Co-located gimbal-based dual stage actuation disk drive suspensions with offset motors

Information

  • Patent Grant
  • 8675314
  • Patent Number
    8,675,314
  • Date Filed
    Wednesday, August 21, 2013
    11 years ago
  • Date Issued
    Tuesday, March 18, 2014
    10 years ago
Abstract
Various embodiments concern a dual stage actuation suspension that comprises a loadbeam having a load point projection. The suspension further comprises a gimbal assembly having a point of contact that is in contact with the load point projection such that the gimbal assembly can gimbal about the load point projection. The gimbal assembly is cantilevered from the loadbeam and has an axis of rotation aligned with the load point projection and the point of contact. The suspension further comprises a pair of motors mounted on the gimbal assembly and positioned proximal of the point of contact. The pair of motors is mounted between a tongue and a pair of spring arms to rotate the tongue about the point of contact and the load point projection. The loadbeam further comprises a void into which the pair of motors extends.
Description
TECHNICAL FIELD

The present invention relates to disk drives and suspensions for disk drives. In particular, the invention is a dual stage actuation (DSA) suspension.


BACKGROUND

Dual stage actuation (DSA) disk drive head suspensions and disk drives incorporating DSA suspensions are generally known and commercially available. For example, DSA suspensions having an actuation structure on the baseplate or other mounting portion of the suspension, i.e., proximal to the spring or hinge region of the suspension, are described in the Okawara U.S. Patent Publication No. 2010/0067151, the Shum U.S. Patent Publication No. 2012/0002329, the Fuchino U.S. Patent Publication No. 2011/0242708 and the Imamura U.S. Pat. No. 5,764,444. DSA suspensions having actuation structures located on the loadbeam or gimbal portions of the suspension, i.e., distal to the spring or hinge region, are also known and disclosed, for example, in the Jurgenson U.S. Pat. No. 5,657,188, the Krinke U.S. Pat. No. 7,256,968 and the Yao U.S. Patent Publication No. 2008/0144225. Co-located gimbal-based DSA suspensions are disclosed in co-pending U.S. Provisional Application Nos. 61/700,972, 61/711,988, 61/738,167, and 61/826,865. All of the above-identified patents and patent applications are incorporated herein by reference in their entirety and for all purposes.


There remains a continuing need for improved DSA suspensions. DSA suspensions with enhanced performance capabilities are desired. The suspensions should be capable of being efficiently manufactured.


SUMMARY OF THE INVENTION

Various embodiments concern a dual stage actuation suspension that comprises a loadbeam having a load point projection. The suspension further comprises a gimbal assembly, the gimbal assembly having a point of contact that is in contact with the load point projection such that the gimbal assembly can gimbal about the load point projection. The gimbal assembly is cantilevered from the loadbeam and has an axis of rotation aligned with the load point projection and the point of contact. The suspension further comprises at least one motor mounted on the gimbal assembly and positioned proximal of the point of contact. The at least one motor can be mounted on, and bridge between, a spring arm and a tongue of the gimbal assembly. The at least one motor may extend into a void of the loadbeam. Further, a pair of struts may be aligned with the axis of rotation.


Various embodiments concern a dual stage actuation suspension that comprises a loadbeam having a load point projection. The suspension further comprises a gimbal assembly, the gimbal assembly cantilevered from the loadbeam and in contact with the load point projection at a point of contact on the gimbal assembly such that the gimbal assembly can gimbal about the load point projection. The gimbal assembly comprises a pair of spring arms that cantilever the gimbal assembly from the loadbeam, a tongue positioned between the pair of spring arms, and a pair of struts that respectively connect the pair of spring arms to the tongue. Both of the struts are oriented along an axis that intersects the point of contact. The suspension further comprises a pair of motors, the motors mounted on the tongue and respectively mounted on the pair of spring arms, each motor of the pair of motors located entirely proximal of the load point projection.


Various embodiments concern a dual stage actuation suspension that comprises a loadbeam. The loadbeam comprises a void. The suspension further comprises a gimbal assembly, the gimbal assembly cantilevered from the loadbeam. The suspension further comprises at least one motor mounted on the gimbal assembly, the at least one motor extending into the void in the loadbeam.


Various embodiments concern a dual stage actuation suspension that comprises a loadbeam that has a load point projection and a void. The suspension further comprises a gimbal assembly, the gimbal assembly cantilevered from the loadbeam and in contact with the load point projection at a point of contact on the gimbal assembly such that the gimbal assembly can gimbal about the load point projection. The gimbal assembly comprises a pair of spring arms that cantilever the gimbal assembly from the loadbeam, a tongue positioned between the pair of spring arms, and a pair of struts that respectively connect the pair of spring arms to the tongue. The suspension further comprises a pair of motors, the pair of motors mounted on the tongue and respectively mounted on the pair of spring arms. Each motor of the pair of motors is located entirely proximal of the load point projection. The pair of motors is configured to rotate the tongue relative to the pair of spring arms by electrical activation of the motors. The pair of motors projects from the gimbal assembly into the void of the loadbeam.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of this disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view a suspension in accordance with an embodiment of the invention.



FIG. 2 is an overhead view of the suspension of FIG. 1.



FIG. 3 is an overhead view of a spring metal layer isolated from the suspension of FIGS. 1-2.



FIG. 4 is an isometric view of a gimbal assembly having a pair of motors mounted on the spring metal layer of the embodiment of FIG. 3



FIG. 5 is a cutaway view of the suspension of FIG. 1.



FIG. 6 is an overhead view of the pair of motors mounted on the spring metal later of the gimbal assembly of a suspension.



FIG. 7 is an overhead view of the pair of motors rotating a tongue of the spring metal later of the suspension in a first direction.



