This application claims priority to European Patent Application No. EP23171193.8, filed May 2, 2023, and European Patent Application No. EP22186229.5, filed Jul. 21, 2022, the disclosures of which are incorporated by reference in their entireties.
Nowadays, vehicles (cars, robots, fork-lift trucks, ships etc.) are oftentimes operated by vehicle assistance systems (e.g., by Advanced Driving Assistance Systems (ADAS)) to provide some degree of driving assistance to their driver. However, a vehicle assistance system may also be able to control a vehicle semi-autonomously or even fully autonomously. This requires that the vehicle assistance system of a vehicle has sufficient knowledge of its surroundings to be aware of impassible regions, like walls, obstacles, other vehicles etc. to be able to avoid collisions and allowing the vehicle to navigate safely through its surrounding environment. To be able to reliably distinguish between impassible regions and free space, a model must be provided describing the free space and the impassible regions surrounding a vehicle. Hence, modeling and estimating the current local environment by processing sensor measurement data is essential for a vehicle assistance system.
A commonly used type of model, as for example described by S. Steyer, G. Tanzmeister and D. Wollherr, “Grid-Based Environment Estimation Using Evidential Mapping and Particle Tracking” in IEEE Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 384-396, September 2018, is a grid-based representation of the environment derived from processing data provided by sensors, for example ranging or odometry sensors, of the vehicle. However, due to the large number of grid cells required for representing the local environment, calculations performed on such models require lots of computational resources, which are typically limited in a vehicle assistance system embedded in a vehicle. In addition, storing grid-based models requires a large amount of memory. In addition, if models or parts of models are shared between vehicles, a large amount of data has to be communicated, e.g., by means of a Vehicle-to-Vehicle (V2V) communication interface.
In order to overcome these drawbacks, methods known in the art suggest altering the grid itself by compression techniques. An Example is the well-known quadtree-based approach utilized in G. Kraetzschmar, G. P. Gassull, and K. Uhl, “Probabilistic Quadtrees for Variable-Resolution Mapping of Large Environments,” in Proc. Of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, July 2004 for 2D grids.
Another known approach is to encode the information contained in the grid in a parametric form, which reduces the required storage even further. By now, however, only function-specific information such as road boundaries, for example suggested by M. Darms, M. Komar, and S. Lüke, “Map based Road Boundary Estimation”, in Proc. of the IEEE Intelligent Vehicles Symposium, San Diego, California, USA, June 2010, or moving objects, as suggested in T.-N. Nguyen, M.-M. Meinecke, M. Tornow, and B. Michaelis, “Optimized Grid-Based Environment Perception in Advanced Driver Assistance Systems”, in Proc. of the IEEE Intelligent Vehicles Symposium, Xi'an, Shaanxi, China, June 2009, pp. 425-430, have been extracted from grids and represented in a compact, parametric way.
To provide a function-independent, generic map representation, M. Schreier, V. Willert and J. Adamy, “From grid maps to Parametric Free Space maps—A highly compact, generic environment representation for ADAS”, 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 938-944, proposes a highly compact, generic representation of a driving environment, which is called Parametric Free Space (PFS) map, wherein free space represents the passable space for a vehicle. A PFS map is a continuous, bird's-eye view 2D representation of the local, static environment around a vehicle. Such PFS maps do not model the world by discrete grid cells but describe the free space via a flexible and closed curve in a parametric form. The proposed algorithm generates an occupancy grid based on sensor data and a corresponding image analysis. Outer occupancy boundaries of the grid serve as a measurement vector for a recursive estimation of control points of a closed B-spline curve. The spline is tracked and updated over time according to new environment measurements. A fixed number of spline control points is suggested with the control points being equidistantly distributed along the spline. As a result, even complex static environments may be modelled sufficiently precise while reducing the amount of required storage compared to a grid-based representation.
However, due to the fixed number of spline control points, which are equally distributed along the entire spline (e.g., in S-domain of the spline), leads to a number of control points not matching local complexity of a boundary shape. In other words, too many control points may be used at positions where the shape of the boundary has very low curvature, and too few control points are used where the shape of the boundary is locally complex. Hence, the resulting spline may not adequately match the boundary of the free space. Moreover, an unnecessary large number of control points may be used.
In Yang et al.: “Control Point Adjustment for B-Spline Curve Approximation”, Computer-Aided Design 36 (2004) 639-652, an approach for control point adjustment for a B-Spline Curve approximation is presented. This approach is based on a reference curve for local complexity determination in order to increase the accuracy of the approximation. However, for unknown/changing environments, as it is the case for most vehicle assistance systems, no reference curve is available.
Against this background, there is a need for a method in a vehicle assistance system for determining a free space boundary of a physical environment, which reduces the computational resources required for processing a parametric curve representing the free space boundary, while at least preserving the shape and approximation quality with respect to the real-world free space boundary.
The above-mentioned problem is at least partly solved by a computer-implemented method according to aspect 1, by an apparatus according to aspect 20, by a computer program according to aspect 21, and by a vehicle according to aspect 22.
A 1st aspect refers to a computer-implemented method in a vehicle assistance system for determining a free space boundary of a physical environment surrounding a vehicle. The method comprising the steps of: a. obtaining a parametric curve approximating spatial information representing the free space boundary, wherein the parametric curve is defined by a plurality of control points; b. determining a shape complexity indicator for a control point of the plurality of control points, the shape complexity indicator indicating a shape complexity of a section of the parametric curve affected by the control point; and c. modifying the section of the parametric curve affected by the control point based on the shape complexity indicator.
Modifying the section of the parametric curve affected by the control point based on the shape complexity indicator may result in a parametric curve that better reflects the physical environment and thus the free space boundary. Increasing the approximation quality of the free space boundary may enable the vehicle to move around in the free space safer and more efficiently. The vehicle may be a car, a robot, a ship, an airplane or any other suitable locomotion device. A vehicle assistance system may be a semi- or fully autonomous driving system, an advanced driver assistance system (ADAS) or any other suitable assistance system usable for at least partly affecting control of the vehicle.
According to a 2nd aspect in the 1st aspect, modifying the section of the parametric curve affected by the control point comprises at least one of: increasing an amount of control points in the section of the parametric curve affected by the control point if the shape complexity indicator indicates a high shape complexity; decreasing the amount of control points in the section of the parametric curve affected by the control point if the shape complexity indicator indicates a low shape complexity.
Increasing the amount of control points in a section having a high shape complexity may increase the approximation quality while decreasing the amount of control points in a section having a low shape complexity may reduce the computational resources for processing and/or storing the parametric curve.
According to a 3rd aspect in the 2nd aspect, increasing the amount of control points comprises at least one of: adding a new control point in the section of the parametric curve affected by the control point; moving a control point of the plurality of control points from another section of the parametric curve to the section of the parametric curve affected by the control point; and/or wherein decreasing the amount of control points comprises at least one of: removing the control point from the plurality of control points; moving the control point from the section of the parametric curve to another section of the parametric curve; merging the control point with another control point of the plurality of control points within the section of the parametric curve.
According to a 4th aspect in the 3rd aspect, adding the control point further comprises: adding the new control point between the control point and an adjacent control point.
To improve the approximation quality, adding, removing, moving the control point or merging control points may allow adjusting the parametric curve such that control points may only be placed where necessary to adequately describe the free space boundary of the environment. By adding control points, sections of the parametric curve with a high complexity may be optimized to essentially match the shape of the free space boundary. By removing or merging control points that are not required to achieve a good approximation quality, memory and bandwidth necessary for storing and transmitting the parametric curve to other vehicles may be decreased. Moving (e.g., directly changing the coordinates of a control point and thud re-positioning the control point) may increase the efficiency of the method as a removal and addition of a new control point may be avoided.
According to a 5th aspect in any one of the 3rd to 4th aspects, the step of adding a new control point comprises adding the control point directly between the control point and the successor control point, or adding information associated with the new control point to an addition list; and/or wherein the step of removing the first control point comprises directly removing the first control point, or adding the first control point to a removal list.
A new control point may be added directly between the two control points, e.g., after determining that the new control point is to be added. Adding the new control point directly may have the advantage of increasing the degree of freedom of the curve in this area, which may result in an increase of approximation quality. Adding information associated with the new control point to an addition list may decrease complexity due to unchanged indexes until one iteration over the entire plurality of control points is finished. Accordingly, after such an entire iteration, new control points will be added according to the adding information included in the addition list. This may result in a decrease of execution duration and required computation resources. The same reasoning applies to the aspect of directly removing control points or adding them to a removal list. However, directly removing a control point may immediately decrease memory consumption.
According to a 6th aspect in any one of the 1st to 5th aspect, determining the shape complexity indicator for the control point according to step b. comprises at least one of: determining a distance complexity indicator comprising determining a control point distance between the control point and a successor control point; determining a footpoint complexity indicator comprising determining a footpoint corresponding to the control point, and determining a footpoint distance between the footpoint and the control point; determining an angle complexity indicator comprising determining an angle between the control point, the successor control point and a predecessor control point.
Considering at least one aspect (e.g., the distance complexity, footpoint complexity and/or angle complexity) when determining the complexity of the section of the parametric curve affected by the control point increases the accuracy of the determined shape complexity indicator. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the shape complexity indicator can be made, which may result in a higher approximation quality or less memory consumption, since some control points that are not required for representing the free space boundary may be removed.
According to a 7th aspect in the 6th aspect, determining the distance complexity indicator further comprises: setting the distance complexity indicator to a value according to a lower distance complexity bound if the control point distance is lower than or equal to a lower distance limit, wherein the value according to the lower distance complexity bound indicates a lowest distance shape complexity; setting the distance complexity indicator to a value according to an upper distance complexity bound if the control point distance is greater than or equal to an upper distance limit, wherein the value according to the upper distance complexity bound indicates a highest distance shape complexity; setting the distance complexity indicator to a value lying between the upper distance complexity bound and the lower distance complexity bound if the control point distance is greater than the lower distance limit and smaller than the upper distance limit, wherein the value lying between the upper distance complexity bound and the lower distance complexity bound indicates an intermediate distance shape complexity.
Providing the above-described rules for determining the distance complexity indicator may allow an accurate mapping of distance values to complexity values for the distance complexity indicator. Accordingly, the indicator may precisely indicate the complexity introduced by the distance between control points. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the shape complexity indicator can be made, which may result in a higher approximation quality or less memory required.
According to an 8th aspect in the 6th to 7th aspect, determining the footpoint complexity indicator further comprises: setting the footpoint complexity indicator to a value according to a lower footpoint distance complexity bound if the footpoint distance is lower than or equal to a lower footpoint distance limit, wherein the value according to the lower footpoint distance complexity bound indicates a lowest footpoint shape complexity; setting the footpoint complexity indicator to a value according to an upper footpoint distance complexity bound if the footpoint distance is greater than or equal to an upper footpoint distance limit, wherein the value according to the upper footpoint distance complexity bound indicates a highest footpoint shape complexity; setting the footpoint complexity indicator to a value lying between the upper footpoint distance complexity bound and the lower footpoint distance complexity bound if the footpoint distance is greater than the lower footpoint distance limit and smaller than the upper footpoint distance limit, wherein the value lying between the upper footpoint distance complexity bound and the lower footpoint distance complexity bound indicates an intermediate footpoint shape complexity.
Providing the above-described rules for determining the footpoint complexity indicator may allow for an accurate mapping of footpoint distance values to complexity values for the footpoint complexity indicator. Accordingly, the indicator may be able to precisely indicate the complexity introduced by the footpoint distance. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the shape complexity indicator can be made, which may result in a higher approximation quality or less memory required.
