Information
-
Patent Grant
-
6260365
-
Patent Number
6,260,365
-
Date Filed
Friday, January 7, 200024 years ago
-
Date Issued
Tuesday, July 17, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Tapolcai; William E.
- Ali; Mohammad M.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 062 155
- 062 234
- 062 154
-
International Classifications
-
Abstract
A cooling system and related method of defrosting a refrigeration unit or a freezer unit involves the steps of (a) monitoring a compressor running time, (b) monitoring an evaporator coil temperature, (c) monitoring a first time period since a last cooled compartment door open alarm of the unit, (d) monitoring a second time period since a last defrost operation, (e) monitoring a third time period during which the cooled compartment door is closed, and (f) controlling initiation of a defrost operation as a function of the monitored compressor running time, the monitored evaporator coil temperature, the monitored first time period, the monitored second time period, and the monitored third time period. Various sets of conditions may be established for triggering initiation of the defrost operation. The system may also detect refrigerant leaks and a clogged condenser as a function of compressor running time and compressor discharge line temperature.
Description
TECHNICAL FIELD
This invention pertains generally to refrigeration and freezer units, and more specifically to a control system for such units and related methods for controlling defrost, monitoring the status of a system condenser coil, and monitoring for refrigerant leaks.
BACKGROUND OF THE INVENTION
Cooling systems are utilized in many different types of refrigeration units and freezer units. For example, commercial refrigeration and freezer units used by those in the food industry such as restaurants generally include some variation of the standard cooling system which has existed for many years. Similarly, numerous control schemes for such cooling systems are known, including control schemes for defrost operations of the cooling systems in order to eliminate frost build up on the evaporator coils of such systems. However, improvements in such defrost control schemes are continually sought.
One problem associated with such cooling systems is that air is generally passed through a condenser to remove heat from the refrigerant. The intake air to the condenser passes through the condenser coil. As particulates build up on the condenser, air flow through the coil decreases and system efficiency may be reduced. Accordingly, it would be desirable to provide the ability to detect a clogged condenser in order to clean the condenser when needed.
Another problem associated with such cooling systems is the occurrence of refrigerant leaks in the system. Accordingly, it would be desirable to provide the ability to detect such refrigerant leaks.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a method of defrosting a refrigeration unit or a freezer unit involves the steps of (a) monitoring a compressor running time, (b) monitoring an evaporator coil temperature, (c) monitoring a first time period since a last cooled compartment door open alarm of the unit, (d) monitoring a second time period since a last defrost operation, (e) monitoring a third time period during which the cooled compartment door is closed, and (f) controlling initiation of a defrost operation as a function of the monitored compressor running time, the monitored evaporator coil temperature, the monitored first time period, the monitored second time period, and the monitored third time period. Various sets of conditions may be established for triggering initiation of the defrost operation.
In another aspect of the invention a method of monitoring a refrigeration system for refrigerant leaks involves (a) monitoring a running time of a compressor, (b) monitoring a temperature of a discharge line of the compressor, (c) controlling activation of a line leak alarm based at least in part upon: (i) the running time of the compressor exceeding a threshold running time; and (ii) comparison of the discharge line temperature to a threshold discharge line temperature.
Yet a further aspect of the invention provides a method of monitoring the condenser of a cooling system. The method involves (a) monitoring a running time of a compressor, (b) monitoring a temperature of a discharge line of the compressor, (c) controlling activation of a clogged condenser alarm based at least in part upon: (i) the running time of the compressor exceeding a threshold running time; and (ii) comparison of the discharge line temperature to a threshold discharge line temperature.
An electronic controller may be utilized to implement the foregoing methods in conjunction with various sensors associated with the system components.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a partial schematic of a cooling system;
FIG. 2
is a high-level flow chart of system defrost control operation;
FIG. 3
is a high-level flow chart of clogged condenser detection operation; and
FIG. 4
is a high-level flow chart of refrigerant leak detection operation.