FIG. 8 is an overhead view of the pair of motors rotating a tongue of the spring metal later of the suspension in a second direction.



FIG. 9 is a cross-sectional view along line AA of the suspension of FIG. 2.



FIG. 10 is an isometric view of the gimbal assembly of a suspension in accordance with another embodiment of the invention.



FIG. 11 is an overhead view of the spring metal layer of the embodiment of FIG. 10.





While the subject matter of this disclosure is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit this disclosure to the particular embodiments described. On the contrary, this disclosure is intended to cover all modifications, equivalents, and alternatives falling within the scope of this disclosure as defined by the appended claims.


DESCRIPTION OF THE INVENTION


FIG. 1 is an isometric view of a suspension 10 having a flexure with a co-located or gimbal-based dual stage actuation (DSA) structure in accordance with a first embodiment of the invention. Aspects of the suspension 10 will be described in relation to the X, Y, and Z axes 11. FIG. 2 shows an overhead view of the loadbeam-side of the suspension 10 along the X-Y plane. The suspension 10 includes a loadbeam 14. The loadbeam 14 includes a proximal end 18 and a distal end 16 (proximal and distal directions being along the Y axis). It will be understood that the loadbeam 14, as with the suspension 10 as a whole, is oriented lengthwise along a longitudinal axis (e.g., the Y axis) that extends proximally and distally. The proximal end 18 of the loadbeam 14 can be connected to a proximal mounting structure such as baseplate (not illustrated) that structurally supports the suspension 10 over a spinning disk containing read/writable media (not illustrated). The loadbeam 14 is a rigid structure that is formed from metal, such as stainless steel. The loadbeam 14 comprises a major planar portion 20. The major planar portion 20 can be a flat surface of the loadbeam 14. The major planar portion 20 can extend over a substantial majority of the footprint (e.g., along an X-Y plane) of the loadbeam 14. The major planar portion 20 can be divided into multiple sections by one or more voids, such as the void 22 in the major planar portion 20. The multiple sections, even though separated by the void 22, may still be co-planar and formed from a common metal sheet. The loadbeam 14 further comprises rails 17 on the lateral sides of the loadbeam 14. The loadbeam 14 further comprises a dimple 24. The dimple 24 can be formed from the substrate metal of the loadbeam 14 (e.g., within the major planar portion 20) by deformation of the substrate metal. The dimple 24 is a type of load point projection that contacts the gimbal assembly 30 and allows the gimbal assembly 30 to pitch and roll relative to the rest of the suspension 10 as further explained herein.


The suspension 10 includes a flexure 12 mounted on the loadbeam 14. The flexure 12 includes a gimbal assembly 30 on its distal end. The gimbal assembly 30 is structurally supported by a spring metal layer 32 as further described herein.



FIG. 3 shows an overhead view of the spring metal layer 32 of the suspension 10 in isolation. The spring metal layer 32 can be attached to the loadbeam 14 along an attachment region 15, wherein the spring metal layer 32, as well as the rest of the gimbal assembly 30, can extend distally from the attachment region 15 as a cantilever. As mentioned previously, the gimbal assembly 30 can contact the dimple 24 distally of the attachment region 15 to allow the gimbal assembly 30 to pitch and roll about the dimple 24 or other type of load point projection. The gimbal assembly 30 is forced to engage with the dimple 24 by tension provided by the spring arms 34 which are part of the spring metal layer 32 and are likewise attached to the loadbeam 14 at the attachment region 15.


The spring metal layer 32, which defines a tongue 40 of the gimbal assembly 30, is shown in FIG. 3. The tongue 40 is an elongated portion (elongated along the Y axis) that is located between the spring arms 34. As shown in FIG. 3, each of the spring arms 34 includes an outer arm portion 33 and an inner arm portion 37. Each outer arm portion 33 is continuous with a respective inner arm portion 37 via a distal bend in the spring arm 34. The tongue 40 includes a point of contact 39 which makes contact with the dimple 24. The tongue 40 further includes a neck 42 which connects a proximal portion 43 of the tongue 40 to a distal portion 41 of the tongue 40. The proximal portion 43 of the tongue 40 includes lateral branches 44. As shown, the lateral branches 44 branch laterally from the neck 42 such that the tongue 40 forms a “T” shape, although other shapes can be formed. For example, a “Y” shape is shown in FIG. 10.


The illustrated embodiment of the suspension 10 also includes a gimbal limiter 38 which extends proximally from the spring metal layer 32. The gimbal limiter 38 comprises a tab configured to engage the major planar portion 20 or other part of the loadbeam 14 to prevent relative displacement between the tongue 40 and the loadbeam 14 beyond a particular amount to prevent damage to the gimbal assembly 30 and/or other component during unusual accelerations of the suspension 10.


The tongue 40 is connected to the spring arms 34 via a pair of struts 48. Each strut 48 is a part of the spring metal layer 32 that is continuous between a respective one of the pair of spring arm 34 and the tongue 40. As shown in FIG. 3, the struts 48 are the only part of the spring metal layer 32 that directly connects the tongue 40 to the spring arms 34. The struts 48 are the two narrowest portions of the spring metal layer 32 (e.g., in the X-Y plane) and therefore are most likely to bend in the X-Y plane as compared to other sections of the tongue 40. Such bending rotates the tongue 40 about the point of contact 39. Each strut 48 has a longitudinal axis (parallel with the X axis). The longitudinal axis of each strut 48 is transverse (e.g., orthogonal) to the longitudinal axes of each of the tongue 40, the gimbal assembly 30, and the loadbeam 14 as well as of the suspension 10 as a whole (which are each parallel with the Y axis). Both struts 48 of the pair of struts 48 are aligned along the same longitudinal axis. The longitudinal axis of the struts 48 intersects the point of contact 39 of the tongue 40 (on the X-Y plane). Such alignment between the struts 48 and the point of contact 39, as well as with the dimple 24 which impinges on the point of contact 39, focuses relative motion between the spring arms 34 and the tongue 40 to rotate the tongue 40 about the point of contact 39 and the dimple 24, which will be further discussed herein.