According to a 9th aspect in any one of the 6th to 8th aspect, determining the angle complexity indicator further comprises: setting the angle complexity indicator to a value according to a lower angle complexity bound if the angle is lower than or equal to a lower angle limit, wherein the value according to the lower angle complexity bound indicates a lowest angle shape complexity; setting the angle complexity indicator to a value according to an upper angle complexity bound if the angle is greater than or equal to an upper angle limit, wherein the value according to the upper angle complexity bound indicates a highest angle shape complexity; setting the angle complexity indicator to a value lying between the upper angle complexity bound and the lower angle complexity bound if the angle is greater than the lower angle limit and smaller than the upper angle limit, wherein the value lying between the upper angle complexity bound and the lower angle complexity bound indicates an intermediate angle shape complexity.
Providing the above-described rules for determining the angle complexity indicator may allow for an accurate mapping of angle values to complexity values for the angle complexity indicator. Accordingly, the indicator may precisely indicate the complexity introduced by the angle between control points. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the shape complexity indicator can be made, which may result in a higher approximation quality or less memory required.
According to a 10th aspect in any one of the 6th to 9th aspect, determining the footpoint corresponding to the control point comprises: determining a S-domain value of the control point; determining a longitudinal value of the footpoint in a longitudinal 1D representation of the parametric curve based on the S-domain value of the control point; determining a lateral value of the footpoint in a lateral 1D representation of the parametric curve based on the S-domain value of the control point; setting the footpoint at a location on the parametric curve according to the longitudinal value and the lateral value.
Providing a way of precisely determining the position (e.g., the coordinates) of the footpoint may provide an increased accuracy in determining the footpoint distance. As a result, the accuracy of the corresponding footpoint complexity may be increased, too.
According to an 11th aspect in any one of the 6thnd to 10th aspect, determining the shape complexity further comprises the steps of: calculating a function value based on the distance complexity indicator, the footpoint complexity indicator and/or the angle complexity indicator; mapping the function value to a value range having a lower complexity bound and an upper complexity bound; wherein the lower complexity bound is preferably −1 and the upper complexity bound is preferably 1.
Providing the above-described rules for determining the shape complexity indicator may allow for an accurate merging and mapping of the single values of the corresponding angle, distance and/or footpoint distance complexity indicators. Accordingly, the shape indicator may precisely indicate the overall complexity of the section of the parametric curve affected by the control point. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the shape complexity indicator can be made, which may result in a higher approximation quality or less memory required.
According to a 12th aspect in any one of the 1st to 11th aspect, the method comprises: repeating, for each control point of the plurality of control points, steps b. and c.
Iterating over the entirety of control points of the plurality of control points and evaluating whether the section of the parametric curve affected by the corresponding control point has to be modified may increase the approximation quality and/or decreases the memory consumption for storing the parametric curve representation.
According to a 13th aspect in any one of the preceding aspects, the method further comprises: determining, prior to step b., a status indicator based on measurement data, indicating whether the control point is required for defining the parametric curve to represent the free space boundary; and removing the control point and skipping steps b. and c. if the status indicator indicates that the control point is not required; or maintaining the control point.
Providing an additional status indicator for the control point may result in an increased execution efficiency of the parametric curve approximation. This is because the status indicator provides additional context information regarding the control point. The status indicator may indicate whether the control point is to be removed or maintained based on a state of the control point. Measurement data may include a newly received measurement point, a measured time since the last state update or information related to the control point's position (e.g., a distance between the control point and the vehicle or the control point lying outside of a predefined area surrounding the vehicle). According to 14th aspects in the 13th aspects, the step of determining the status indicator for the control point of the plurality of control points comprises: receiving a measurement point from a sensor of the vehicle; determining whether the measurement point lies within a parametric curve support interval associated with the control point; if it is determined that the measurement point lies within the parametric curve support interval, setting the status indicator to indicate that the control point is required; and if it is determined that the measurement point does not lie within the parametric curve support interval, setting the status indicator to indicate that the control point is not required.
According to a 15th aspect in the 14th aspect, setting the status indicator to indicate that the control point is to not required may further depend on determining that a time-since-last-update threshold is exceeded.
Determining whether a control point is affected (e.g., the measurement point lies within the corresponding parametric curve support interval) by a measurement point increases the accuracy of determining the state of the corresponding control point. Accordingly, if the control point is affected, the control point's state may be set to UPDATED, which may result in the status indicator indicating to maintain the point. If not, the control point's state may be set to COASTED, which may result (after exceeding the time-since-last-update threshold) in the status indicator indicating to remove the point.
According to a 16th aspect in any one of the 13th to 15th aspect, the step of determining a status indicator for the control point of the plurality of control points comprises: determining that a distance between the control point and the vehicle is above an out-of-reach threshold; and/or determining that the control point lies outside of a predefined area surrounding the vehicle; and setting the status indicator to indicate that the control point is not required.
This may allow to efficiently determine whether the control point is in the OUT-OF-REACH state. If a control point is in the OUT-OF-REACH state, the control point may be regarded as not required for defining the parametric curve representing the free space boundary. This is because said control point may relate to a region of the physical environment which is no longer relevant for the vehicle assistance system (e.g., in terms of safety or navigation). Accordingly, the status indicator of a control point having the OUT-OF-REACH state may indicate to remove the control point and skip the steps b. and c.
According to a 17th aspects in any one of the 13th to 16th aspect, the method further comprises: repeating, for each control point of the plurality of control points the step of determining a status indicator for the control point of the plurality of control points, the step of removing the control point and skipping steps b. and c. if the status indicator indicates that the control point is not required, and the step of maintaining the control point and executing steps b. and c. if the status indicator indicates that the control point is required.
Determining the status indicator for each control point may increase the execution speed of the presented method. This is because a control point may be removed based on the status indicator before the complexity of the parametric curve section affected by the control point is evaluated. Accordingly, the amount of control points, for which the shape complexity indicator has to be determined, may be reduced.
According to an 18th aspect in any one of the preceding aspects, obtaining the parametric curve according to step a. comprises: determining the parametric curve based on sensor data of at least one sensor of the vehicle; or receiving the parametric curve from a memory, which is operably connected to the vehicle assistance system.
Using sensor data of the vehicle to determine the parametric curve is a reliable source of data, which describes the physical environment of the vehicle. Therefore, a parametric curve determined based on such data may achieve a high approximation quality. In case a corresponding parametric curve was already determined, receiving it from memory may be beneficial instead of re-determining it. Receiving it from memory may save computational resources, e.g., memory.
According to a 19th aspect in any one of the preceding aspects, the method further comprises: determining an operating instruction based on the parametric curve affecting a function of the vehicle assistance system, wherein the function preferably comprises at least one of: displaying the parametric curve on a display of the vehicle; conducting a vehicle path planning; triggering a warning; affecting control of the vehicle during a parking process.
An operating instruction for the vehicle assistance system being determined on the optimized parametric curve may increase system efficiency and safety. As the parametric curve is optimized in terms of memory consumption the corresponding operating instruction may be determined faster. Furthermore, due to the high approximation quality, system/vehicle safety is ensured and increased.
A 20th aspect concerns an apparatus comprising means configured to perform the method as described above.
A 21st aspect concerns a computer program comprising instructions, which when executed by a computer, causing the computer to perform the method as described above.
A 22nd aspect concerns a vehicle comprising the aforementioned apparatus of the 20th aspects.
Further background information, prior art methods and various aspects of the disclosed computer-implemented methods, apparatuses, and computer programs for determining a free space boundary of a physical environment surrounding a vehicle in a vehicle assistance system are described in more detail in the following by reference to the accompanying figures without the disclosed methods, apparatuses, and computer programs being limited to the embodiments of these figures.
The present disclosure relates to computer-implemented methods, apparatuses, and computer programs for determining a free space boundary of a physical environment surrounding a vehicle in a vehicle assistance system. In addition, the present disclosure relates to a vehicle comprising an aforementioned apparatus.
In the following, background information, prior art methods and aspects of the computer-implemented methods, apparatuses, and computer programs for determining a free space boundary of a physical environment surrounding a vehicle in a vehicle assistance system are described in more detail.
In step 5100, called “measurement processing”, raw measurement data (e.g., sensor data from at least one sensor of the vehicle) is obtained and (pre-)processed so it can be used for the following step. The raw measurement data may comprise measurement points, which may be retrieved by using sensor(s) of the vehicle to sample the free space boundary of the environment. A footpoint corresponding to each measurement may be determined (e.g., by distance minimalization between the measurement point and the footpoint). Said information may be used by a Kalman filter in the following step to estimate the parametric curve.
In step 5200, call “estimation”, a parametric curve is obtained. In case there is no existing parametric curve which may otherwise be obtained from memory or be retrieved from another vehicle e.g., by a V2V communication interface, a new parametric curve may be created/predicted in step 5200a by an estimator (e.g., a Kalman filter—prediction step). Predicting the parametric curve may further be based on a host movement compensation (e.g., the movement of the host/vehicle may introduce some uncertainties regarding the positions).After step 5200a (e.g., after a parametric curve is obtained either by receiving an already existing one or by creating a new one), the parametric curve may be corrected in step 5200b based on the processed raw measurement data (e.g., a Kalman filter—correction step).
In step 5300, called “post updates”, the parametric curve is updated (e.g., a plurality of control points of the parametric curve is modified).
In step 5300a, called “status evaluation”, states of the plurality of control points of the parametric curve are evaluated and updated based for example on the newly received measurement points and their corresponding footpoints. A footpoint is a point that lies on the parametric curve which approximates the free space boundary of an environment. More specifically, in step 5300a, footpoints corresponding to the measurement points are identified which are then used to evaluate and update states of the control points of the part of the parametric curve, which may be affected by the new measurement points.
In step 5300b, called “control point adjustment”, control point parameters (e.g., a modification relevance of the parametric curve section affected by the control point or a shape complexity of the parametric curve section affected by the control point) are evaluated in order to reduce or increase the number of control points or adapting their distribution while maintaining or improving the approximation quality of the corresponding parametric curve with respect to a free space boundary or potentially reducing memory consumption.
Afterwards, it is determined in step 5400 whether a further cycle is required, which may depend on different criteria iteration (e.g., for reducing the number of control points and/or improving the approximation quality or adapting the parametric curve to a changed physical environment). If it is determined that a further cycle is required, the algorithm again executes the “measurement processing” according to step 5100. If it is determined that no further cycle is required, the algorithm moves on to step 5500, called “suspend”.
In step 5500, called “suspend”, the algorithm may remain paused, for example when the vehicle's engine or the vehicle assistance system is turned off. However, when the vehicle's engine or the vehicle assistance system is turned on again, the algorithm may restart execution by moving to step 5100.
Parametric Curve Estimation
In general, a parametric curve may either be obtained by determining based on sensor data of at least one sensor of the vehicle. In another example, the parametric curve may be determined based on another data structure as input (e.g., an occupancy grid) which was generated based on the sensor data. Alternatively, the parametric curve may be received from a memory. The parametric curve may be determined based on the sensor data in cases where the assistance system of the vehicle is turned on or when the vehicle's environment changes (e.g., when the vehicle moves). In these cases, it may be necessary to determine the parametric curve before modifying (e.g., optimizing) the distribution of the plurality of control points of the parametric curve. In cases where the parametric curve has already been determined and no (re-)determining is necessary (for the moment), the already determined parametric curve, which may be saved into the memory of the vehicle, may be received from the memory. This may be reasonable in situations where the environment of the vehicle does not change or when a parametric curve has been determined based on the current environment of the vehicle and saved into memory before being further optimized.
