Device for cushioning of compression surfaces

Information

  • Patent Grant
  • 6968033
  • Patent Number
    6,968,033
  • Date Filed
    Friday, March 14, 2003
    21 years ago
  • Date Issued
    Tuesday, November 22, 2005
    19 years ago
Abstract
A compression device for a mammography unit includes a compression plate positionable in an x-ray field of the mammography unit, and a radiolucent foam pad removably attached to the compression plate that includes an impermeable exposed surface for contacting tissue disposed on the pad within the x-ray field. The pad includes an adhesive layer on the first surface, or a hook and eye fastener for removably attaching the pad to the compression plate. The pad is attached to the compression plate in the x-ray field of the mammography unit, a breast is compressed using the compression plate, a mammogram of the compressed breast is obtained, the pad producing no significant visual artifact on the mammogram, and thereafter the pad is removed.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to medical apparatus and methods and more particularly to devices and methods for cushioning or padding the surface of compression plates applied to body parts for purposes of obtaining x-ray films for example mammography, or other scans of compressed tissue.


Currently, in the case of mammography, a patient's breast is placed under compression by opposing plates attached to a mammography machine. Once under compression an x-ray is taken to determine the presence or absence of suspect lesions in the breast tissue (e.g. calcifications, tumors). Approximately 25 million screening mammograms are performed yearly, which is estimated to be only a 50% compliance rate among potential patients, meaning that number would double if more patients complied with the recommended screening regime. One of the more common complaints from mammography patients is discomfort during compression of the breast. Most patients can only tolerate up to 10-11 compression units. The current legal limit for clinical mammography is 16-18 units. A device which would reduce discomfort could likely improve compliance for screening.


An important reason for compressing the breast during mammography is to provide a thinner cross section of tissue for the x-rays to pass through. When the breast is compressed, it provides optimal imaging of the tissue abnormalities with the lowest possible dose of x-ray radiation to the patient. Furthermore, during a mammogram, it is important for the x-ray plate to be free from radiopaque material, so that the diagnostic film, once processed, can give the physician the best possible picture of the tissue and any abnormalities.


Although patients may tolerate the pain during compression, there is a need for improved devices and techniques to provide better screening outcomes by enabling the use of higher compression force, and by providing increased patient comfort during mammograms thereby positively impacting patient compliance with mammographic screening and ultimately impacting early detection of cancer and improving patient survival.


Such improved devices must be radiolucent and made of a relatively homogeneous material to avoid striations or other variations on the resulting x-ray image, have a low profile to allow for correct positioning of the breast in the mammography machine, be easily cleaned or disposable for sanitary reasons, and provide structural support and tactile comfort to the patient (both soft to touch and providing a less harsh or “cold” surface). In addition, such improved devices will permit the use of higher compression forces to be applied to the breast during mammograms without the patient reaching her tolerance level for discomfort, resulting in a thinner tissue section, better image quality, and reduced x-ray dose to the patient.


It is an objective of the present invention to provide greater patient comfort thereby increasing screening compliance (e.g. patient willingness to have more regular mammograms by reducing discomfort of the procedure). Greater patient comfort also reduces the risk of patient movement (voluntary or involuntary). Motion artifact, caused by patient movement or slippage of the tissue, can result in loss of clarity of the mammographic image. It is a further objective of the present invention to allow for the use of an increased compressive force, for example, up to 16-18 compression units or more thereby providing for a thinner cross-section of breast tissue during the mammogram resulting in an enhanced ability to detect abnormalities in the mammographic image. These objectives are met by the design and use of the present invention.


DESCRIPTION OF THE BACKGROUND ART

Various patents have issued illustrating inventions in the field of mammography and comfort during x-ray imaging. For example, in the field of mammography, U.S. Pat. Nos. 3,963,933, 4,691,333, 4,943,986, 5,189,686, 5,553,111 and 5,398,272 describe various fixtures useful for breast compression. Further, patents have issued describing devices for increasing comfort during general x-ray procedures, such as U.S. Pat. No. 5,226,070 (radiolucent x-ray mat), U.S. Pat. No. 5,081,657 (buckey warmer for mammography machine), U.S. Pat. No. 5,541,972 (disposable padding device for use during mammography) and U.S. Pat. No. 5,185,776 (padded cover for x-ray cassette).


SUMMARY OF THE INVENTION

According to the present invention, improved methods and apparatus are provided for cushioning or providing other patient comfort surfaces on devices used for compressing the patient's tissue, such as radiography machines, fluoroscopy units, mammography units and the like. In particular a pad element is provided for releasable attachment to at least one surface of a compression device to be used under x-ray, or other imaging modality.


In a preferred embodiment of the present invention a pad assembly is provided consisting of a pad element, an adhesive layer and a release paper layer allowing for temporary attachment to the applied surface (either the mammography paddle, x-ray plate or directly to the patient's skin).


An alternative embodiment of the present invention includes a reusable cushioned paddle configured of a self-skinned foam to allow for easy cleaning between patients. This embodiment may be replaceable after many uses or formed integrally wherein the padded surface and the compression paddle are assembled as one unit.


The present invention may also incorporate a dispensing unit for access to single pads for single use.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a typical mammography unit having a base and a pivoting x-ray unit attached thereto, the x-ray unit including a compression paddle and an x-ray plate.



FIGS. 2A-2B illustrate detailed construction of the x-ray plate and the compression paddle respectively.



FIGS. 3A-3C illustrate various configurations of compression paddles utilized during mammography in a standard mammography machine; the shape and size depending both on the patient's anatomy and the type of x-ray view desired by the physician.