A slider 60 is mounted to the tongue 40, opposite the loadbeam 14. The slider 60 accordingly moves with the tongue 40. The slider 60 contains one or more transducers for reading from and/or writing to the disk media. The slider 60 makes electrical connections with the conductors of the flexible circuit 36 for routing signals to and/or from the transducers of the slider 60.


The suspension 10 further includes a pair of motors 50 mounted on the gimbal assembly 30. Each of the motors 50 can be a piezoelectric element that articulates when a voltage is applied across the element to provide microactuations. Each motor 50 can contain an anode terminal on a first major side of the motor 50 and a cathode terminal on the opposite major side of the motor 50. A first electrical connection can be made between a circuit of flexible circuit 36 (further described herein) to the anode or cathode terminal of the motor 50 and a second electrical connection can be made between the spring metal layer 32 (e.g., as ground) and the other of the anode or cathode terminal of the motor 50.



FIG. 4 is an isometric view of the suspension 10. More specifically, FIG. 4 shows the motors 50 mounted on the flexure 12. The motors 50 are attached to the gimbal assembly 30 by being mounted on proximal mounting areas 46 and distal mounting areas 47 of the spring metal layer 32. The proximal mounting areas 46 and the distal mounting areas 47 are shown in FIG. 3, which shows the spring metal layer 32 in isolation. The proximal mounting areas 46 are located on the lateral branches 44 of the tongue 40. The proximal ends of the motors 50 can be respectively attached to the proximal mounting areas 46. The distal mounting areas 47 are located on the inner arm portions 37 of the spring arms 34. The distal ends of the motors 50 can be respectively attached to the distal mounting areas 47. An adhesive 52 (shown in FIG. 9), such as non-conductive epoxy, is used to attach the motors 50 to the proximal mounting areas 46 and the distal mounting areas 47.


Each of the motors 50 has a longitudinal axis (e.g., along the Y axis). The motors 50 can shorten or lengthen, depending on the polarization of the voltage across the anode and cathode terminals, along their longitudinal axes when activated. The activation of the motors 50 can rotate the tongue 40 relative to the spring arms 34 and the remainder of the suspension 10. Being that the slider 60 is fixed to the tongue 40, the slider 60 will move with the tongue 40 to provide a fine tracking motion of the slider 60 over particular areas of the disk media.


The flexure 12 includes a flexible circuit 36 for routing signals along the suspension 10. The flexible circuit 36 includes one or more layers of dielectric material (e.g., polyamide) and one or more layers of conductive material (e.g., copper trace). The conductive material is routed along the flexure 12 as separate traces of different circuits within the flexible circuit 36. Preferably, the flexible circuit 36 provides as little mechanical support as possible (substantially less than the spring metal layer 32) and instead moves with the gimbal assembly 30 while the spring metal layer 32 provides most or all of the mechanical support between the tongue 40 and the spring arms 34.



FIG. 5 is a cutaway isometric view of the suspension 10. Specifically, FIG. 5 shows a lateral side of the suspension 10 removed to better demonstrate the interaction between the gimbal assembly 30 and the loadbeam 14. As shown, an apex of the dimple 24 contacts the tongue 40 at the point of contact 39. FIG. 5 further shows that the axis of rotation 70 of the tongue 40 runs through the dimple 24 (e.g., at the apex of the dimple 24) and the point of contact 39. The axis of rotation 70 is along the Z axis and is orthogonal to the X-Y plane in which the tongue 40 rotates. The axis of rotation 70 is the instant center of rotation of the tongue 40, as further described herein.



FIG. 6 shows an overhead view of the flexure 12 of the suspension 10. The overhead view shows that the point of contact 39 is directly between the struts 48. Specifically, both of the struts 48 are longitudinally aligned along an axis 72 that intersects the point of contact 39. The axis 72 extends along the X axis. Activation of the pair of motors 50, such that one of the motors 50 longitudinally contracts while the other expands, closes or widens the respective distance between the proximal mounting area 46 and the distal mounting area 47 (shown as exposed in FIG. 3) which moves the tongue 40 relative to the spring arms 34. The tongue 40 is rotated as a result of one of the motor 50 contracting while the other motor 50 expands, the motors 50 being laterally offset from the point of contact 39 on opposite sides of the point of contact 39 by the same distance. Furthermore, because of the positioning of the struts 48 and the struts 48 being configured to bend, the tongue 40 rotates about the point of contact 39, as further shown in FIGS. 6 and 7.



FIGS. 7 and 8 show an overhead view of two examples of part of the flexure 12 during rotation of the tongue 40. Specifically, FIGS. 7 and 8 show the spring metal layer 32, which includes the spring arms 34, struts 48, and tongue 40, and the motors 50 in isolation. As shown in FIG. 7, a first motor 50 of the pair of motors 50 contracts while a second motor 50 of the pair of motor 50 expands, which shifts the proximal portion 43 of the tongue 40 relative to the spring arms 34 while the spring arms 34 do not move, or do not substantially move, relative to the loadbeam 14 upon activation of the motors 50. As shown in FIG. 8, the first motor 50 expands while the second motor 50 contracts, which shifts the proximal portion 43 of the tongue 40 relative to the spring arms 34 in the opposite direction of the example shown in FIG. 7. The shifting of the proximal portion 43 of the tongue 40 rotates the tongue 40 about the point of contact 39 such that the axis of rotation 70 runs through (or is aligned with along the Z-Y plane) the point of contact 39. As shown, the tongue 40 rotates in the X-Y plane about the Z axis. It is noted that the axis of rotation 70 of the tongue 40 runs through (or is aligned with along the Z-Y plane) the dimple 24 (e.g., the apex of the dimple 24). It is noted that the axis of rotation 70 of the tongue 40 is located directly between the pair of struts 48 in the X-Y plane.