Generating the parametric curve based on sensor data of the vehicle may allow for a precise modelling of the environment (e.g., the physical environment surrounding the vehicle). Accordingly, the resulting parametric curve may achieve a high approximation quality of the actual free space boundary.
The parametric curve may be fitted based on a parametric curve configuration including a parametric curve degree and/or the plurality of control points (e.g., the amount of control points initially selected for spanning the parametric curve) allows flexibly adjusting the parametric curve (e.g., the parametric curve's shape) to requirements defined by the changing environment of the vehicle. In general, a parametric curve may be any suitable parametric curve which is described by a plurality of (control) points such as a nth degree spline, B-spline, cubic spline or non-uniform rational B-spline (NURBS).
In the following, step 5200 is further described based on
A parametric curve 6060 (only shown in extracts in
However, in step 5200a, the generation of a parametric curve 6060 may also begin from scratch. In this case, the free space boundary 6040 may be determined by measurement points 6050 located on free space boundary 6040 and indicated by black squares, which may be obtained by sensors of the vehicle 3010, like ranging or odometry sensors. In the example of
At the end of step 5200, parametric curve 6060 essentially corresponds to a parametric curve 3050, 4050 as described with respect to
Post Updates
As can be seen in
To improve approximation quality, methods known in the art, for example the method according to M. Schreier, V. Willert and J. Adamy, “From grid maps to Parametric Free Space maps—A highly compact, generic environment representation for ADAS”, 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 938-944, simply increase the number of equidistantly distributed control points, as illustrated in
However, the approach of simply increasing the number of control points has at least two drawbacks. First of all, increasing the number of control points increases the amount of memory for storing the control points and thus for storing parametric curve 4050. Hence, if vehicles 3010 communicate such a parametric curve among each other (e.g., by a V2V communication interface), a higher communication bandwidth is required. In addition, processing a parametric curve based on an increased number of control points becomes more complex, slowing down the corresponding process. In general, one can see that using a fixed (e.g., hard coded) number may either result in having too many control points, specifically in situations where the environment may be sufficiently approximated with less control points, or may result in having too few control points in situations where the environment may not be sufficiently approximated with the fixed number of control points. In addition, having too many unnecessary control points in a section of the parametric curve may result in oscillatory behavior of the parametric curve (e.g., overshooting or high dynamics) which may decrease the approximation quality.
To overcome the above-mentioned drawbacks at least in part, the disclosed algorithm for preserving the approximation quality of a parametric curve is described that requires less control points compared to prior art methods. In addition, if the number of control points is not reduced, the algorithm may lead to an increased approximation quality.
Therefore, in step 5300, the parametric curve is updated according to identified optimization potential. This may either be based on the result of the status evaluation of step 5300a and/or the control point adjustment of step 5300b.
Status Evaluation
A control point may be associated with at least one state of a plurality of states (e.g., UPDATED, COASTED, NEW, OUT-OF-REACH). The UPDATED state may signal that the control point has been updated lately, e.g., a position of the control point has been verified by a corresponding measurement point from a sensor of the vehicle. Accordingly, the status indicator of a control point having the UPDATED state may indicate to maintain the control point and continue with executing the steps b. and c.
The COASTED state may signal that the control point has not been updated lately, e.g., the position of the control point has not been verified by a corresponding measurement (e.g., within a defined timespan). A time-since-last-update threshold may be defined describing a duration/timespan in which the state of a control point is allowed to not be updated (e.g., the state of the control point stays COASTED). The time-since-last-update threshold may for example be defined as a duration in time units (e.g., milliseconds etc.) or be defined as a number of cycles, each cycle having a corresponding execution duration in time units. In the latter, a cycle refers to an execution of determining whether the control point is affected by a measurement point (e.g., the measurement point lies within the corresponding support interval) or not. Accordingly, if the last state update of the control point exceeds the time-since-last-update threshold (e.g., the control point is in the COASTED state for too long), the status indicator of the control point may indicate to remove the control point and skip the steps b. and c.
The NEW state may signal that the control point has been added (e.g., as a result of executing step c.) to the plurality of control points of the parametric curve lately. e.g., within a defined timespan. Accordingly, the status indicator of a control point having the NEW state may indicate to maintain the control point and continue with executing the steps b. and c. Once the defined timespan in which a state of a control point is defined as NEW, the state of the control point may be changed to COASTED, UPDATED or OUT-OF-REACH respectively.
The OUT-OF-REACH state may signal that the control point is no longer reachable/detectable by the sensors of the vehicle. This may be the case if the distance of the vehicle to the control point is larger than the reach of the sensor (e.g., radar, camera etc.) (e.g., a distance between the control point and the vehicle being above an out-of-reach threshold) or the control point not being within a predefined area of interest surrounding the vehicle (e.g., a polygon) which can be determined by a (combined) field of view of the sensor(s) of the vehicle. Accordingly, the status indicator of a control point having the OUT-OF-REACH state may indicate to remove the control point and skip the steps b. and c.
In addition, a control point's state may be associated with an uncertainty factor. In this context, a high level of uncertainty may describe a situation in which the method is not sure whether a control point is still describing a part of the actual free space boundary of the physical environment or not. The latter may be the case due to measurement inaccuracies of sensors of the vehicle. The uncertainty may be determined based on a covariance matrix describing the state of the control point. Accordingly, the status indicator of a control point may indicate to remove or maintain the control point based on the uncertainty (e.g., removing if the uncertainty is too high etc.).
Providing a wide range of conditions increases the accuracy of determining whether a control point may be removed. Therefore, only control points are kept which are required for maintaining or improving approximation quality. As a result, the efficiency of the free space boundary determination is further increased resulting in an optimized memory consumption since only control points are maintained that are indeed required.
In general, the purpose of the status evaluation step 5300a is to determine a status indicator for each control point of the plurality of control points. The status indicator may indicate whether the control point is to be removed or maintained based on an (evaluated) state of the control point (e.g., COASTED, UPDATED, NEW, OUT-OF-REACH). In this context, evaluation may refer to determining the current state of a control point.
In the following, the determining of whether the current state of a control point is UPDATED or COASTED, is further described based on
This process is further described with respect to
With respect to the upper diagram of
With respect to the lower diagram of
For illustration,
Control Point Adjustment
In the following, step 5300b, called “control point adjustment”, is further described based on
The shape complexity (which may also be referred to as modification relevance) of a section/area of the parametric curve may be rated high if the parametric curve has, for example, tight corners or curves or other irregular shapes. This may be an indicator that the shape of the corresponding part of the free space boundary, and thus of the parametric curve, is complex. In such a case, adding a new control point in this complex area (e.g., an area of high modification relevance) of the parametric curve may increase the approximation quality of the free space boundary by the parametric curve. There are different ways of the control point adjustment: adding, removing, changing coordinates (e.g., moving) and merging. Adding means adding a new control point (or more) between two neighboring control points 8010a-c. Removing comprises removing an indicated control point 8010a-j. Changing coordinates comprises directly repositioning a control point 8010a-j by changing its respective coordinates. Merging comprises merging two neighboring control points 8010a-j into one new control point.
A position at which a new control point is added may be determined based on the positions of the two control points in between which the new control point is to be added. The position may also be determined based on more than two control points (e.g., based on a number of control points which are in a predefined vicinity). This enables the parametric curve to approximate the free space boundary more precisely. As a result, the approximation quality may be increased.
For example, the position of the new control point may be determined based on the mean of the positions of the two control points (e.g., the control point and the successor control point) in between which the new control point is to be added. This may allow for an optimized position of the new control point. This is because a position right in the middle of the two control points may allow the parametric curve to be fitted to the actual free space boundary in an appropriate way. As a result, the approximation quality may be increased.
In some cases, merging of two consecutive control points may be reasonable. This may be the case if the two control points are, for example, located closely next to each other, e.g., the distance between the two control points is less than a merging threshold. In some cases, merging of the two control points may be more advantageous than deleting one of the two control points. The reason for this may be that by merging the two control points the information value of both control points is essentially kept. As a result, the approximation quality of the parametric curve may be maintained or even increased, by at the same time reducing the amount of control points to be stored.
The merging operation may be implemented as a two-step approach, where the two consecutive points are removed, and a new control point is added with the position of the replacement control point being based on the positions of the two removed control points. This may for example be done by taking the mean of the positions. Accordingly, the merging operation may be implemented by using the existing add and remove operations to avoid unnecessary complexity, while maintaining the information value of both control points.
In case it is determined that a new control point is to be added within a first and a second control point and in case it is determined that the second control point is to be removed, changing the coordinates of the second control point may be beneficial. This is because otherwise, two operations, namely removing the second and adding a new control point would be required, which may have a negative effect on the computational complexity of the method. Therefore, instead of removing the second control point and adding a new control point at a corresponding position, the method may decide to move (e.g., re-position by e.g., directly changing the coordinates of) the second control point to the corresponding position.
Control Point Adjustment: Modification Indicator
The decision whether to add, remove, reposition or merge control points 8010a-j is indicated by a modification indicator. Additionally, or alternatively, the decision whether to add, remove, reposition or merge control points 8010a-j may be indicated if one or more of the conditions described with respect to the corresponding embodiments are met. The modification indicator is a control point parameter, filtered in time. It reflects a parametric curve modification relevance affected by a control point. Its range may be defined from −1.0 to 1.0. The lowest possible value (e.g., −1.0) indicates the lowest possible modification relevance and that a corresponding control point should be removed. By contrast, the highest possible value (e.g., 1.0) indicates the highest possible modification relevance and that a new control point should be added. It is to be understood that other values of the indicators or corresponding bounds are also included by the present disclosure and that the disclosed values are merely examples.
In an example, the modification indicator is defined as follows:
SCi(k)=SCi(k−1)·(1.0−filterfactor)+rawSCi(k)·filter_factor Equation (1)
The initial value of the modification relevance parameter for each control point is the same and equals zero (SC(0)=0.0). The present algorithm supports up to four different types of shape complexity indicators: distance complexity indicator (DC), corresponding footpoint complexity indicator (CFC), angle complexity indicator (AC) and position modification indicator (PM). In the following example, all four indictors are used at once. However, the algorithm may also be applied by only using one, two or three of these indicators. In some aspects, in which only one or more of the DC, AC and CFC is used (e.g., the PM is not used), the modification indicator may be a shape complexity indicator and the modification relevance may be a shape complexity.
The raw value of modification relevance is calculated once for each iteration and may be a function of up to four components, namely DC, CFC, PM and AC.
While the implementation described by equation 1-3 is based on these four indicators, it is the value of CFC indicator on which the modification indicator SCi(k) mainly depends. As one can see from equation 2, for CFC values below or equal to zero, the AC indicator value is no longer part of the equation. This is because a CFC value below zero indicates that the parametric curve is (already) very well fitted to the corresponding control point (e.g., control point 8010f), which may be the case for parts of the parametric curve, which are of low complexity (e.g., a straight boundary line). Accordingly, the AC indicator may be neglected.
Should the CFC value be larger than zero, this may be an indication that the parametric curve is not (yet) well fitted to the corresponding control point (e.g., control point 8011g). This may be the case for parts of the parametric curve, which are of high complexity (e.g., a curve). Accordingly, the AC indicator considering the angle is of importance.