DETAILED DESCRIPTION
Referring to
FIG. 1
, a high-level schematic of a refrigeration system
10
is shown. The refrigeration system
10
includes a compressor
12
, a condenser
14
, a refrigerant chamber
16
and an evaporator
18
which typically includes an evaporator coil. As a refrigerant fluid within the system
10
enters the evaporator
18
, the fluid is cooler than the surrounding area. This surrounding area is established by, or is in communication with a cooled compartment
20
in which items such as food products are kept cool or frozen. In the evaporator, refrigerant fluid in liquid form absorbs heat from the compartment
20
and vaporizes. The vaporized refrigerant is then forced into the compressor
12
where its temperature increases as a result of compression. The compressed coolant vapor passes to the condenser
14
where it cools down and liquifies as heat is transferred to the cooler air. In this regard, intake air
24
to the condenser
14
is typically passed through or over cooling coils of the condenser. The air flow may be generated by a fan unit (not shown).
The cooled compartment
20
includes a door
26
which provides access to the compartment. A switch
28
is situated to generate a signal indicative of the open/closed status of the door
26
. A temperature sensor
30
is provided for generating signals indicative of the evaporator coil temperature. A combination temperature/humidity sensor
32
may also be provided for generating a signal indicative of the temperature and relative humidity of the ambient air in or around the cooled compartment
20
. Separate sensors could also be utilized. A temperature sensor
34
is also provided at the discharge line of the compressor for generating signals indicative of the discharge line temperature. The temperature sensors may be of any suitable type known in the art.
An electronic controller
36
is provided for controlling the operations of the cooling system
10
. Controller
36
may have various configurations but will typically include some type of processor such as a micro-processor, micro-controller, or ASIC, along with associated memory such as RAM, ROM, and/or EEPROM, and one or more associated timers or clocks. The controller
36
also includes input/output circuitry for interfacing with the various system components via electrical connections therewith. For example, the controller receives and interprets signals from sensors
28
,
30
,
32
, and
34
. The controller also controls activation of the compressor
12
via connection thereto, or via connection between the compressor and a power source (not shown). The controller
36
may also be connected to output devices
38
and
40
which may be annunciators or alarms such as light emitting elements or sound emitting elements the energization of which is controlled by the controller
36
. The elements
38
and
40
may be separate from the controller or may be located in proximity to the controller
36
within the same housing. It is recognized that the cooling system
10
may include various other components and sensors which are unrelated to the various aspects of the invention. Given the foregoing system
10
, the various aspects of the present invention are explained below.
Reference is now made to the defrost control flow chart
50
of FIG.
2
. Preferably, the controller is configured to initiate regular defrost operations at standard intervals. The standard interval may be stored in memory of the controller, and various intervals may be stored in memory to be selected according to operating conditions of the system
10
. Operation according to the flow chart
50
enables an intermediate defrost operation to be initiated between the regular defrost operations if necessary. However, the control scheme of flow chart
50
could also be utilized in systems where defrost operations are not initiated at standard intervals.
In
FIG. 2
the following nomenclature is utilized:
“LDTP” stands for “last defrost time period” and represents the length of time which has passed since the end of the last defrost operation;
“TLDTP” stands for “threshold last defrost time period”;
“CRT” stands for compressor running time and represents the length of time during which the compressor runs during a cooling cycle of the system;
“TRT” stands for “threshold running time”;
“LDATP” stands for door “last door alarm time period” and represents the length of time which has passed since end of the last cooled compartment door open alarm;
“TLDATP” stands for “threshold last door alarm time period”;
“DCTP” stands for “door closed time period” and represents the length of time which has passed since the cooled compartment door was last closed;
“TDCTP” stands for “threshold door closed time period”;
“ECTEMP” stands for “evaporator coil temperature” and represents the temperature of the evaporator coil as sensed by temperature sensor
30
; and
“TCTEMP” stands for “threshold coil temperature.”