The axis of rotation 70 can be understood as the instant center of rotation of the tongue 40. The instant center of rotation refers to the point of the tongue 40 that has no velocity (i.e., does not laterally move in the X-Y plane) when the tongue 40 rotates in the X-Y plane. Centering the rotation of the tongue 40 as described above is facilitated by the alignment of the pair of struts 48. As shown, the two struts 48 bend in opposite directions upon activation of the motors 50. The struts 48 resist rotation while continuing to structurally support the tongue 40 during rotation such that the force from the shifting of the proximal portion 43 of the tongue 40 is focused between the struts 48.


It is noted that the motors 50 are entirely proximal of each of the struts 48, the dimple 24, the point of contact 39, and the axis of rotation 70. Locating the motors 50 proximally in this manner reduces the height above the gimbal assembly 30 to minimize the height of the suspension 10. Alternatively, the motors 50 could be located along the proximal portion 43 of the tongue 40, but in such case a taller dimple 24 would be needed to create sufficient separation distance between the loadbeam 14 and the gimbal assembly 30. FIGS. 1 and 5 show that the motors 50 extend into and through the void 22 in the loadbeam 14. Specifically, the void 22 accommodates the motors 50 which are at least partially within the void 22 and further extend above the major planar portion 20 of the loadbeam 14. In some alternative embodiments, the motors 50 extend within the void 22 but not above the loadbeam 14. FIG. 9 shows a cross-sectional view of the suspension 10 along line AA of FIG. 2. FIG. 9 shows the motor 50 mounted to the proximal mounting area 46 on the lateral branch 44 of the tongue 40 via adhesive 52 and to the distal mounting area 47 on the inner arm portion 37 of the spring arm 34. As shown in FIG. 9, the motor 50 is parallel and co-planar with the major planar portion 20 of the loadbeam 14. As shown, the motor 50 and the major planar portion 20 are orientated in parallel along the Y axis. It will be understood that each motor 50 of the pair of motors 50 extends within the void 22 and is parallel and co-planar with the major planar portion 20 in the manner shown in FIG. 9. As shown in FIG. 2, each of the length and the width of the void 22 (e.g., along the X-Y plane) is larger than the respective length and width of each motor 50 to accommodate the motors 22 within the void 22. 12. In this way, each motor 50 can be understood to have a first length and a first width while the void 22 has a second length and a second width, the first and second widths measured along the same axis (e.g., X axis) and the first and second lengths measured along the same axis (e.g., Y axis). Accordingly, the first length of the motor 50 is less than the second length of the void 22 and the first width of the motor 50 is less than the second width of the void 22. The motor 50 can be understood to comprise a proximal end and a distal end. Both of the proximal end and the distal end of the motor 50 extends through the void 22 and above the major planar portion 20 of the loadbeam 14.


The gimbal assembly 30 is mostly or entirely on a first side of the loadbeam 14 while the motors 50, mounted on the gimbal assembly 30 and extending though the void 22 in the loadbeam 14, are at least partially on a second side of the loadbeam 14 that is opposite the first side. More specifically, the spring metal layer 32 is entirely on a first side of the loadbeam 14 while the motors 50, mounted on the spring metal layer 32 and extending though the void 22 in the loadbeam 14, are at least partially on a second side of the loadbeam 14 that is opposite the first side.


The motors 50, in being accommodated within the void 22 of the loadbeam 14, allows the gimbal assembly 30 to be positioned closer to the loadbeam 14 to minimize the thickness of the suspension 10. For example, being that the motors 50 are positioned between spring metal layer 32 and the loadbeam 14, the space between the spring metal layer 32 and the loadbeam 14 can be minimized by allowing at least a top portion of each of the motors 50 to extend into the void 22 of the loadbeam 14.


Referring to FIG. 1, the gimbal assembly 30 can be assembled and attached to the loadbeam 14 along the attachment region 15 without the motors 50 being mounted on the gimbal assembly 30. After the gimbal assembly 30 is attached to the loadbeam 14, the motors 50 can then be lowered through the void 22 and then attached to the gimbal assembly 30. Specifically, after the gimbal assembly 30 is attached to the loadbeam 14 (e.g., by welding), the lower portions of the motors 50 can be introduced from above the major planar portion 20, moved below the major planar portion 20 and into the void 22, optionally moved below the loadbeam 14, and then placed on the proximal mounting area 46 and the distal mounting area 47 and attached to the proximal mounting area 46 and the distal mounting area 47. Such an assembly process can delay the attachment of the motors 50 to the suspension 10 until later in the assembly process, whereby earlier assembly and processing steps may potentially damage the delicate motors 50. It is noted that each of the length and width of the void 22 (e.g., along the X-Y plane) must be larger than the length and width of each motor 50 to accommodate the motors 50 being attached in this manner.



FIG. 10 shows an isometric view of part of a suspension 110. The suspension 110 can be identical to the suspension of FIGS. 1-9 except as otherwise provided. Any structure or feature discussed in connection with FIGS. 1-9 or otherwise provided herein can be applied to the embodiment of FIG. 10. A spring metal layer 132 of the suspension 110 is shown in isolation in the overhead view of FIG. 11. The structure and/or function of the spring metal layer 132, the spring arms 134, the struts 148, the distal portion of the tongue 140, the point of contact 139, the pair of motors 150, the adhesive 152, the loadbeam (not illustrated), and the slider 160, as well as any other elements illustrated or not illustrated, can be identical to that of the embodiment of FIGS. 1-9. The tongue 140 rotates about the point of contact 139, directly between the struts 148, as previously described herein. A dimple of a loadbeam can contact the gimbal assembly 130 at the point of contact 139 as referenced herein.