Control Point Adjustment: Distance Complexity Indicator
The distance complexity indicator is responsible for preventing too long parametric curve parts based on the distance between two neighboring (adjacent) control points (e.g., a control point and its successor or its predecessor). It is estimated as a scaled value from range (DClow, DChigh) to range (0, 1) with saturation.
In an example, the lower distance complexity bound may be 0, the upper distance complexity bound may be 1, the lower distance limit may be defined as DClow and the upper distance limit may be defined as DChigh. Should the determined distance be smaller or equal to DClow, the value of the distance complexity indicator would be set to 0. This may refer to the lowest distance complexity possible. Should the determined distance be larger than or equal to DChigh, the distance complexity indicator would be set to 1. This may refer to the highest distance complexity possible. Should the determined distance lie between the value of DClow and DChigh (e.g., the determined distance is larger than DClow and smaller than DChigh), the value of the distance complexity indicator would be between the lower distance complexity bound (e.g., 0) and the upper distance complexity bound (e.g., 1).
Control Point Adjustment: Corresponding Footpoint Complexity Indicator
The idea behind the corresponding footpoint complexity indicator is that a small distance between a control point and its corresponding footpoint indicates a sufficient number of control points for representing the local curvature of the parametric curve. It is estimated as scaled value from range (CFClow, CFChigh) to range (−1, 1) with saturation.
In an example, the lower footpoint distance complexity bound may be −1, the upper footpoint distance complexity bound may be 1, the lower footpoint distance limit may be defined as CFClow and the upper footpoint distance limit may be defined as CFChigh. Should the determined footpoint distance be smaller or equal to CFClow, the value of the footpoint complexity indicator would be set to −1. This may refer to the lowest footpoint complexity possible. Should the determined footpoint distance be larger than or equal to CFChigh, the footpoint complexity indicator would be set to 1. This may refer to the highest footpoint complexity possible. Should the determined footpoint distance lie between the value of CFClow and CFChigh (e.g., the determined footpoint distance is larger than CFClow and smaller than CFChigh), the value of the footpoint complexity indicator would be between the lower footpoint distance complexity bound (e.g., −1) and the upper footpoint distance complexity bound (e.g., 1).
Footpoint Determination
In the following, determining a footpoint corresponding to a control point as well as the corresponding footpoint distance is explained in detail with respect to
As can be seen,
The S-domain value of the control point 10100 is 0.1. According to the first 1D B-parametric curve, the longitudinal value 10300 of the control point 10100 is 0. In order to determine the longitudinal value 10300 of the corresponding footpoint 10200, the longitudinal value 10300 of the first 1D B-parametric curve is determined for the s-domain value=0.1, which may ˜0.7. The same procedure is repeated for the lateral value 10400. While the lateral value 10400 of the control point is 1, the lateral value 10400 of the second 1D-B-parametric curve for the s-domain value=0.1 may be −1.1. As a result, the corresponding footpoint 10200 may have the coordinates (0.7, 1.1).
Therefore, the footpoint distance (e.g., the (Euclidean) distance between the control point 10100 and its corresponding footpoint 10200) may be ˜0.71.
Control point adjustment: Angle complexity indicator
The angle complexity indicator is estimated as a scaled value from range (AClow, AChigh) to range (0, 1) with saturation.
In an example, the lower angle complexity bound may be 0, the upper angle complexity bound may be 1, the lower angle limit may be defined as AClow and the upper angle limit may be defined as AChigh. Should the determined angle be smaller or equal to AClow, the value of the angle complexity indicator would be set to 0. This may refer to the lowest angle complexity possible. Should the determined angle be larger than or equal to AChigh, the angle complexity indicator would be set to 1. This may refer to the highest distance complexity possible. Should the determined angle lie between the value of AClow and AChigh (e.g., the determined distance is larger than AClow and smaller than AChigh), the value of the angle complexity indicator would be between the lower angle complexity bound (e.g., 0) and the upper angle complexity bound (e.g., 1).
Control Point Adjustment: Position Modification Indicator
The position modification indicator (PM) indicates a relation between a control point and a position of the vehicle. The PM may be determined by determining a relative position of the control point to towards the vehicle. Determining the PM may comprise determining a distance between the position of the vehicle and the position of the control point. Additionally or alternatively, determining the PM may comprise determining an angle between the position of the vehicle and the position of the control point.
By determining the distance, the relative position of the control point towards the position of the vehicle can be evaluated. If the distance is below a threshold, the position modification indicator may be set to a high modification relevance. Accordingly, if a control point is relatively close to the vehicle, the corresponding section of the parametric curve affected by the control point may be considered highly relevant (e.g., a high approximation quality is required for this section). If the distance is above a threshold, the position modification indicator may be set to a low modification relevance. Accordingly, if a control point is relatively far away from the vehicle, the corresponding section of the parametric curve affected by the control point may be considered less relevant (e.g., a high approximation quality is not required for this section). The threshold may be dependent on movement information of the vehicle (e.g., the threshold may be increased or decreased based on movement information of the vehicle). Movement information may comprise one or more of speed of the vehicle, orientation of the vehicle (e.g., yaw of the vehicle), intended navigation direction of the vehicle. For example, a value of the threshold may vary depending on the speed of the vehicle. E.g., if the vehicle speed is high (e.g., above a speed threshold), the threshold may have a higher value. If the vehicle speed is low (e.g., below the speed threshold), the threshold may have a lower value.
By additionally or alternatively determining the angle between the position of the vehicle and the position of the control point, the relative position of the control point towards the vehicle can be evaluated. If the angle is inside a predefined interval, the position modification indictor may be set to a high modification relevance. The predefined interval may comprise an upper angle limit and a lower angle limit. A range of the predefined interval may be dependent on the movement information of the vehicle. For example, based on the speed of the vehicle, the range may be higher or lower. The angle may be determined based on the position of the control point, the position of the vehicle and additionally based on the orientation of the vehicle. E.g., the direction towards which the vehicle is oriented may represent a 0 degree angle around which the predefined interval may be constructed. It may also be possible than more than one predefined interval is defined and the position modification indicator will be determined based on whether the angle is inside or outside the one or more predefined intervals (e.g., if the angle is inside one of the one or more predefined intervals, the position modification indicator may be set to a high modification relevance, or the modification indicator may be set to a low modification relevance if the angle is outside each predefined interval of the one or more predefined intervals).
In an example, if the vehicle is steered to the left, a region of interest which may determine the predefined interval, may be rotated to the left to consider one or more control points located essentially on the left side of the vehicle. In addition or alternatively, a left boundary of the region of interest may be rotated to the left such that the region of interest is increased. Hence, the predefined interval (in terms of an angle value) is increased. To avoid a region of interest becoming to large, the rotation of the left boundary may be compensated by also rotating the right boundary to the left, but with a smaller rotation value used for rotating the left boundary. Equivalently, the region of interest may be adjusted when the vehicle steers to the right.
Control Point Adjustment: Removal of Control Point
A control point may be removed if the following condition is met:
SCi(k)<thremoval
where
thremoval∈−1,1 Equation (8)
and where thremoval is an adjustable threshold value.
In more detail, a control point 8010a-j may be removed from the set of control points 8010a-j if a part of the parametric curve affected by a control point 8010a-j is considered as being smooth (e.g., having a low rated modification relevance or shape complexity). Such a low rated modification relevance may indicate that the corresponding area is already covered with enough or even too many control points 8010a-j. Accordingly, the control point 8010a-j under evaluation may be removed from the set of control points 8010a-j without reducing the approximation quality of the corresponding parametric curve 8020.
It is to be understood that equations 1 to 7 refer to one possible implementation of how to determine whether the modification relevance of the parametric curve in the area affected by the evaluated control point is rated low (i.e., SCi(k)<thremoval).
Accordingly, the modification relevance may also be determined using only one or more of the indicators (DC, CFC, AC, PM). It may also be possible to determine the modification relevance by using a more general calculation concept of the four indicators. Corresponding examples are described in the following. It is to be understood that aspects of the following examples may also be combined.
In the following, an example in which a control point is removed using the equations 1-7 is given in the following with respect to
In a first step, the value of the CFC indicator may be determined. It is assumed that CFClow=0.5 and CFChigh=1.
As one can see, control point 8010d and the corresponding footpoint have the same position. Accordingly, a footpoint distance x between both positions would be 0. As a result, the value of the CFC indicator would be −1.
In a second step, the value of the DC indicator is determined. It is assumed that DClow=1.5 and DChigh=3 and that the distance x (e.g., dist34) between the successor control point 8010e and the control point 8010d is 1.4. As a result, the value of the DC indicator would be 0.
For equation 2 follows f(0, −1)=−1+0=−1.
For equation 3 follows rawSC=min(max(−1, −1), 1)=−1.
As a result, the modification indicator for control point 8010d would be SC8010d(1)=−1. For a thremoval=−0.9 the modification indicator for control point 8010d would be smaller than the removal threshold and could be removed.
In a further example, the rating of the modification relevance of parametric curve 8020 affected by a control point under evaluation may be rated low if an angle between a predecessor control point of the control point under evaluation, the control point under evaluation itself and the successor control point is within a specified removal interval and/or a distance between the predecessor control point and the successor control point is less than (or equal to) a control point removal threshold and/or a distance between the control point under evaluation and a corresponding footpoint is less than a control-point-to-footpoint threshold. These three consecutive control points may be referred to as a triplet. Out of such a triplet, only the middle control point may be removed. The removal interval may be specified as a range of angle values between a first angle value (lower limit) and a second angle value (upper limit). Alternatively, the removal interval may be specified as a combination of a mean angle value and a corresponding variance angle value. Instead of determining that the angle is within the specified removal interval, it may be possible to determine whether the angle is sufficiently close to a reference angle value. This may be done by determining the absolute value of the difference between the determined angle and the reference angle and determining whether the difference is smaller than a threshold.
The modification indicator may be determined based on the angle, corresponding footpoint, and/or the distance. A modification relevance rating may be rated low if the modification indicator is below a low modification relevance threshold (e.g., SCi(k)<thremoval). For example, a modification indicator may have values between −1.0 and 1.0, wherein −1.0 indicates the lowest modification relevance possible and 1.0 the highest modification relevance possible. In such an example, the low modification relevance threshold may be set to −0.9. Accordingly, the modification relevance rating of a control point 8010a-j is rated low if the modification indicator is less than or equal to −0.9. In a first example, the determined angle may be right in the middle of the specified removal interval. In a second example, the determined angle may be just within the specified removal interval (e.g., at a limit of the interval). Accordingly, the modification indicator of the first example may be lower than the local modification indicator of the second example.
In the example illustrated in
In a next step, a distance between the predecessor control point 8010c and the successor control point 8010e may be determined. This may be done by calculating the distance based on the positions of the predecessor control point 8010c and the successor control point 8010e. In the example shown, the distance is determined by calculating the distance between control point 8010c and control point 8010d, denoted as dist23, by calculating the distance between control point 8010d and control point 8010e, denoted as dist34, and by adding the two distances dist23 and dist34. In some cases, the distance may also be directly determined by calculating the distance between control point 8010c and control point 8010e as distance dist24 (not shown in
Control Point Adjustment: Adding a New Control Point
A control point may be added if the following condition is met:
thaddition<SCi(k)
where
thaddition∈−1,1 Equation (9)
and where thaddition is an adjustable threshold value.