The routine of flow chart
50
may be executed periodically to determine whether or not to initiate a defrost operation. The routine will typically be initiated during a cooling cycle of the system
10
, that is, when the compressor
12
is running. When called upon the routine begins at block
52
and moves to block
54
where the last defrost time period is compared to a threshold last defrost time period. The threshold last defrost time period is preferably established as a time period which is long enough to assure that the average temperature within the cooled compartment
20
does not exceed a desired level if another defrost operation is performed. For example, it is possible that if two defrost operations are performed in quick succession the average temperature of the cooled compartment may raise above a desired level for an unacceptable length of time. Accordingly, if the last defrost time period is not greater than the threshold last defrost time period, the routine is exited at block
56
and no defrost operation is performed.
On the other hand, if the last defrost time period is greater than the threshold last defrost time period the routine moves to block
58
where the compressor running time is compared to a threshold running time. The compressor running time may be maintained by a timer associated with the controller
36
. The threshold running time is established as a time which indicates that the compressor has run longer than it should have to in order to cool, representing a build up of frost on the evaporator coil. Preferably, the threshold running time is established by the electronic controller based upon a running average of compressor running times over a preceding time period such as thirty-six hours. The running average may be incremented by some predetermined amount such as twenty-five percent. However, this percent is merely representative and it is recognized that the exact percent could be established for a given unit or system
10
based upon testing. If the compressor running time exceeds the threshold running time the routine moves to block
60
and a defrost operation is initiated. If the compressor running time does not exceed the threshold running time, the routine moves to block
62
.
At block
62
the last door alarm time period is compared to a threshold last door alarm time period. The threshold last door alarm time period is established to account for increases in evaporator coil temperature which might result from the door remaining open for an excessive period of time, and again may be established by testing. If the last door alarm time period is not less than the threshold last door alarm time period, the routine moves to block
64
where the evaporator coil temperature is evaluated. If the current evaporator coil temperature is greater than a threshold coil temperature then the routine moves to block
60
and a defrost operation is initiated. The threshold coil temperature is established as a temperature indicative of frost build up on the evaporator coil and is preferably set at a value which is dependent upon the lowest evaporator coil temperature since the end of the last defrost operation. For example, the threshold coil temperature may be established automatically by the controller as the lowest evaporator coil temperature since the last defrost operation incremented by a certain amount. If the current evaporator coil temperature at block
64
is not greater than the threshold coil temperature, the routine is exited at block
56
and no defrost operation is performed.
Returning to block
62
, if the last door alarm time period is less than the threshold last door alarm time period the routine moves to block
66
where the open/closed status of the door
26
is checked. If the door
26
is not closed the routine is exited at block
56
and no defrost operation is performed because it is undesirable to perform a defrost operation when the door is open. If the door
26
is closed the routine moves to block
68
and the door closed time period is compared with a threshold door closed time period. The threshold door closed time period is preferably established as a time period of sufficient length to allow the evaporator coil temperature to cool down and stabilize after the door has been open for an excessive period of time and may be determined by testing of the particular unit and system
10
. If the door closed time period does not exceed the threshold door closed time period the routine moves to block
56
and no defrost operation is performed. However, if the door closed time period exceeds the threshold door closed time period the routine moves to block
64
and a determination of whether or not to initiated a defrost operation is made as described above.
The routine described in flow chart
50
therefore provides a defrost control system and method in which the compressor running time, evaporator coil temperature, last door alarm time period, last defrost time period, and door closed time period are monitored and in which initiation of a defrost operation is controlled as a function of the compressor running time, evaporator coil temperature, last door alarm time period, last defrost time period, and door closed time period. Preferably, a defrost operation is initiated when one or more of three sets of conditions exist. Namely, condition set
1
in which the compressor running time exceeds the threshold running time and the last defrost time period exceeds the threshold last defrost time period; condition set
2
in which the evaporator coil temperature exceeds the threshold coil temperature, the last defrost time period exceeds the threshold last defrost time period, and the last door alarm time period exceeds the threshold last door alarm time period; and condition set
3
in which the evaporator coil temperature exceeds the threshold coil temperature, the last defrost time period exceeds the threshold last defrost time period, the last door alarm time period is less than the threshold last door alarm time period, and the door closed time period exceeds the threshold door closed time period.