The spring metal layer 132 includes proximal mounting areas 146 and distal mounting areas 147 on which the motors 150 can be attached in any manner referenced herein. The spring metal layer 132, as well as the rest of the gimbal assembly 130, can be structurally and functionally identical to the gimbal assembly 30 of FIGS. 1-9 except that the proximal portion of the tongue 140 has a different configuration as compared to the tongue 40 of the suspension 10 of FIGS. 1-9, as further discussed herein. While the neck 42 and lateral branches 44 of the tongue 40 in FIGS. 1-9 forms a “T” shape (excluding the gimbal limiter 38), the neck 142 and lateral branches 144 of the tongue 140 in FIG. 10 forms a “Y” shape (excluding the gimbal limiter 138). The tongue 140 includes lateral branches 144 which branch from the neck 142 distally with respect to the lateral branches 44 of the embodiment of FIGS. 1-9 which branch from the proximal end of the neck 42. Being that the motors 150 are proximal of the point of contact 139, the struts 148, a dimple of a loadbeam (as otherwise described herein), and proximal of other components as shown, the more distal branching of the lateral branches 144 allows greater area of overlap between the motors 150 and the lateral branches 144.


Dampers 154 are provided in the embodiment of FIGS. 10 and 11. The dampers 154 can inhibit vibrations within the gimbal assembly 130. As shown in FIG. 10, the motors 150 are mounted to the pair of spring arms 134 and the lateral branches 144, respectively. The dampers 154 are between each of the lateral branches 144 and the motors 150. The dampers 154 are further in contact with each of the lateral branches 144 and the motors 150. The dampers 154 can be adhesively attached to each of the lateral branches 144 and the motors 150.


Each damper 154 can be a layer of viscoelastic material, such as silicone or other polymer. The damper 154 material itself can be an adhesive material. The dampers 154 can dampen vibration or other movement between the motors 150 and the tongue 140. Each damper 154 is located at the longitudinal midpoint of a respective one of the motors 50. The longitudinal midpoint of the motor moves least, or not at all, as compared with the distal and proximal ends of the motor 150 because of the expanding and contracting movement of the motors 50. Damper material can additionally or alternatively be attached to the spring arms 134 such that they are between and contact each of the spring arms 134 and the motors 150 to dampen vibration or other movement between the spring arms 134 and the motors 150. In such case, the spring arms 134 may be formed to extend underneath the motors 150 to provide a mounting surface for the dampers.


While embodiments having a pair of motors have been shown herein, a different number of motors could alternatively be used on a suspension. For example, a single motor could be mounted on a spring arm and a tongue to rotate the tongue in any manner referenced herein. Further, a pair of struts may be aligned with an axis of rotation of the tongue, as described herein. The single motor may be positioned proximally of the axis of rotation, load point projection, and struts. The single motor may extend into a void of a loadbeam in any manner referenced herein.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the above-described features.