In more detail, a control point 8010a-j may be added to the set of control points 8010a-j if a part of parametric curve 8020 affected by (e.g., around) a control point under evaluation is considered as having a high modification relevance (e.g., high rated in terms of modification relevance). Such a high rated modification relevance may indicate that the corresponding part of parametric curve 8020 is not covered by sufficient control points 8010a-j. Accordingly, a new control point 8010a-j may be added to the set of control points 8010a-j to increase the approximation quality provided by parametric curve 8020.
It is to be understood that equations 1 to 7 refer to one possible implementation of how to determine whether the modification relevance of the parametric curve in the area affected by the evaluated control point is rated high (e.g., thaddition<SC(k)).
Accordingly, the modification relevance may also be determined using only one or two or three of the indicators (DC, CFC, AC, PM). Corresponding and further examples are described in the following in which only the DC, CFC and AC indicators are used. It is to be understood that aspects of the following examples may also be combined to determine the modification indicator.
An example in which a control point is added using the equations 1-7 is given in the following with respect to
In a first step, the value of the CFC indicator may be determined. It is assumed that CFClow=0.5 and CFChigh=1.
As one can see, the position of the control point 8010c and the corresponding footpoint are different. Accordingly, a foot point distance x between both positions may be 1. As a result, the value of the CFC indicator would be +1.
In a second step, the value of the DC indicator is determined. It is assumed that DClow=1 and DChigh 2 and that the distance x (e.g., dist23) between the control point 8010c and the successor control point 8010d is 2. As a result, the value of the DC indicator would be 1.
As the value of the CFC indicator is larger than 0, in a third step, the value of the AC indicator is determined. In this example, it is assumed that the corresponding AC indicator determination would result in the value of the AC indicator being 1.
For equation 2 follows f(1, 1, 1)=1·1+1=2.
For equation 3 follows rawSC=min(max(2, −1), 1)=1.
As a result, the modification indicator for control point 8010c would be SC8010c(1)=1. For a thaddition=0.9 the modification indicator for control point 8010c would be larger than the addition threshold and a new control point would be added.
In an example, a rating of a modification relevance of parametric curve 8020 around a control point under evaluation may be rated high if an angle between a predecessor control point of the control point under evaluation, the control point under evaluation itself and the successor control point of the control point under evaluation is outside of a specified addition interval and/or a distance between the predecessor control point and the control point and/or a distance between the control point and the successor control point is above a control point addition threshold and/or a distance between the control point under evaluation and a corresponding footpoint is larger than a control-point-to-footpoint threshold. These three consecutive control points may be referred to as a triplet. In such a triplet, a new control point may be added between the predecessor control point and the control point under evaluation and/or between the control point under evaluation and the successor control point. A position of the new control point, which is to be added, may be determined based on a position of the predecessor control point and a position of the control point or the position of the control point and a position of the successor control point.
The addition interval may be specified as a range of angle values between a first angle value (lower limit) and a second angle value (upper limit). Alternatively, the addition interval may be specified as a combination of a mean angle value and a corresponding variance angle value. Instead of determining that the angle is outside the specified addition interval, it may be possible to determine whether the angle is sufficiently far away from a reference angle value. This may for example be done, by determining the absolute value of the difference between the determined angle and the reference angle and determining whether the difference is larger than a threshold.
In some cases, a modification indicator may be determined based on the angle and/or the distance. The modification relevance is rated high if the modification indicator is above a high modification relevance threshold. For example, a modification indicator may have values between −1. and 1.0, wherein −1.0 indicates the lowest local modification relevance possible and 1.0 the highest local modification relevance possible. In such an example, the high modification relevance threshold may be set to +0.9. Accordingly, the modification relevance rating of a control point is rated high if the modification indicator is larger than or equal to 0.9. The value of the indicator may depend on a difference between the determined angle and one of the limit values of the specified addition interval. In a first example, the difference between the determined angle and the limit value of the specified addition interval may be 30 degree. In a second example, the difference between the determined angle and the limit value of the specified addition interval may be 20 degree. Accordingly, the modification indicator of the first example may be higher than the local modification indicator of the second example.
In the example shown in
In a second step, it may be determined whether a new control point is added between the control points 801b and 8010c and/or between the control points 8010c and 801d. Therefore, a first distance between the predecessor control point 801b and the control point 8010c and a second distance between the control point 7010c and the successor control point 8010d is determined. This may for example be done by calculating the first/second distance based on the positions of the predecessor control point 801b and the control point under evaluation 8010c and/or the control point under evaluation 801c and the successor control point 801d. In the example shown, the first distance is determined by calculating the distance between control point 801b and control point under evaluation 801c, denoted as dist12, as well as the second distance between control point 8010c and control point 801d, denoted as dist23. The distance between two control points may be calculated using the Euclidean distance. In the shown example, the positions of control point 801b, 8010c and 8010d in cartesian coordinates may be (1,2), (2,4) and (3,3). Accordingly, the calculation of the distances may result in dist12=2.2 and dist23=1.4. Accordingly, in an example in which the control point addition threshold equals 2, the distance dist12 between the control point 801b and the control point 8010c is equal to or larger than the control point addition threshold. Therefore, a new control point may be added between the control points 801b and 8010c. The distance dist23 between the control points 801c and 8010d, however, is less than the control point addition threshold. Therefore, no new control point is added between the control points 801c and 8010d.
A position of the new control point, which is to be added, may be determined based on the position of the two control points in between which the new control point is to be added. The position may be determined using the mean of the position of the two control points in between which the new control point is to be added. In the example illustrated with respect to
Control Point Adjustment: Merging Control Points or Changing Coordinates
If two control points are close to each other, e.g., the distance between them is below a distance threshold, the two control points may be merged. For example, the distance threshold may be set to 1 and the distance dist23 between control points 8010c and 8010d is 0.8, then, the control points 8010c and 8010d may be merged.
Changing coordinates comprises directly repositioning a control point. This may refer to moving the control point to another section of the spline.
After having performed the control point adjustment according to step 5300, the algorithm may move to step 5400.
Further Cycle
In the following, step 5400, called “further cycle?”, is further described. If the vehicle 3010 is moving, new measurements by means of the sensors of the vehicle 3010 may be conducted constantly due to for example a changing environment. Hence, new measurements will be received that require a update of spline. Therefore, when it is determined that the vehicle is moving, it may be decided to move to step 5100 and to start a further cycle of the algorithm.
When, for example, the engine of the vehicle 3010 or the corresponding vehicle assistance system executing the algorithm 5000 is turned off, the algorithm may move to step 5500. This may also be the case when the vehicle 3010 has stopped moving and no further measurements are conducted.
Suspend
In the following, step 5500, called “suspend”, is further described. If the algorithm has reached step 5500, it may suspend execution. However, execution may be resumed if, for example, the engine of vehicle 3010 or the corresponding vehicle assistance system executing the algorithm 5000 is turned on again. In this case, the algorithm may move to step 5100 to start a further cycle.
Improved Parametric Curve
As can be seen, the distribution of the control points has been optimized such that only a small number of control points is used in areas where the complexity is low. For example, on the top and the left side, where parametric curve 9000 essentially forms a straight line, a significantly reduced number of control points is set by at the same time providing essentially the same approximation quality as parametric curve 4050 does.
By contrast, in the area around the inward indentation 3070 of environment 3000, an increased number of control points is used to maintain a high approximation quality. Hence, the disclosed algorithm uses an increased number of control points in areas with high complexity, whereas the amount of control points in areas with low complexity is reduced. This leads to an efficient usage of control points.
As a result, a movement instruction affecting a function of the vehicle assistance system may be efficiently determined. A movement instruction may be a corresponding path planning result based on the free space, which is approximated by the parametric curve. As the approximation quality and/or the memory consumption of the parametric curve is improved, the corresponding movement instruction may be generated more efficiently (e.g., more precisely and/or faster). Accordingly, a corresponding vehicle assistance system receiving the movement instruction may move the vehicle according to the movement instruction (e.g., affect the movement of the vehicle). In addition or as an alternative, a parking aid system may issue the vehicle to park (e.g., move) into a corresponding parking slot based on the generated movement instruction without a collision. However, the parametric curve may just be displayed to a user for providing assistance for maneuvering the vehicle.
Improved Parametric Curve
Accordingly, next to the relative position of a control point towards the position of the vehicle also the corresponding movement information of the vehicle (e.g., speed of the vehicle, yaw of the vehicle, intended navigation direction of the vehicle etc.) may be considered when determining the position modification indicator. In the present example, in which the vehicle intends to park into the parking spot as indicated by the dotted line, the position modification indicator indicating the relative position of control point 11100 towards the position of the vehicle may indicate a high modification relevance. The reason for this may be that a distance between the control point 11100a and the position of the vehicle 3010 may be below a threshold.
In contrast, the position modification indicator indicating the relative position of control point 11200 or 11300 towards the position of the vehicle may indicate a low modification relevance. The reason for this may be that a distance 11300a between the control point 11300 and the position of the vehicle 3010 may be above a threshold or that a distance 11200a between the control point 11200 and the position of the vehicle 3010 may be above a threshold.
The threshold may refer to a distance value. The threshold may be different for each control point of the plurality of control points as indicated by the light grey area. For example, the threshold 11200b for the distance 11200a between the position of the vehicle 3010 and the control point 11200 may be different than the threshold 11300b for the distance 11300a between the position of the vehicle 3010 and the control point 11300. The position of the vehicle 3010 may relate to a center position of the vehicle. Alternatively the position of the vehicle 3010 may relate to the center position of the vehicle plus an offset value as explained in further details with respect to
After the modification, one can see that the plurality of control points area distributed in a way that a density of control points within the light grey area is higher than outside of the light grey area. In this light grey area within the physical environment a higher approximation quality is necessary (e.g., due to the intended parking in the parking slot). This light grey area may also be referred to as area of increased control points density. Determining the area of increased control is explained with respect to
Area of Increased Control Points Density
As one can see, the area of increased control points density 12000 represents an area within the physical environment and around a vehicle 3010 in which a high approximation quality is necessary. Even though the present example illustrates the area 12000 having a round shape (e.g., circle, ellipse), the area 12000 may also have other geometric shapes (e.g., square, rectangle etc.). In the illustrated example, the area 12000 may be defined based on three values. A first value may be a center position of the area 12000. This center position of the area 12000 may be the same as the position of the vehicle 3010 or may be the position of the vehicle plus an offset (e.g. a longitudinal offset as illustrated). The offset may depend on movement information of the vehicle. The second and third value may be a semi-major axis a and a semi-minor axis b, both originating (e.g., starting) from the center position of the area 12000. A length of the semi-minor axis b may be constant or may be variable (e.g., dependent on movement information of the vehicle). A length of the semi-major axis a may be constant or may be variable (e.g., dependent on movement information of the vehicle). Accordingly, the shape (in the shown example round) and a size of the area 12000 may depend on movement information of the vehicle 3010. The following equation illustrates an example implementation of how to determine the area 12000:
wherein b is the semi-minor axis of the area 12000, a is the semi-major axis of the area 12000, x (e.g., 3) is a scaling factor for the length of the semi-major axis a if the vehicle moves faster than a speed threshold, y is a scaling factor for the length of the semi-major axis a if the vehicle moves slower than a speed threshold, 0 is the longitudinal offset added on the position of the vehicle 3010 to arrive at the center position of the area 12000 (e.g., in this example the center of the ellipse or circle), z is an offset factor (e.g., 0.8), v is a current speed of the vehicle (e.g., as comprised in the movement information of the vehicle) and the speed threshold represents a speed value (e.g., 30 km/h) based on which it can be determined whether the vehicle moves fast or slow. A negative speed threshold or negative v value may refer to the vehicle driving backwards.