The electronic controller is programmed or otherwise configured to control defrost according to the flow chart
50
. The electronic controller
36
may initiate a defrost operation by inhibiting operation of the compressor
12
. The length of a given defrost operation may be predetermined or may vary upon other monitored parameters of the system
10
. As described herein initiation of a defrost operation may include starting the defrost operation immediately when block
60
of flow chart
50
is reached, but may also include setting a flag which will cause the defrost operation to start after the compressor
12
stops running during a cooling sequence.
Referring now to
FIG. 3
, an additional feature of the system
10
is described and provides the ability to determine when the condenser
14
of the system becomes clogged. The following nomenclature is utilized in FIG.
3
:
“CRT” stands for compressor running time and represents the length of time during which the compressor runs during a cooling cycle of the system;
“TRT
CF
” stands for “threshold running time” indicative of a clogged condenser;
“DLT” stands for “discharge line temperature” of the compressor; and
“TDLT
CF
” stands for “threshold discharge line temperature” indicative of a clogged condenser.
The routine of flow chart
70
begins at block
72
and moves to block
74
where operation of the compressor
12
is started. At block
76
a timer for monitoring the compressor running time is started. At block
78
the compressor running time is compared to a threshold running time which is indicative of a clogged condenser. The threshold running time may be established by testing of the unit and system, by tracking prior compressor running times, or a combination of the two. If the compressor running time exceeds the threshold running time the routine moves to block
80
where the discharge line temperature is compared to a threshold discharge line temperature indicative of a clogged condenser. The threshold discharge line temperature may be established by testing of the unit and system, by tracking prior discharge line temperatures, or a combination of the two. If the discharge line temperature exceeds the threshold discharge line temperature then an alarm is initiated at block
82
. The discharge line temperature check is provided to verify that the excessive compressor running time is not due to a compressor malfunction such as a refrigerant leak or otherwise caused low refrigerant level as discussed in more detail below. The alarm may be activation of one of the sound element or light element
38
or
40
, or may merely be a flag which is set in memory for later retrieval. If the compressor discharge line temperature does not exceed the threshold discharge line temperature, the routine moves to block
84
where other processing may continue. Referring again to block
78
, if the compressor running time does not exceed the threshold running time the routine moves to block
86
where other control operations and tasks may be performed before the routine again moves to block
78
. The routine of flow chart
70
may be continuously or periodically run during a cooling cycle of the system
10
.
In
FIG. 4
a flow chart
100
depicts a routine for determining when a refrigerant leak exists in the system
10
. The following nomenclature is utilized in FIG.
4
:
“CRT” stands for compressor running time and represents the length of time during which the compressor runs during a cooling cycle of the system;
“TRT
LL
” stands for “threshold running time” indicative of a line leak in the system;
“DLT” stands for “discharge line temperature” of the compressor; and
“TDLT
LL
” stands for “threshold discharge line temperature” indicative of a refrigerant line leak.
The routine of flow chart
100
begins at block
102
and moves to block
104
where operation of the compressor
12
is started. At block
106
a timer for monitoring the compressor running time is started. At block
108
the initial discharge line temperature (IDLT) is checked and recorded or stored in memory. At block
110
the compressor running time is compared to a threshold running time which is indicative of a refrigerant line leak. The threshold running time may be established by testing of the unit and system, by tracking prior compressor running times, or a combination of the two. If the compressor running time exceeds the threshold running time the routine moves to block
112
where the discharge line temperature is compared to a threshold discharge line temperature indicative of a refrigerant line leak. Preferably, the threshold discharge line temperature is based upon the initial discharge line temperature incremented by a predetermined amount established by testing. If the discharge line temperature does not exceed the threshold discharge line temperature then an alarm is initiated at block
114
. This scenario is indicative of a refrigerant leak because the discharge line temperature should rise after compressor start up due to an increase in system pressure. If the refrigerant level is low—or if there is a leak in the system, the pressure cannot build and therefore the discharge line temperature will not increase as it should. The alarm may be activation of one of the sound element or light element
38
or
40
, or may merely be a flag which is set in memory for later retrieval. If the compressor discharge line temperature does exceed the threshold discharge line temperature, the routine moves to block
116
where other processing may continue. Referring again to block
110
, if the compressor running time does not exceed the threshold running time the routine moves to block
118
where other control operations and tasks may be performed before the routine again moves to block
110
. The routine of flow chart
100
may be continuously or periodically run during a cooling cycle of the system
10
.