Claims
  • 1. A dual stage actuation suspension, comprising: a loadbeam comprising a load point projection;a gimbal assembly, the gimbal assembly cantilevered from the loadbeam and in contact with the load point projection at a point of contact on the gimbal assembly such that the gimbal assembly can gimbal about the load point projection, the gimbal assembly comprising: a pair of spring arms that cantilever the gimbal assembly from the loadbeam, each spring arm comprising an outer arm portion, an inner arm portion, and a distal bend that connects the outer arm portion to the inner arm portion;a tongue positioned between the pair of spring arms; anda pair of struts that respectively connect the pair of spring arms to the tongue, each strut connected to the inner arm portion of the spring arm to which the strut respectively connects, both of the struts oriented along an axis that intersects the point of contact; anda pair of motors, the motors mounted on the tongue and respectively mounted on the pair of spring arms, each motor of the pair of motors located entirely proximal of the load point projection.
  • 2. The suspension of claim 1, wherein the tongue forms a T shape or a Y shape and thereby comprises two branches on which the pair of motors are respectively mounted.
  • 3. The suspension of claim 1, wherein each strut of the pair of struts is configured to bend to rotate the tongue about the load point protection when the pair of motors is activated.
  • 4. The suspension of claim 1, wherein the tongue, the spring arms, and the pair of struts are all formed from a sheet of metal that structurally supports the gimbal assembly.
  • 5. The suspension of claim 4, wherein the pair of struts are the only part of the sheet of metal that connects between the pair of spring arms and the tongue.
  • 6. The suspension of claim 4, wherein the two narrowest sections of the sheet of metal define the pair of struts.
  • 7. The suspension of claim 1, wherein the load point projection comprises a dimple.
  • 8. The suspension claim 1, further comprising a slider mounted on the gimbal assembly.
  • 9. The suspension of claim 1, wherein the loadbeam comprises a major planar portion and a void within the major planar portion, and wherein the pair of motors extends through the void and above the major planar portion.
  • 10. The suspension of claim 9, wherein each motor of the pair of motors comprises a major planar portion that is orientated parallel with the major planar portion of the loadbeam.
  • 11. The suspension of claim 9, wherein each motor of the pair of motors comprises a proximal end and a distal end and each of the proximal end and the distal end extends through the void above the major planar portion of the loadbeam.
  • 12. The suspension of claim 9, wherein each motor of the pair of motors has a first length and a first width, the void has a second length and a second width, and first length is less than the second length and the first width is less than the second width.
  • 13. A dual stage actuation suspension, comprising: a loadbeam comprising a load point projection, a major planar portion, and a void;a gimbal assembly, the gimbal assembly cantilevered from the loadbeam and in contact with the load point projection at a point of contact on the gimbal assembly such that the gimbal assembly can gimbal about the load point projection, the gimbal assembly comprising: a pair of spring arms that cantilever the gimbal assembly from the loadbeam;a tongue positioned between the pair of spring arms; anda pair of struts that respectively connect the pair of spring arms to the tongue; anda pair of motors, each motor comprising a proximal end and a distal end, the pair of motors mounted on the tongue and respectively mounted on the pair of spring arms, each motor of the pair of motors located entirely proximal of the load point projection, the pair of motors configured to rotate the tongue relative to the pair of spring arms by activation of the motors, the pair of motors projecting from the gimbal assembly into the void of the loadbeam such that the proximal end and the distal end of each motor projects into the void and each motor is one or both of co-planar with the loadbeam and extends above the major planar portion.
  • 14. The suspension of claim 13, wherein each motor of the pair of motors comprises a major planar portion that is orientated parallel with a major planar portion of the loadbeam.
  • 15. The suspension of claim, 14, wherein each of the proximal end and the distal end extends through the void to be partially above the major planar portion of the loadbeam.
  • 16. The suspension of claim 13, wherein the tongue forms a T shape or a Y shape and thereby comprises two branches on which the motors of the pair of motors are respectively mounted.
  • 17. The suspension of claim 13, wherein each strut of the pair of struts is configured to bend to rotate the tongue about the load point protection when the pair of motors is activated.
  • 18. The suspension of claim 13, wherein the tongue, the spring arms, and the pair of struts are all formed from a sheet of metal that structurally supports the gimbal assembly.
  • 19. The suspension of claim 18, wherein the pair of struts are the only part of the sheet of metal that connects between the pair of spring arms and the tongue.
  • 20. The suspension of claim 18, wherein the two narrowest sections of the sheet of metal define the pair of struts.
  • 21. The suspension of claim 13, wherein the load point projection comprises a dimple.
  • 22. The suspension of claim 13, further comprising a slider mounted on the gimbal assembly.