As one can see from the equation to determine the area 12000, if the vehicle 3010 moves at higher speed (e.g., faster than 30 km/h) the area may have a rather elliptical shape (as illustrated), because the semi-major axis a will have a larger value. Whereas the area may have a rather circular shape if the car moves at slower speed (e.g., slower than 30 km/h), because the value of the semi-major axis a will have nearly the same value or the same value as the semi-minor axis b. As one can further see from the equation to determine the area 12000, The value of the offset 0 may depend on the movement information of the vehicle 3010. (e.g., moving direction and speed). Accordingly, determining the position modification indicator may comprise determining an area within the physical environment (e.g., the area 12000) associated with the position of the vehicle 3010. The associated position may refer to the center position of the area. The center position of the area may be the same as the position of the vehicle 3010 or may be determined by adding an offset (e.g., offset 0) on the center position of the vehicle. Additionally, the position modification indicator may indicate a high modification relevance for a section of a parametric curve affected by a control point, if the control point lies within the area (e.g., the area overlaps the position of the control point) or may indicate a low modification relevance for the section of the parametric curve affected by the control point, if the control point lies outside the area (e.g., the area does not overlap the position of the control point). The following equation illustrates an example of how to determine a position modification indicator for a control point i using information about the determined area:
wherein PMi indicates the position modification indicator for control point i, valueh is a value indicating a high modification relevance, valuel is a value indicating a low modification relevance, q is the position of the control point i with qx,i being the longitudinal (e.g., x coordinate) position of control point i and gy,i being the lateral (e.g., y coordinate) position of control point I, a is the length of the semi-major axis of the area, b is the length of the semi-minor axis of the area and e is the center position of the area with ex being the longitudinal (e.g., x coordinate) position of the center position of the area and ey being the lateral (e.g., y coordinate) position of the center position of the area. As one can see, depending on whether the equation is smaller than or equal to a threshold (e.g., predefined to a value such as 1), the value of the PMi may be set accordingly.
Alternative Implementation
As explained throughout the application, the modification indicator may be determined using any combination of the herein described indicators (AC, DC, CFC, PM). In an implementation in which only one or more of AC, DC and CFC is/are used for determining the modification indicator, the modification indicator may be referred to as shape complexity indicator. In the following, certain aspects of this alternative implementation are explained.
A 1st aspect of this implementation relates to a computer-implemented method in a vehicle assistance system for determining a free space boundary of a physical environment surrounding a vehicle. The method comprising the steps of: a. obtaining a parametric curve approximating spatial information representing the free space boundary, wherein the parametric curve is defined by a plurality of control points; b. determining a shape complexity indicator for a control point of the plurality of control points, the shape complexity indicator indicating a shape complexity of a section of the parametric curve affected by the control point; and c. modifying the section of the parametric curve affected by the control point based on the shape complexity indicator.
According to a 2nd aspect in the 1st aspect, modifying the section of the parametric curve affected by the control point comprises at least one of: increasing an amount of control points in the section of the parametric curve affected by the control point if the shape complexity indicator indicates a high shape complexity; decreasing the amount of control points in the section of the parametric curve affected by the control point if the shape complexity indicator indicates a low shape complexity.
According to a 3rd aspect in the 2nd aspect, increasing the amount of control points comprises at least one of: adding a new control point in the section of the parametric curve affected by the control point; moving a control point of the plurality of control points from another section of the parametric curve to the section of the parametric curve affected by the control point; and/or wherein decreasing the amount of control points comprises at least one of: removing the control point from the plurality of control points; moving the control point from the section of the parametric curve to another section of the parametric curve; merging the control point with another control point of the plurality of control points within the section of the parametric curve.
According to a 4th aspect in the 3rd aspect, adding the control point further comprises: adding the new control point between the control point and an adjacent control point.
According to a 5th aspect in any one of the 3rd to 4th aspects, the step of adding a new control point comprises adding the control point directly between the control point and the successor control point, or adding information associated with the new control point to an addition list; and/or wherein the step of removing the first control point comprises directly removing the first control point, or adding the first control point to a removal list.
According to a 6th aspect in any one of the 1st to 5th aspect, determining the shape complexity indicator for the control point according to step b. comprises at least one of: determining a distance complexity indicator comprising determining a control point distance between the control point and a successor control point; determining a footpoint complexity indicator comprising determining a footpoint corresponding to the control point, and determining a footpoint distance between the footpoint and the control point; determining an angle complexity indicator comprising determining an angle between the control point, the successor control point and a predecessor control point.
According to a 7th aspect in the 6th aspect, determining the distance complexity indicator further comprises: setting the distance complexity indicator to a value according to a lower distance complexity bound if the control point distance is lower than or equal to a lower distance limit, wherein the value according to the lower distance complexity bound indicates a lowest distance shape complexity; setting the distance complexity indicator to a value according to an upper distance complexity bound if the control point distance is greater than or equal to an upper distance limit, wherein the value according to the upper distance complexity bound indicates a highest distance shape complexity; setting the distance complexity indicator to a value lying between the upper distance complexity bound and the lower distance complexity bound if the control point distance is greater than the lower distance limit and smaller than the upper distance limit, wherein the value lying between the upper distance complexity bound and the lower distance complexity bound indicates an intermediate distance shape complexity.
According to an 8th aspect in the 6th to 7th aspect, determining the footpoint complexity indicator further comprises: setting the footpoint complexity indicator to a value according to a lower footpoint distance complexity bound if the footpoint distance is lower than or equal to a lower footpoint distance limit, wherein the value according to the lower footpoint distance complexity bound indicates a lowest footpoint shape complexity; setting the footpoint complexity indicator to a value according to an upper footpoint distance complexity bound if the footpoint distance is greater than or equal to an upper footpoint distance limit, wherein the value according to the upper footpoint distance complexity bound indicates a highest footpoint shape complexity; setting the footpoint complexity indicator to a value lying between the upper footpoint distance complexity bound and the lower footpoint distance complexity bound if the footpoint distance is greater than the lower footpoint distance limit and smaller than the upper footpoint distance limit, wherein the value lying between the upper footpoint distance complexity bound and the lower footpoint distance complexity bound indicates an intermediate footpoint shape complexity.
According to a 9th aspect in any one of the 6th to 8th aspect, determining the angle complexity indicator further comprises: setting the angle complexity indicator to a value according to a lower angle complexity bound if the angle is lower than or equal to a lower angle limit, wherein the value according to the lower angle complexity bound indicates a lowest angle shape complexity; setting the angle complexity indicator to a value according to an upper angle complexity bound if the angle is greater than or equal to an upper angle limit, wherein the value according to the upper angle complexity bound indicates a highest angle shape complexity; setting the angle complexity indicator to a value lying between the upper angle complexity bound and the lower angle complexity bound if the angle is greater than the lower angle limit and smaller than the upper angle limit, wherein the value lying between the upper angle complexity bound and the lower angle complexity bound indicates an intermediate angle shape complexity.
According to a 10th aspect in any one of the 6th to 9th aspect, determining the footpoint corresponding to the control point comprises: determining a S-domain value of the control point; determining a longitudinal value of the footpoint in a longitudinal 1D representation of the parametric curve based on the S-domain value of the control point; determining a lateral value of the footpoint in a lateral 1D representation of the parametric curve based on the S-domain value of the control point; setting the footpoint at a location on the parametric curve according to the longitudinal value and the lateral value.
According to an 11th aspect in any one of the 6thnd to 10th aspect, determining the shape complexity further comprises the steps of: calculating a function value based on the distance complexity indicator, the footpoint complexity indicator and/or the angle complexity indicator; mapping the function value to a value range having a lower complexity bound and an upper complexity bound; wherein the lower complexity bound is preferably −1 and the upper complexity bound is preferably 1.
According to a 12th aspect in any one of the 1st to 11th aspect, the method comprises: repeating, for each control point of the plurality of control points, steps b. and c.
According to a 13th aspect in any one of the preceding aspects, the method further comprises: determining, prior to step b., a status indicator based on measurement data, indicating whether the control point is required for defining the parametric curve to represent the free space boundary; and removing the control point and skipping steps b. and c. if the status indicator indicates that the control point is not required; or maintaining the control point.
According to 14th aspects in the 13th aspects, the step of determining the status indicator for the control point of the plurality of control points comprises: receiving a measurement point from a sensor of the vehicle; determining whether the measurement point lies within a parametric curve support interval associated with the control point; if it is determined that the measurement point lies within the parametric curve support interval, setting the status indicator to indicate that the control point is required; and if it is determined that the measurement point does not lie within the parametric curve support interval, setting the status indicator to indicate that the control point is not required.
According to a 15th aspect in the 14th aspect, setting the status indicator to indicate that the control point is to not required may further depend on determining that a time-since-last-update threshold is exceeded.
According to a 16th aspect in any one of the 13th to 15th aspect, the step of determining a status indicator for the control point of the plurality of control points comprises: determining that a distance between the control point and the vehicle is above an out-of-reach threshold; and/or determining that the control point lies outside of a predefined area surrounding the vehicle; and setting the status indicator to indicate that the control point is not required.
According to a 17th aspects in any one of the 13th to 16th aspect, the method further comprises: repeating, for each control point of the plurality of control points the step of determining a status indicator for the control point of the plurality of control points, the step of removing the control point and skipping steps b. and c. if the status indicator indicates that the control point is not required, and the step of maintaining the control point and executing steps b. and c. if the status indicator indicates that the control point is required.
According to an 18th aspect in any one of the preceding aspects, obtaining the parametric curve according to step a. comprises: determining the parametric curve based on sensor data of at least one sensor of the vehicle; or receiving the parametric curve from a memory, which is operably connected to the vehicle assistance system.
According to a 19th aspect in any one of the preceding aspects, the method further comprises: determining an operating instruction based on the parametric curve affecting a function of the vehicle assistance system, wherein the function preferably comprises at least one of: displaying the parametric curve on a display of the vehicle; conducting a vehicle path planning; triggering a warning; affecting control of the vehicle during a parking process.
A 20th aspect concerns an apparatus comprising means configured to perform the method as described above.
A 21st aspect concerns a computer program comprising instructions, which when executed by a computer, causing the computer to perform the method as described above.
A 22nd aspect concerns a vehicle comprising the aforementioned apparatus of the 20th aspects.
Alternative Implementation
Further aspects of another alternative implementation, in which at least a position modification indicator (PM) is used to determine the modification indicator, are explained in the following.
An aspect of this implementation refers to a computer-implemented method in a vehicle assistance system for determining a free space boundary of a physical environment surrounding a vehicle. The method comprising the steps of: a. obtaining a parametric curve approximating spatial information representing the free space boundary, wherein the parametric curve is defined by a plurality of control points; b. determining a modification indicator for a control point of the plurality of control points, the modification indicator indicating a modification relevance of a section of the parametric curve affected by the control point, wherein determining the modification indicator comprises determining a position modification indicator indicating a relative position of the control point towards a position of the vehicle; and c. modifying the section of the parametric curve affected by the control point based on the modification indicator.
Modifying the section of the parametric curve affected by the control point based on the modification indicator may result in a parametric curve that better reflects the physical environment and thus the free space boundary. Increasing the approximation quality of the free space boundary may enable the vehicle to move around in the free space safer and more efficiently. The vehicle may be a car, a robot, a ship, an airplane or any other suitable locomotion device. A vehicle assistance system may be a semi- or fully autonomous driving system, an advanced driver assistance system (ADAS) or any other suitable assistance system usable for at least partly affecting control of the vehicle. It may be particularly useful to consider the relative position of the control point with respect to the position of the vehicle as this may allow to take into account control points that are of high relevance for the operation of the vehicle.