Regarding the routines of flow charts
70
and
100
, it is recognized that an excessive compressor running time could be indicative of a need for a defrost operation instead of a clogged condenser or refrigerant line leak. Therefore, in each routine a back-up check of the discharge line temperature is provided. Based upon known system performance under various circumstances, and the combination these two system checks, both clogged condensers and refrigerant leaks can be effectively monitored and detected. Given the similarity between the two routines, it is recognized that a single routine which simultaneously checks for the clogged condenser and the refrigerant leak could be provided.
While the forms of the apparatus herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise forms of apparatus, and changes may be made therein without departing from the scope of the invention.
Claims
- 1. A method for controlling defrost of a refrigeration unit or a freezer unit, the method comprising the steps of:(a) monitoring a compressor running time; (b) monitoring a time period since a last defrost operation; (c) initiating a defrost operation if the following conditions are met: (i) the monitored compressor running time exceeds a threshold running time; and (ii) the monitored time period since the last defrost operation exceeds a threshold time period.
- 2. The method of claim 1 wherein the threshold running time is determined based at least in part upon an average compressor running time for a preceding time period.
- 3. The method of claim 2 wherein the threshold running time comprises the average compressor running time increased by a predetermined amount.
- 4. The method of claim 1 wherein the threshold last defrost time period is of sufficient length to assure a temperature of a cooled compartment of the unit remains below a threshold maximum temperature level.
- 5. A method for controlling defrost of a refrigeration unit or a freezer unit, the method comprising the steps of:(a) monitoring an evaporator coil temperature; (b) monitoring a first time period since a last cooled compartment door open alarm of the unit; (c) monitoring a second time period since a last defrost operation; and (d) initiating a defrost operation if the following conditions are met: (i) the monitored evaporator coil temperature exceeds a threshold coil temperature; (ii) the first monitored time period exceeds a first threshold time period; and (iii) the second monitored time period exceeds a second threshold time period.
- 6. The method of claim 5 wherein the threshold coil temperature is determined based at least in part upon a lowest occurring coil temperature since the last defrost operation.
- 7. The method of claim 6 wherein the threshold coil temperature comprises the lowest occurring coil temperature increased by a predetermined amount.
- 8. A method for controlling defrost of a refrigeration unit or a freezer unit, the method comprising the steps of:(a) monitoring an evaporator coil temperature; (b) monitoring a first time period since a last cooled compartment door open alarm of the unit; (c) monitoring a second time period since a last defrost operation; (d) monitoring a third time period during which the cooled compartment door is closed; and (e) initiating a defrost operation if the following conditions are met: (i) the monitored evaporator coil temperature exceeds a threshold coil temperature; (ii) the first monitored time period is less than a first threshold time period; (iii) the second monitored time period exceeds a second threshold time period; and (iv) the third monitored time period exceeds a third threshold time period.
- 9. The method of claim 8 wherein the third threshold time period is sufficient to allow the coil temperature to stabilize after the cooled compartment door is closed and when the coil does not have excessive frost build up.
- 10. A method for defrosting a refrigeration unit or a freezer unit, the method comprising the steps of:(a) monitoring a compressor running time; (b) monitoring an evaporator coil temperature; (c) monitoring a first time period since a last cooled compartment door open alarm of the unit; (d) monitoring a second time period since a last defrost operation; (e) monitoring a third time period during which the cooled compartment door is closed; and (f) controlling initiation of a defrost operation as a function of the monitored compressor running time, the monitored evaporator coil temperature, the monitored first time period, the monitored second time period, and the monitored third time period.