  • 23. The suspension of claim 13, wherein each strut of the pair of struts is oriented along an axis that intersects the point of contact.
  • 24. The suspension of claim 13, wherein each motor of the pair of motors has a first length and a first width, the void has a second length and a second width, and first length is less than the second length and the first width is less than the second width.
  • 25. A dual stage actuation suspension, comprising: a loadbeam;a gimbal assembly, the gimbal assembly cantilevered from the loadbeam such that the gimbal assembly can gimbal, the gimbal assembly comprising: a pair of spring arms that cantilever the gimbal assembly from the loadbeam;a tongue positioned between the pair of spring arms, the tongue having a longitudinal axis; anda pair of struts that respectively connect the pair of spring arms to the tongue, each strut elongated along a longitudinal axis of the strut, the longitudinal axes of both of the struts longitudinally oriented along an axis that is transverse to the longitudinal axis of the tongue; anda pair of motors, the motors mounted on the tongue and respectively mounted on the pair of spring arms, each motor of the pair of motors located entirely proximal of the pair of struts, wherein each strut of the pair of struts is configured to bend to rotate the tongue about an axis of rotation that extends through the tongue when the pair of motors is activated.
  • 26. The suspension of claim 25, wherein the tongue, the spring arms, and the pair of struts are all formed from a sheet of metal that structurally supports the gimbal assembly.
  • 27. The suspension of claim 25, wherein the axis of rotation about which the tongue rotates when the motors are activated is located directly between the pair of struts.
  • 28. The suspension of claim 25, wherein the loadbeam comprises a major planar portion and a void within the major planar portion, and wherein the pair of motors extends through the void and above the major planar portion.
  • 29. A dual stage actuation suspension, comprising: a gimbal, the gimbal assembly comprising: a pair of spring arms, each spring arm comprising an outer arm portion, an inner arm portion, and a distal bend that connects the outer arm portion to the inner arm portion;a tongue positioned between the pair of spring arms, the tongue having a longitudinal axis; anda pair of struts that respectively connect the pair of spring arms to the tongue, the pair of struts located proximal of the distal bends of the spring arms, each strut connected to the inner arm portion of the spring arm to which it respectively connects, each strut having a longitudinal axis, the longitudinal axes of both of the struts longitudinally oriented along an axis that is transverse to the longitudinal axis of the tongue; anda pair of motors, the motors mounted on the tongue and respectively mounted on the pair of spring arms, wherein each strut of the pair of struts is configured to bend to rotate the tongue when the pair of motors is activated.
  • 30. The suspension of claim 29, wherein the tongue, the pair of spring arms, and the pair of struts are all formed from a sheet of metal that structurally supports the gimbal assembly.
US Referenced Citations (201)
Number Name Date Kind
3320556 Schneider May 1967 A
4418239 Larson et al. Nov 1983 A
5140288 Grunwell Aug 1992 A
5321568 Hatam-Tabrizi Jun 1994 A
5333085 Prentice et al. Jul 1994 A
5427848 Baer et al. Jun 1995 A
5459921 Hudson et al. Oct 1995 A
5598307 Bennin Jan 1997 A
5608591 Klaassen Mar 1997 A
5631786 Erpelding May 1997 A
5636089 Jurgenson et al. Jun 1997 A
5657188 Jurgenson et al. Aug 1997 A
5666241 Summers Sep 1997 A
5666717 Matsumoto et al. Sep 1997 A
5694270 Sone et al. Dec 1997 A
5717547 Young Feb 1998 A
5734526 Symons Mar 1998 A
5737152 Balakrishnan Apr 1998 A
5764444 Imamura et al. Jun 1998 A
5790347 Girard Aug 1998 A
5796552 Akin, Jr. et al. Aug 1998 A
5805382 Lee et al. Sep 1998 A
5812344 Balakrishnan Sep 1998 A
5862010 Simmons et al. Jan 1999 A
5892637 Brooks, Jr. et al. Apr 1999 A
5921131 Stange Jul 1999 A
5924187 Matz Jul 1999 A
5973884 Hagen Oct 1999 A
5986853 Simmons et al. Nov 1999 A
5995328 Balakrishnan Nov 1999 A
6011671 Masse et al. Jan 2000 A
6038102 Balakrishnan et al. Mar 2000 A
6055132 Arya et al. Apr 2000 A
6075676 Hiraoka et al. Jun 2000 A
6078470 Danielson et al. Jun 2000 A
6108175 Hawwa et al. Aug 2000 A
6118637 Wright et al. Sep 2000 A
6144531 Sawai Nov 2000 A
6146813 Girard et al. Nov 2000 A
6157522 Murphy et al. Dec 2000 A
6172853 Davis et al. Jan 2001 B1
6246546 Tangren Jun 2001 B1
6246552 Soeno et al. Jun 2001 B1
6275358 Balakrishnan et al. Aug 2001 B1
6278587 Mei Aug 2001 B1
6282062 Shiraishi Aug 2001 B1
6297936 Kant et al. Oct 2001 B1
6300846 Brunker Oct 2001 B1
6320730 Stefansky et al. Nov 2001 B1
6376964 Young et al. Apr 2002 B1
6396667 Zhang et al. May 2002 B1
6399899 Ohkawa et al. Jun 2002 B1
6400532 Mei Jun 2002 B1
6404594 Maruyama et al. Jun 2002 B1
6424500 Coon et al. Jul 2002 B1
6445546 Coon Sep 2002 B1
6493190 Coon Dec 2002 B1
6493192 Crane et al. Dec 2002 B2
6549736 Miyabe et al. Apr 2003 B2
6596184 Shum et al. Jul 2003 B1
6597541 Nishida et al. Jul 2003 B2
6621653 Schirle Sep 2003 B1
6636388 Stefansaky Oct 2003 B2
6639761 Boutaghou et al. Oct 2003 B1
6661618 Fujiwara et al. Dec 2003 B2
6704157 Himes et al. Mar 2004 B2
6704158 Hawwa et al. Mar 2004 B2
6714384 Himes et al. Mar 2004 B2
6714385 Even et al. Mar 2004 B1
6728057 Putnam Apr 2004 B2
6728077 Murphy Apr 2004 B1
6735055 Crane et al. May 2004 B1
6737931 Amparan et al. May 2004 B2
6738225 Summers et al. May 2004 B1
6741424 Danielson et al. May 2004 B1
6760196 Niu et al. Jul 2004 B1
6762913 Even et al. Jul 2004 B1
6765761 Arya Jul 2004 B2
6791802 Watanabe et al. Sep 2004 B2
6798597 Aram et al. Sep 2004 B1