According to a further aspect, determining the position modification indicator comprises at least one of: determining a distance between the position of the vehicle and the position of the control point; and/or determining an angle between the position of the vehicle and the position of the control point.
It may be particularly useful to consider the relative position in terms of a distance and/or an angle of the control point with respect to the position of the vehicle as this may allow to consider control points that are close the vehicle and thus are more relevant to the operation of the vehicle compared to control points that are far away from the vehicle. The same applies to an angle. For example, control points that are located on a side of the vehicle may be particular relevant when the vehicle is conducting a parking operation as these control points might specifically affect the parking space intended to be used by the vehicle.
According to a further aspect, determining the position modification indicator further comprises at least one of: if the distance is below a threshold, setting the position modification indicator to a high modification relevance, or, if the distance is above a threshold, setting the position modification indicator to a low modification relevance; and/or if the angle is inside a predefined interval, setting the position modification indicator to a high modification relevance, or, if the angle is outside the predefined interval, setting the position modification indicator to a low modification relevance.
The additional conditions (e.g., the distance threshold or the angle interval) provide an efficient way of determining the modification relevance of the section of the parametric curve affected by the control point.
According to a further aspect, the method further comprises: if the control point is arranged in front of the vehicle according to a movement direction of the vehicle, increasing the threshold for the control point according to a movement speed of the vehicle.
It may be beneficial to increase the number of control points of the parametric curve in areas to which the vehicle is moving. These areas may be of particular relevance as they likely stronger affect the control of the vehicle compared to areas to which the vehicle does not drive. It may be further beneficial to increase the threshold according to the movement speed of the vehicle. Increasing the threshold according to the movement speed of the vehicle may allow to determine parts of the parametric curve that are further away from the vehicle in more detail at high movement speeds. The vehicle may thus obtain more precise information about the nature of its surroundings earlier, which it will reach sooner due to its high speed. This may, for example, initiate driving maneuvers earlier which might be necessary due to the higher movement speed.
According to a further aspect, the method further comprises adjusting a region of interest according to a yaw rate of the vehicle, wherein the region of interest determines the predefined interval.
This may allow to assign a high modification relevance to a control point that lies within a region of interest, e.g., a future moving direction of the vehicle. Adjusting the region of interest may comprise modifying the orientation of region of interest. In addition or alternatively, modifying may comprise increasing or decreasing a spread of the region of interest.
According to a further aspect, modifying the section of the parametric curve affected by the control point comprises at least one of: increasing an amount of control points in the section of the parametric curve affected by the control point if the modification indicator indicates a high modification relevance; decreasing the amount of control points in the section of the parametric curve affected by the control point if the modification indicator indicates a low modification relevance.
Increasing the amount of control points in a section having a high modification relevance may increase the approximation quality while decreasing the amount of control points in a section having a low modification relevance may reduce the computational resources for processing and/or storing the parametric curve.
According to a further aspect, increasing the amount of control points comprises at least one of: adding a new control point in the section of the parametric curve affected by the control point; moving a control point of the plurality of control points from another section of the parametric curve to the section of the parametric curve affected by the control point; and/or wherein decreasing the amount of control points comprises at least one of: removing the control point from the plurality of control points; moving the control point from the section of the parametric curve to another section of the parametric curve; merging the control point with another control point of the plurality of control points within the section of the parametric curve.
According to a further aspect, adding the control point further comprises: adding the new control point between the control point and an adjacent control point.
To improve the approximation quality, adding, removing, moving the control point or merging control points may allow adjusting the parametric curve such that control points may only be placed where necessary to adequately describe the free space boundary of the environment. By adding control points, sections of the parametric curve with a high modification relevance may be optimized to essentially match the shape of the free space boundary. By removing or merging control points that are not required to achieve a good approximation quality, memory and bandwidth necessary for storing and transmitting the parametric curve to other vehicles may be decreased. Moving (e.g., directly changing the coordinates of a control point and thud re-positioning the control point) may increase the efficiency of the method as a removal and addition of a new control point may be avoided.
According to a further aspect, the step of adding a new control point comprises adding the control point directly between the control point and the successor control point, or adding information associated with the new control point to an addition list; and/or wherein the step of removing the first control point comprises directly removing the first control point, or adding the first control point to a removal list.
A new control point may be added directly between the two control points, e.g., after determining that the new control point is to be added. Adding the new control point directly may have the advantage of increasing the degree of freedom of the curve in this area, which may result in an increase of approximation quality. Adding information associated with the new control point to an addition list may decrease complexity due to unchanged indexes until one iteration over the entire plurality of control points is finished. Accordingly, after such an entire iteration, new control points will be added according to the adding information included in the addition list. This may result in a decrease of execution duration and required computation resources. The same reasoning applies to the aspect of directly removing control points or adding them to a removal list. However, directly removing a control point may immediately decrease memory consumption.
According to a further aspect, determining the modification indicator for the control point further comprises at least one of: determining a distance complexity indicator comprising determining a control point distance between the control point and a successor control point; determining a footpoint complexity indicator comprising determining a footpoint corresponding to the control point, and determining a footpoint distance between the footpoint and the control point; determining an angle complexity indicator comprising determining an angle between the control point, the successor control point and a predecessor control point.
Considering at least one aspect (e.g., the distance complexity, footpoint complexity and/or angle complexity) when determining the modification relevance (in this aspect the modification relevance may also be described by a shape complexity) of the section of the parametric curve affected by the control point increases the accuracy of the determined modification indicator (in this aspect the modification indicator may also be described as a shape complexity indicator). Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the modification indicator can be made, which may result in a higher approximation quality or less memory consumption, since some control points that are not required for representing the free space boundary may be removed.
According to a further aspect, determining the distance complexity indicator further comprises: setting the distance complexity indicator to a value according to a lower distance complexity bound if the control point distance is lower than or equal to a lower distance limit, wherein the value according to the lower distance complexity bound indicates a lowest distance shape complexity; setting the distance complexity indicator to a value according to an upper distance complexity bound if the control point distance is greater than or equal to an upper distance limit, wherein the value according to the upper distance complexity bound indicates a highest distance shape complexity; setting the distance complexity indicator to a value lying between the upper distance complexity bound and the lower distance complexity bound if the control point distance is greater than the lower distance limit and smaller than the upper distance limit, wherein the value lying between the upper distance complexity bound and the lower distance complexity bound indicates an intermediate distance shape complexity.
Providing the above-described rules for determining the distance complexity indicator may allow an accurate mapping of distance values to complexity values for the distance complexity indicator. Accordingly, the indicator may precisely indicate the complexity introduced by the distance between control points. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the modification indicator can be made, which may result in a higher approximation quality or less memory required.
According to a further aspect, determining the footpoint complexity indicator further comprises: setting the footpoint complexity indicator to a value according to a lower footpoint distance complexity bound if the footpoint distance is lower than or equal to a lower footpoint distance limit, wherein the value according to the lower footpoint distance complexity bound indicates a lowest footpoint shape complexity; setting the footpoint complexity indicator to a value according to an upper footpoint distance complexity bound if the footpoint distance is greater than or equal to an upper footpoint distance limit, wherein the value according to the upper footpoint distance complexity bound indicates a highest footpoint shape complexity; setting the footpoint complexity indicator to a value lying between the upper footpoint distance complexity bound and the lower footpoint distance complexity bound if the footpoint distance is greater than the lower footpoint distance limit and smaller than the upper footpoint distance limit, wherein the value lying between the upper footpoint distance complexity bound and the lower footpoint distance complexity bound indicates an intermediate footpoint shape complexity.
Providing the above-described rules for determining the footpoint complexity indicator may allow for an accurate mapping of footpoint distance values to complexity values for the footpoint complexity indicator. Accordingly, the indicator may be able to precisely indicate the complexity introduced by the footpoint distance. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the modification indicator can be made, which may result in a higher approximation quality or less memory required.
According to a further aspect, determining the angle complexity indicator further comprises: setting the angle complexity indicator to a value according to a lower angle complexity bound if the angle is lower than or equal to a lower angle limit, wherein the value according to the lower angle complexity bound indicates a lowest angle shape complexity; setting the angle complexity indicator to a value according to an upper angle complexity bound if the angle is greater than or equal to an upper angle limit, wherein the value according to the upper angle complexity bound indicates a highest angle shape complexity; setting the angle complexity indicator to a value lying between the upper angle complexity bound and the lower angle complexity bound if the angle is greater than the lower angle limit and smaller than the upper angle limit, wherein the value lying between the upper angle complexity bound and the lower angle complexity bound indicates an intermediate angle shape complexity.
Providing the above-described rules for determining the angle complexity indicator may allow for an accurate mapping of angle values to complexity values for the angle complexity indicator. Accordingly, the indicator may precisely indicate the complexity introduced by the angle between control points. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the modification indicator can be made, which may result in a higher approximation quality or less memory required.
According to a further aspect, determining the footpoint corresponding to the control point comprises: determining a S-domain value of the control point; determining a longitudinal value of the footpoint in a longitudinal 1D representation of the parametric curve based on the S-domain value of the control point; determining a lateral value of the footpoint in a lateral 1D representation of the parametric curve based on the S-domain value of the control point; setting the footpoint at a location on the parametric curve according to the longitudinal value and the lateral value.
Providing a way of precisely determining the position (e.g., the coordinates) of the footpoint may provide an increased accuracy in determining the footpoint distance. As a result, the accuracy of the corresponding footpoint complexity may be increased, too.
According to a further aspect, determining the modification relevance further comprises the steps of: calculating a function value based on the position modification indicator, the distance complexity indicator, the footpoint complexity indicator and/or the angle complexity indicator; mapping the function value to a value range having a lower modification relevance bound and an upper modification relevance bound; wherein the lower modification relevance bound is preferably −1 and the upper modification relevance bound is preferably 1.
Providing the above-described rules for determining the modification indicator may allow for an accurate merging and mapping of the single values of the corresponding position modification indicator, angle, distance and/or footpoint distance complexity indicators. Accordingly, the modification indicator may precisely indicate the overall modification relevance of the section of the parametric curve affected by the control point. Accordingly, a more sophisticated decision on how to modify the section of the parametric curve affected by the control point based on the modification indicator can be made, which may result in a higher approximation quality or less memory required.
According to a further aspect, the method comprises: repeating, for each control point of the plurality of control points, steps b. and c.
Iterating over the entirety of control points of the plurality of control points and evaluating whether the section of the parametric curve affected by the corresponding control point has to be modified may increase the approximation quality and/or decreases the memory consumption for storing the parametric curve representation.
According to a further aspect, the method further comprises: determining, prior to step b., a status indicator based on measurement data, indicating whether the control point is required for defining the parametric curve to represent the free space boundary; and removing the control point and skipping steps b. and c. if the status indicator indicates that the control point is not required; or maintaining the control point.
Providing an additional status indicator for the control point may result in an increased execution efficiency of the parametric curve approximation. This is because the status indicator provides additional context information regarding the control point. The status indicator may indicate whether the control point is to be removed or maintained based on a state of the control point. Measurement data may include a newly received measurement point, a measured time since the last state update or information related to the control point's position (e.g., a distance between the control point and the vehicle or the control point lying outside of a predefined area surrounding the vehicle).
