2003-076331 | Mar 2003 | JP |
2003-124519 | Apr 2003 | JP |
2003-177709 | Jun 2003 | JP |
2003-271095 | Sep 2003 | JP |
2003-308046 | Oct 2003 | JP |
2003-317944 | Nov 2003 | JP |
2004-004675 | Jan 2004 | JP |
2004-045648 | Feb 2004 | JP |
2004-145197 | May 2004 | JP |
2004-287345 | Oct 2004 | JP |
2005-057217 | Mar 2005 | JP |
2007-065015 | Mar 2007 | JP |
2007-155754 | Jun 2007 | JP |
2008-102335 | May 2008 | JP |
2003-195813 | Jul 2013 | JP |
2004-0100887 | Dec 2004 | KR |
342486 | Oct 1998 | TW |
473622 | Jan 2002 | TW |
485337 | May 2002 | TW |
502233 | Sep 2002 | TW |
538650 | Jun 2003 | TW |
1221268 | Sep 2004 | TW |
1223092 | Nov 2004 | TW |
200727247 | Jul 2007 | TW |
WO 9848403 | Oct 1998 | WO |
WO 9948079 | Sep 1999 | WO |
WO 0106484 | Jan 2001 | WO |
WO 0127910 | Apr 2001 | WO |
WO 0163587 | Aug 2001 | WO |
WO 02067327 | Aug 2002 | WO |
WO 03001496 | Jan 2003 | WO |
WO 03034389 | Apr 2003 | WO |
WO 03058594 | Jul 2003 | WO |
WO 03063124 | Jul 2003 | WO |
WO 03077231 | Sep 2003 | WO |
WO 2004003877 | Jan 2004 | WO |
WO 2004025615 | Mar 2004 | WO |
WO 2004034364 | Apr 2004 | WO |
WO 2004047058 | Jun 2004 | WO |
WO 2004104975 | Dec 2004 | WO |
WO 2005022498 | Mar 2005 | WO |
WO 2005022500 | Mar 2005 | WO |
WO 2005029455 | Mar 2005 | WO |
WO 2005029456 | Mar 2005 | WO |
WO 2005055185 | Jun 2005 | WO |
WO 2006000101 | Jan 2006 | WO |
WO 2006053424 | May 2006 | WO |
WO 2006063448 | Jun 2006 | WO |
WO 2006084360 | Aug 2006 | WO |
WO 2007003877 | Jan 2007 | WO |
WO 2007079572 | Jul 2007 | WO |
WO 2007120849 | Oct 2007 | WO |
WO 2009048618 | Apr 2009 | WO |
WO 2009055920 | May 2009 | WO |
WO 2010023270 | Mar 2010 | WO |
WO 2010146707 | Dec 2010 | WO |
WO 2011041224 | Apr 2011 | WO |
WO 2011064761 | Jun 2011 | WO |
WO 2011067729 | Jun 2011 | WO |
WO 2012160424 | Nov 2012 | WO |
WO 2012160471 | Nov 2012 | WO |
WO 2012164474 | Dec 2012 | WO |
WO 2012164475 | Dec 2012 | WO |
Entry |
---|
Ahnood : “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009. |
Alexander : “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages). |
Alexander : “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages). |
Ashtiani : “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages). |
Chaji : “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages). |
Chaji : “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages). |
Chaji : “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages). |
Chaji : “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages). |
Chaji : “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages). |
Chaji : “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages). |
Chaji : “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages). |
Chaji : “A Novel Driving Scheme for High Resolution Large-area a-Si:H AMOLED displays”; dated Aug. 2005 (3 pages). |
Chaji : “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages). |
Chaji : “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007. |
Chaji : “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006. |
Chaji : “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008. |
Chaji : “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages). |
Chaji : “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji : “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages). |
Chaji : “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated My 2003 (4 pages). |
Chaji : “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages). |
Chaji : “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages). |
Chaji : “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages). |
Chaji : “Low-Cost Amoled Television with Ignis Compensating Technology”; dated May 2008 (4 pages). |
Chaji : “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages). |
Chaji : “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages). |
Chaji : “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages). |
Chaji : “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages). |
Chaji : “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages). |
Chaji : “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages). |
Chaji : “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages). |
Chaji : “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages). |
Chaji : “Thin-Film Transistor Integration for Biomedical Imaging and Amoled Displays”; dated 2008 (177 pages). |
European Search Report for Application No. EP 04 78 6661 dated Mar. 9, 2009. |
European Search Report for Application No. EP 05 75 9141 dated Oct. 30, 2009 (2 pages). |
European Search Report for Application No. EP 05 81 9617 dated Jan. 30, 2009. |
European Search Report for Application No. EP 06 70 5133 dated Jul. 18, 2008. |
European Search Report for Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages). |
European Search Report for Application No. EP 07 71 0608.6 dated Mar. 19, 2010 (7 pages). |
European Search Report for Application No. EP 07 71 9579 dated May 20, 2009. |
European Search Report for Application No. EP 07 81 5784 dated Jul. 20, 2010 (2 pages). |
European Search Report for Application No. EP 10 16 6143, dated Sep. 3, 2010 (2 pages). |
European Search Report for Application No. EP 10 83 4294.0-1903, dated Apr. 8, 2013, (9 pages). |
European Supplementary Search Report for Application No. EP 04 78 6662 dated Jan. 19, 2007 (2 pages). |
Extended European Search Report for Application No. 11 73 9485.8 dated Aug. 6, 2013 (14 pages). |
Extended European Search Report for Application No. EP 09 73 3076.5, dated Apr. 27, 2013 (13 pages). |
Extended European Search Report for Application No. EP 11 16 8677.0, dated Nov. 29, 2012, (13 page). |
Extended European Search Report for Application No. EP 11 19 1641.7 dated Jul. 11, 2012 (14 pages). |
Extended European Search Report for Application No. EP 10834297 dated Oct. 27, 2014 (6 pages). |
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages). |
Goh , “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol., 24, No. 9, Sep. 2003, pp. 583-585. |
International Preliminary Report on Patentability for Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages. |
International Search Report for Application No. PCT/CA2004/001741 dated Feb. 21, 2005. |
International Search Report for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages). |
International Search Report for Application No. PCT/CA2005/001007 dated Oct. 18, 2005. |
International Search Report for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (2 pages). |
International Search Report for Application No. PCT/CA2007/000652 dated Jul. 25, 2007. |
International Search Report for Application No. PCT/CA2009/000501, dated Jul. 30, 2009 (4 pages). |
International Search Report for Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages). |