6801402 Subrahmanyam et al. Oct 2004 B1
6839204 Shiraishi et al. Jan 2005 B2
6841737 Komatsubara et al. Jan 2005 B2
6898042 Subrahmanyan May 2005 B2
6900967 Coon et al. May 2005 B1
6922305 Price Jul 2005 B2
6934127 Yao et al. Aug 2005 B2
6942817 Yagi et al. Sep 2005 B2
6943991 Yao et al. Sep 2005 B2
6963471 Arai et al. Nov 2005 B2
6975488 Kulangara et al. Dec 2005 B1
6977790 Chen et al. Dec 2005 B1
7006333 Summers Feb 2006 B1
7016159 Bjorstrom et al. Mar 2006 B1
7020949 Muramatsu et al. Apr 2006 B2
7023667 Shum Apr 2006 B2
7050267 Koh et al. May 2006 B2
7057857 Niu et al. Jun 2006 B1
7079357 Kulangara et al. Jul 2006 B1
7082670 Boismier et al. Aug 2006 B2
7092215 Someya et al. Aug 2006 B2
7132607 Yoshimi et al. Nov 2006 B2
7142395 Swanson et al. Nov 2006 B2
7144687 Fujisaki et al. Dec 2006 B2
7159300 Yao et al. Jan 2007 B2
7161767 Hernandez et al. Jan 2007 B2
7256968 Krinke Aug 2007 B1
7271958 Yoon et al. Sep 2007 B2
7336436 Sharma et al. Feb 2008 B2
7342750 Yang et al. Mar 2008 B2
7345851 Hirano et al. Mar 2008 B2
7375930 Yang et al. May 2008 B2
7379274 Yao et al. May 2008 B2
7382582 Cuevas Jun 2008 B1
7408745 Yao et al. Aug 2008 B2
7417830 Kulangara Aug 2008 B1
7460337 Mei Dec 2008 B1
7466520 White et al. Dec 2008 B2
7499246 Nakagawa Mar 2009 B2
7595965 Kulangara et al. Sep 2009 B1
7643252 Arai et al. Jan 2010 B2
7667921 Satoh et al. Feb 2010 B2
7675713 Ogawa et al. Mar 2010 B2
7688552 Yao et al. Mar 2010 B2
7692899 Arai et al. Apr 2010 B2
7701673 Wang et al. Apr 2010 B2
7701674 Arai Apr 2010 B2
7719798 Yao May 2010 B2
7724478 Deguchi et al. May 2010 B2
7751153 Kulangara et al. Jul 2010 B1
7768746 Yao et al. Aug 2010 B2
7782572 Pro Aug 2010 B2
7821742 Mei Oct 2010 B1
7835113 Douglas Nov 2010 B1
7875804 Tronnes et al. Jan 2011 B1
7923644 Ishii et al. Apr 2011 B2
7924530 Chocholaty Apr 2011 B1
7983008 Liao et al. Jul 2011 B2
7986494 Pro Jul 2011 B2
8004798 Dunn Aug 2011 B1
8085508 Hatch Dec 2011 B2
8089728 Yao et al. Jan 2012 B2
8120878 Drape et al. Feb 2012 B1
8125736 Nojima et al. Feb 2012 B2
8125741 Shelor Feb 2012 B2
8144436 Iriuchijima et al. Mar 2012 B2
8149542 Ando Apr 2012 B2
8161626 Ikeji Apr 2012 B2
8169746 Rice et al. May 2012 B1
8194359 Yao et al. Jun 2012 B2
8248735 Fujimoto et al. Aug 2012 B2
8264797 Emley Sep 2012 B2
8289652 Zambri et al. Oct 2012 B2
8295012 Tian et al. Oct 2012 B1
8310790 Fanslau, Jr. Nov 2012 B1
8331061 Hanya et al. Dec 2012 B2
8339748 Shum et al. Dec 2012 B2
8363361 Hanya et al. Jan 2013 B2
8379349 Pro et al. Feb 2013 B1
8446694 Tian et al. May 2013 B1
8456780 Ruiz Jun 2013 B1
8498082 Padeski et al. Jul 2013 B1
8526142 Dejkoonmak et al. Sep 2013 B1
8559137 Imuta Oct 2013 B2
20010012181 Inoue et al. Aug 2001 A1
20020149888 Motonishi et al. Oct 2002 A1
20030053258 Dunn et al. Mar 2003 A1
20030174445 Luo Sep 2003 A1
20030202293 Nakamura et al. Oct 2003 A1
20040027727 Shimizu et al. Feb 2004 A1
20040070884 Someya et al. Apr 2004 A1
20040125508 Yang et al. Jul 2004 A1
20050061542 Aonuma et al. Mar 2005 A1
20050063097 Maruyama et al. Mar 2005 A1
20050105217 Kwon et al. May 2005 A1
20050254175 Swanson et al. Nov 2005 A1
20050280944 Yang et al. Dec 2005 A1
20060044698 Hirano et al. Mar 2006 A1
20060193086 Zhu et al. Aug 2006 A1
20060209465 Takikawa et al. Sep 2006 A1
20060238924 Gatzen Oct 2006 A1
20070133128 Arai Jun 2007 A1
20070223146 Yao et al. Sep 2007 A1
20070253176 Ishii et al. Nov 2007 A1
20080144225 Yao et al. Jun 2008 A1
20080192384 Danielson et al. Aug 2008 A1
20080198511 Hirano et al. Aug 2008 A1
20080273266 Pro Nov 2008 A1
20080273269 Pro Nov 2008 A1
20090080117 Shimizu et al. Mar 2009 A1
20090244786 Hatch Oct 2009 A1
20100067151 Okawara et al. Mar 2010 A1
20100177445 Fuchino Jul 2010 A1
20100290158 Hanya et al. Nov 2010 A1
20110096438 Takada et al. Apr 2011 A1
20110228425 Liu et al. Sep 2011 A1
20110242708 Fuchino Oct 2011 A1
20120002329 Shum et al. Jan 2012 A1
20130242434 Bjorstrom et al. Sep 2013 A1
20130242436 Yonekura et al. Sep 2013 A1
20130265674 Fanslau Oct 2013 A1
Foreign Referenced Citations (10)
Number Date Country
0591954 Apr 1994 EP
0834867 May 2007 EP
9198825 Jul 1997 JP
10003632 Jan 1998 JP
2001202731 Jul 2001 JP
2002170607 Jun 2002 JP
2003223771 Aug 2003 JP
2004039056 Feb 2004 JP
2005209336 Aug 2005 JP
WO9820485 May 1998 WO
Non-Patent Literature Citations (12)
Entry
U.S. Appl. No. 13/955,204 entitled Damped Dual Stage Actuation Disk Drive Suspensions, filed Jul. 31, 2013.
U.S. Appl. No. 14/026,427 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Sep. 13, 2013.
U.S. Appl. No. 14/044,238 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Motor Stifeners, filed Oct. 2, 2013.
U.S. Appl. No. 14/050,060 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Dampers, filed Oct. 10, 2013.
U.S. Appl. No. 13/365,443 entitled Elongated Trace Tethers for Disk Drive Head Suspension Flexures, filed Feb. 3, 2012.
U.S. Appl. No. 14/141,617 entitled Disk Drive Suspension Assembly Having a Partially Flangeless Load Point Dimple, filed Dec. 27, 2013, 53 pages.
U.S. Appl. No. 14/145,515 entitled Balanced Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Dec. 31, 2013, 39 pages.
International Search Report and Written Opinion issued in PCT/US2013/031484, mailed May 30, 2013, 13 pages.
U.S. Appl. No. 13/690,883 entitled Microstructure Patterned Surfaces for Integrated Lead Head Suspensions, filed Nov. 30, 2012.
U.S. Appl. No. 13/827,622 entitled Mid-Loadbeam Dual Stage Actuated (DSA) Disk Drive Head Suspension, filed Mar. 14, 2013.
U.S. Appl. No. 14/056,481 entitled Two-Motor Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Motor Stiffeners, filed Oct. 17, 2013.
U.S. Appl. No. 14/103,955 entitled Electrical Contacts to Motors in Dual Stage Actuated Suspensions, filed Dec. 12, 2013.