- 11. The method of claim 10 wherein in step (f) the defrost operation is initiated if at least one of the following three sets of conditions exist:(1) first condition set: (i) the monitored compressor running time exceeds a threshold running time; and (ii) the second monitored time period exceeds a second threshold time period; (2) second condition set: (i) the monitored evaporator coil temperature exceeds a threshold coil temperature; (ii) the first monitored time period exceeds a first threshold time period; and (iii) the second monitored time period exceeds the second threshold time period; (3) third condition set: (i) the monitored evaporator coil temperature exceeds a threshold coil temperature; (ii) the first monitored time period is less than the first threshold time period; (iii) the second monitored time period exceeds the second threshold time period; and (iv) the third monitored time period exceeds a third threshold time period.
- 12. The method of claim 1 further comprising monitoring the refrigeration unit or freezer unit for a refrigerant leak via the steps of:(A) monitoring a temperature of a compressor discharge line; (B) controlling activation of a line leak alarm based at least in part upon: (1) the monitored compressor running time exceeding a line leak threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 13. The method of claim 1 further comprising monitoring air to a condenser of the refigeration unit or freezer unit via the steps of:(A) monitoring a temperature of a compressor discharge line; (B) controlling activation of a clogged condenser alarm based at least in part upon: (1) the running time of the compressor exceeding a clogged condenser threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 14. The method of claim 5 further comprising monitoring the refrigeration unit or freezer unit for a refrigerant leak via the steps of:(A) monitoring a compressor running time; (B) monitoring a temperature of a compressor discharge line; (C) controlling activation of a line leak alarm based at least in part upon: (1) the monitored compressor running time exceeding a line leak threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 15. The method of claim 5 further comprising monitoring air to a condenser of the refrigeration unit or freezer unit via the steps of:(A) monitoring a compressor running time; (B) monitoring a temperature of a compressor discharge line; (C) controlling activation of a clogged condenser alarm based at least in part upon: (1) the running time of the compressor exceeding a clogged condenser threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 16. The method of claim 8 further comprising monitoring the refrigeration unit or freezer unit for a refrigerant leak via the steps of:(A) monitoring a compressor running time; (B) monitoring a temperature of a compressor discharge line; (C) controlling activation of a line leak alarm based at least in part upon: (1) the monitored compressor running time exceeding a line leak threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 17. The method of claim 8 further comprising monitoring air to a condenser of the refrigeration unit or freezer unit via the steps of:(A) monitoring a compressor running time; (B) monitoring a temperature of a compressor discharge line of the compressor; (C) controlling activation of a clogged condenser alarm based at least in part upon: (1) the running time of the compressor exceeding a clogged condenser threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 18. The method of claim 10 further comprising monitoring the refrigeration unit or freezer unit for a refrigerant leak via the steps of:(A) monitoring a temperature of a compressor discharge line; (B) controlling activation of a line leak alarm based at least in part upon: (1) the monitored compressor running time exceeding a line leak threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 19. The method of claim 18 wherein in step (B) the line leak alarm is activated if the monitored compressor discharge line temperature does not exceed the threshold discharge line temperature.
- 20. The method of claim 10 further comprising monitoring air to a condenser of the refrigeration unit or freezer unit via the steps of:(A) monitoring a temperature of a compressor discharge line; (B) controlling activation of a clogged condenser alarm based at least in part upon: (1) the running time of the compressor exceeding a clogged condenser threshold running time; and (2) comparison of the monitored compressor discharge line temperature to a threshold discharge line temperature.
- 21. The method of claim 20 wherein in step (ii) the clogged condenser alarm is activated if the monitored compressor discharge line temperature exceeds the threshold discharge line temperature.
US Referenced Citations (10)