According to a further aspect, the step of determining the status indicator for the control point of the plurality of control points comprises: receiving a measurement point from a sensor of the vehicle; determining whether the measurement point lies within a parametric curve support interval associated with the control point; if it is determined that the measurement point lies within the parametric curve support interval, setting the status indicator to indicate that the control point is required; and if it is determined that the measurement point does not lie within the parametric curve support interval, setting the status indicator to indicate that the control point is not required.
According to a further aspect, setting the status indicator to indicate that the control point is to not required may further depend on determining that a time-since-last-update threshold is exceeded.
Determining whether a control point is affected (e.g., the measurement point lies within the corresponding parametric curve support interval) by a measurement point increases the accuracy of determining the state of the corresponding control point. Accordingly, if the control point is affected, the control point's state may be set to UPDATED, which may result in the status indicator indicating to maintain the point. If not, the control point's state may be set to COASTED, which may result (after exceeding the time-since-last-update threshold) in the status indicator indicating to remove the point.
According to a further aspect, the step of determining a status indicator for the control point of the plurality of control points comprises: determining that a distance between the control point and the vehicle is above an out-of-reach threshold; and/or determining that the control point lies outside of a predefined area surrounding the vehicle; and setting the status indicator to indicate that the control point is not required.
This may allow to efficiently determine whether the control point is in the OUT-OF-REACH state. If a control point is in the OUT-OF-REACH state, the control point may be regarded as not required for defining the parametric curve representing the free space boundary. This is because said control point may relate to a region of the physical environment which is no longer relevant for the vehicle assistance system (e.g., in terms of safety or navigation). Accordingly, the status indicator of a control point having the OUT-OF-REACH state may indicate to remove the control point and skip the steps b. and c.
According to a further aspect, the method further comprises: repeating, for each control point of the plurality of control points the step of determining a status indicator for the control point of the plurality of control points, the step of removing the control point and skipping steps b. and c. if the status indicator indicates that the control point is not required, and the step of maintaining the control point and executing steps b. and c. if the status indicator indicates that the control point is required.
Determining the status indicator for each control point may increase the execution speed of the presented method. This is because a control point may be removed based on the status indicator before the complexity of the parametric curve section affected by the control point is evaluated. Accordingly, the amount of control points, for which the modification indicator has to be determined, may be reduced.
According to a further aspect in any one of the preceding aspects, obtaining the parametric curve according to step a. comprises: determining the parametric curve based on sensor data of at least one sensor of the vehicle; or receiving the parametric curve from a memory, which is operably connected to the vehicle assistance system.
Using sensor data of the vehicle to determine the parametric curve is a reliable source of data, which describes the physical environment of the vehicle. Therefore, a parametric curve determined based on such data may achieve a high approximation quality. In case a corresponding parametric curve was already determined, receiving it from memory may be beneficial instead of re-determining it. Receiving it from memory may save computational resources, e.g., memory.
According to a further aspect, the method further comprises: determining an operating instruction based on the parametric curve affecting a function of the vehicle assistance system, wherein the function preferably comprises at least one of: displaying the parametric curve on a display of the vehicle; conducting a vehicle path planning; triggering a warning; affecting control of the vehicle during a parking process.
An operating instruction for the vehicle assistance system being determined on the optimized parametric curve may increase system efficiency and safety. As the parametric curve is optimized in terms of memory consumption the corresponding operating instruction may be determined faster. Furthermore, due to the high approximation quality, system/vehicle safety is ensured and increased.
A further aspect concerns an apparatus comprising means configured to perform the method as described above.
A further aspect concerns a computer program comprising instructions, which when executed by a computer, causing the computer to perform the method as described above.
A further aspect concerns a vehicle comprising the aforementioned apparatus.
Embodiments of the present disclosure may be realized in any of various forms. For example, in some embodiments, the present invention may be realized as a computer-implemented method, a computer-readable memory medium, or a computer system.
In aspects, the algorithm may be implemented in terms of a computer program which may be executed on any suitable data processing device comprising means (e.g., a memory and one or more processors operatively coupled to the memory) being configured accordingly. The computer program may be stored as computer-executable instructions on a non-transitory computer-readable medium.
In some embodiments, a non-transitory computer-readable memory medium may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of the method embodiments described herein, or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets.
In some embodiments, a computing device may be configured to include a processor (or a set of processors) and a memory medium, where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets). The device may be realized in any of various forms.
Embodiment 1. A computer-implemented method (5000) in a vehicle assistance system for determining a free space boundary (3040) of a physical environment (3000) surrounding a vehicle (3010), the method comprising the steps of: a. obtaining (5200) a parametric curve (3050) approximating spatial information representing the free space boundary (3040), wherein the parametric curve (3050) is defined by a plurality of control points (3060); b. determining a modification indicator for a control point of the plurality of control points (3060), the modification indicator indicating a modification relevance of a section of the parametric curve (3050) affected by the control point (3060), wherein determining the modification indicator comprises determining a position modification indicator indicating a relative position of the control point (3060) towards a position of the vehicle (3010); and c. modifying (5300) the section of the parametric curve (3050) affected by the control point (3060) based on the modification indicator.
Embodiment 2. The method of the preceding embodiment, wherein determining the position modification indicator comprises at least one of: determining a distance between the position of the vehicle and the position of the control point; and/or determining an angle between the position of the vehicle and the position of the control point.
Embodiment 3. The method of embodiment 2, wherein determining the position modification indicator further comprises at least one of: if the distance is below a threshold, setting the position modification indicator to a high modification relevance, or, if the distance is above a threshold, setting the position modification indicator to a low modification relevance; and/or if the angle is inside a predefined interval, setting the position modification indicator to a high modification relevance, or, if the angle is outside the predefined interval, setting the position modification indicator to a low modification relevance.
Embodiment 4. The method of embodiment 3, wherein the method further comprises: if the control point is arranged in front of the vehicle according to a movement direction of the vehicle, increasing the threshold for the control point according to a movement speed of the vehicle.
Embodiment 5. The method of any one of embodiments 3 or 4, wherein the method further comprises: adjusting a region of interest according to a yaw rate of the vehicle, wherein the region of interest determines the predefined interval.
Embodiment 6. The method of any one of the preceding embodiments, wherein modifying the section of the parametric curve (3050) affected by the control point (3060) comprises at least one of: increasing an amount of control points (3060) in the section of the parametric curve (3050) affected by the control point (3060) if the modification indicator indicates a high modification relevance; decreasing the amount of control points (3060) in the section of the parametric curve (3050) affected by the control point (3060) if the modification indicator indicates a low modification relevance.
Embodiment 7. The method of the preceding embodiment, wherein increasing the amount of control points (3060) comprises at least one of: adding a new control point (3060) in the section of the parametric curve (3050) affected by the control point (3060); moving a control point of the plurality of control points (3060) from another section of the parametric curve (3050) to the section of the parametric curve (3050) affected by the control point (3060); and/or wherein decreasing the amount of control points (3060) comprises at least one of: removing the control point (3060) from the plurality of control points (3060); moving the control point (3060) from the section of the parametric curve (3050) to another section of the parametric curve (3050); merging the control point (3060) with another control point of the plurality of control points (3060) within the section of the parametric curve (3050).
Embodiment 8. The method of any one of the preceding embodiments, wherein determining the modification indicator for the control point (3060) further comprises at least one of: determining a distance complexity indicator comprising determining a control point distance between the control point (3060) and a successor control point (3060); determining a footpoint complexity indicator comprising determining a footpoint (10200) corresponding to the control point (3060), and determining a footpoint distance between the footpoint (10200) and the control point (3060); determining an angle complexity indicator comprising determining an angle between the control point (3060), the successor control point (3060) and a predecessor control point (3060).
Embodiment 9. The method of the preceding embodiment, wherein determining the distance complexity indicator further comprises at least one of: setting the distance complexity indicator to a value according to a lower distance bound if the control point distance is lower than or equal to a lower distance limit, wherein the value according to the lower distance bound indicates a lowest distance shape complexity; setting the distance complexity indicator to a value according to an upper distance bound if the control point distance is greater than or equal to an upper distance limit, wherein the value according to the upper distance bound indicates a highest distance shape complexity; setting the distance complexity indicator to a value lying between the upper distance bound and the lower distance bound if the control point distance is greater than the lower distance limit and smaller than the upper distance limit, wherein the value lying between the upper distance bound and the lower distance bound indicates an intermediate distance shape complexity.
Embodiment 10. The method of any one of the preceding embodiments 8 to 9, wherein determining the footpoint complexity indicator further comprises at least one of: setting the footpoint complexity indicator to a value according to a lower footpoint distance bound if the footpoint distance is lower than or equal to a lower footpoint distance limit, wherein the value according to the lower footpoint distance bound indicates a lowest footpoint shape complexity; setting the footpoint complexity indicator to a value according to an upper footpoint distance bound if the footpoint distance is greater than or equal to an upper footpoint distance limit, wherein the value according to the upper footpoint distance bound indicates a highest footpoint shape complexity; setting the footpoint complexity indicator to a value lying between the upper footpoint distance bound and the lower footpoint distance bound if the footpoint distance is greater than the lower footpoint distance limit and smaller than the upper footpoint distance limit, wherein the value lying between the upper footpoint distance bound and the lower footpoint distance bound indicates an intermediate footpoint shape complexity.
Embodiment 11. The method of any one of the preceding embodiments 8 to 10, wherein determining the angle complexity indicator further comprises at least one of: setting the angle complexity indicator to a value according to a lower angle bound if the angle is lower than or equal to a lower angle limit, wherein the value according to the lower angle bound indicates a lowest angle shape complexity; setting the angle complexity indicator to a value according to an upper angle bound if the angle is greater than or equal to an upper angle limit, wherein the value according to the upper angle bound indicates a highest angle shape complexity; setting the angle complexity indicator to a value lying between the upper angle bound and the lower angle bound if the angle is greater than the lower angle limit and smaller than the upper angle limit, wherein the value lying between the upper angle bound and the lower angle bound indicates an intermediate angle shape complexity.
Embodiment 12. The method of any one of the preceding embodiments, wherein the method further comprises: determining an operating instruction based on the parametric curve (3050) affecting a function of the vehicle assistance system, wherein the function preferably comprises at least one of: displaying the parametric curve (3050) on a display of the vehicle (3010); conducting a vehicle path planning; triggering a warning; affecting control of the vehicle (3010) during a parking process.
Embodiment 13. An apparatus comprising means configured to perform the method of any of the embodiments 1 to 12.
Embodiment 14. A computer program comprising instructions, which when executed by a computing system, causing the computing system to perform the method of any of the embodiments 1 to 12.
Embodiment 15. A vehicle (3010) comprising an apparatus according to embodiment 13.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
Unless context dictates otherwise, use herein of the word “or” may be considered use of an “inclusive or,” or a term that permits inclusion or application of one or more items that are linked by the word “or” (e.g., a phrase “A or B” may be interpreted as permitting just “A,” as permitting just “B,” or as permitting both “A” and “B”). Also, as used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. For instance, “at least one of a, b, or c” can cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c, or any other ordering of a, b, and c). Further, items represented in the accompanying figures and terms discussed herein may be indicative of one or more items or terms, and thus reference may be made interchangeably to single or plural forms of the items and terms in this written description.
Number | Date | Country | Kind |
---|---|---|---|
22186229.5 | Jul 2022 | EP | regional |
23171193.8 | May 2023 | EP | regional |