International Search Report for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages. |
International Search Report for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 5 pages. |
International Search Report for Application No. PCT/IB2014/060959, Dated Aug. 28, 2014, 5 pages. |
International Search Report for Application No. PCT/IB2010/055541 dated Dec. 1, 2010, dated May 26, 2011; 5 pages. |
International Search Report for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages). |
International Search Report for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages. |
International Search Report for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Search Report for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (3 pages). |
International Search Report for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages). |
International Search Report for Application No. PCT/JP02/09668, dated Dec. 3, 2002, (4 pages). |
International Written Opinion for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages). |
International Written Opinion for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (4 pages). |
International Written Opinion for Application No. PCT/CA2009/000501 dated Jul. 30, 2009 (6 pages). |
International Written Opinion for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages. |
International Written Opinion for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 8 pages. |
International Written Opinion for Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages. |
International Written Opinion for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages). |
International Written Opinion for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages. |
International Written Opinion for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Written Opinion for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (6 pages). |
International Written Opinion for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages). |
Jafarabadiashtiani : “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages). |
Kanicki, J., “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318). |
Karim, K. S., “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208). |
Lee : “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006. |
Lee, Wonbok: “Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays”, Ph.D. Dissertation, University of Southern California (124 pages), 2008. |
Liu, P. et al., Innovative Voltage Driving Pixel Circuit Using Organic Thin-Film Transistor for AMOLEDs, Journal of Display Technology, vol. 5, Issue 6, Jun. 2009 (pp. 224-227). |
Ma E Y: “organic light emitting diode/thin film transistor integration for foldable displays” dated Sep. 15, 1997(4 pages). |
Matsueda y : “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004. |
Mendes E., “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721). |
Nathan A. , “Thin Film imaging technology on glass and plastic” ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages). |
Nathan , “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486. |
Nathan : “Backplane Requirements for active Matrix Organic Light Emitting Diode Displays,”; dated 2006 (16 pages). |
Nathan : “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page). |
Nathan : “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages). |
Nathan : “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages). |
Office Action in Japanese patent application No. JP2012-541612 dated Jul. 15, 2014. (3 pages). |
Partial European Search Report for Application No. EP 11 168 677.0, dated Sep. 22, 2011 (5 pages). |
Partial European Search Report for Application No. EP 11 19 1641.7, dated Mar. 20, 2012 (8 pages). |
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages. |
Rafati : “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages). |
Safavian : “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages). |
Safavian : “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages). |
Safavian : “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages). |
Safavian : “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages). |
Safavian : “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-8]”; dated Sep. 2005 (9 pages). |
Safavian : “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages). |
Singh “Current Conveyor: Novel Universal Active Block”, Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48. |
Smith, Lindsay I., “A tutorial on Principal Components Analysis,” dated Feb. 26, 2001 (27 pages). |
Spindler , System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48. |
Stewart M. , “polysilicon TFT technology for active matrix oled displays” IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages). |
Vygranenko : “Stability of indium-oxide thin-film transistor by reactive ion beam assisted deposition”; dated 2009. |
Wang : “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages). |
Yi He , “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592. |
Yu, Jennifer: “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages). |
International Search Report for Application No. PCT/IB2014/058244, Canadian Intellectual Property Office, dated Apr. 11, 2014 (6 pages). |
International Search Report for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 23, 2014; (6 pages). |
Written Opinion for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 12, 2014 (6 pages). |
International Search Report for Application No. PCT/IB2014/060879, Canadian Intellectual Property Office, dated Jul. 17, 2014 (3 pages). |
Extended European Search Report for Application No. EP 14158051.4, dated Jul. 29, 2014, (4 pages). |
Office Action in Chinese Patent Invention No. 201180008188.9, dated Jun. 4, 2014 (17 pages) (w/English translation). |
International Search Report for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015. |
Written Opinion for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015. |
Extended European Search Report for Application No. EP 11866291.5, dated Mar. 9, 2015, (9 pages). |
Extended European Search Report for Application No. EP 14181848.4, dated Mar. 5, 2015, (8 pages). |
Office Action in Chinese Patent Invention No. 201280022957.5, dated Jun. 26, 2015 (7 pages). |
Extended European Search Report for Application No. EP 13794695.0, dated Dec. 18, 2015, (9 pages). |
Extended European Search Report for Application No. EP 16157746.5, dated Apr. 8, 2016, (11 pages). |
Number | Date | Country | |
---|---|---|---|
20170004769 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14568517 | Dec 2014 | US |
Child | 15266474 | US | |
Parent | 14046480 | Oct 2013 | US |
Child | 14568517 | US | |
Parent | 13113651 | May 2011 | US |
Child | 14046480 | US | |
Parent | 10554754 | US | |
Child | 13113651 | US |