FIGS. 4A-4B illustrate various attachments that can be placed on the x-ray plate to enhance the image, including devices for spot compression and magnification.



FIG. 5 illustrates a compression paddle and x-ray plate configured for use in a stereotactic biopsy procedure.



FIGS. 6A illustrates the pad of the present invention having a padding layer, an adhesive layer and a release paper layer.



FIG. 6B illustrates another pad of the present invention within a “peel away” packet.



FIG. 6C illustrates still another pad of the present invention with an adhesive layer and release paper layer just along the border.



FIG. 7 illustrates the installation of the pad of the present invention on an x-ray plate.



FIG. 8 illustrates the installation of the pad of the present invention on a compression paddle.



FIG. 9 illustrates various pad configurations and geometries according to the present invention depending on the type of compression paddle or x-ray unit used in a given procedure.



FIG. 10A illustrates an alternative embodiment of the present invention, showing the use of a self-skinned foam fastened to a compression paddle intended for use on multiple patients.



FIGS. 10B-10C further illustrate an alternative embodiment of the present invention wherein the pad of and compression paddle are integral as one unit.



FIG. 11 illustrates a further feature of the present invention, namely a dispensing unit for storing and dispensing the disposable pads of the present invention to promote ease of use and efficiency.



FIG. 12 shows a pad assembly on a film holder and compression plate, and a breast being compressed therebetween.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A typical or standard mammography unit used to image the breast while under compression is shown in FIG. 1. This unit 10, includes a base 12 and a rotating x-ray source 11, comprising an x-ray source 13, a movable compression paddle 14 and an x-ray plate 15 that holds the film cassette (not shown) as well as serving as a compression surface against which the compression paddle 14 can compress tissue e.g. a breast to be imaged. As depicted in FIG. 2A, typically the x-ray plate 15, in certain configurations known as a “bucky”, is stationary and includes an opening 16 into which an x-ray cassette 17 is placed prior to imaging. The x-ray plate has two patient contact surfaces, a front face 18, and a functional surface 19. The x-ray plate 15, may optionally include radiopaque markers 19A at the perimeter of the functional surface 19 to allow various marking schemes to be utilized during a procedure.



FIG. 2B illustrates a more detailed configuration of compression paddle 14, including a front patient contact surface 20 and a functional patient contact surface 21. Paddle 14 is typically constructed of a clear radiolucent plastic material and is designed to be removably attached by an interchange assembly 22, to the movable working arm of the mammography machine (not shown). These paddles are configured in various geometries as depicted in FIGS. 3A-3C to accommodate various patient anatomies and specific needs of mammographers, such as coned compression paddles (3A), spot compression paddles (3B) and the axillary paddle shown as FIG. 3C, all configured to attach to the mammography unit through standard interchange assembly 22, as shown earlier.


Similarly, the x-ray cassette holder may be adapted by various ancillary modules such as the spot compression fitting 41 shown in FIG. 4A, and a magnification fitting 42 shown in FIG. 4B. The entire compression system (compression paddle and x-ray plate) can further be modified to accommodate a stereotactic biopsy procedure as illustrated in FIG. 5. In this configuration, compression paddle 14, is modified to include a window 51, allowing the clinician access to the breast, while still under compression, for purposes of placing a device to identify a specific location in the breast, or to perform an biopsy of tissue.


A preferred embodiment of a pad assembly constructed in accordance with the present invention is illustrated in FIG. 6A. The pad assembly 60 comprises a padding element 61, an adhesive layer 62, and a release paper 63 to be removed from contact with the adhesive layer just prior to installation on the surface to be padded. Pad element 61 may be constructed of various materials having the following characteristics: produce no significant visual artifact on the mammogram (i.e. is radiolucent), be deformable under the forces applied during compression to provide comfort. Furthermore, the material should provide conformance to the tissue and the compression surface so as to reduce the propensity for the material to create air pockets or folds that may be of sufficient size to be visible on the x-ray image. Additionally, it may be desirable for the material to be absorptive to external fluids such as sweat.


Such materials may be an elastomer or gel, open or closed cell foam consisting of polyolefin, or, preferably a hydrophilic polyurethane open cell foam because of its radiolucent characteristics and soft tactile feel. The padding material 61 may be a thickness of 0.050″ to 0.500″, preferably in the range of 0.200″ and 0.250″. If an adhesive layer is used, Adhesive layer 62 may be one of a variety of currently available pressure sensitive adhesives such as acrylic or synthetic rubber based adhesives, to allow sufficient tackiness for secure attachment to the compression surface, while also allowing for easy removal (e.g. leaving no detectable residue of adhesive on the applied surface) and disposal. Alternatively, a non-adhesive gel may be used to. secure the pad or another layer of material having a greater coefficient of friction against the applied surface. It is also anticipated by the scope of the present invention, that the pad element may itself be textured such that it is sufficiently “tacky” to enable its use without an adhesive layer, i.e., by means of friction between the element and the tissue and the unit compression surface.


The pad element of FIG. 6A can be configured with adhesive on the entire surface of the pad, or at certain regions such as just along the border (see FIG. 6C). FIG. 6B depicts a “peel away” packet configuration to house the pad assembly. Optionally, the peel away packet can serve as a stiffening element to aid installation of the pad by keeping it in a planar configuration to minimize the possibility of misapplying the pad (leading to inadvertent air pockets or folds in the material, etc.) and to aid in positioning the pad prior to adhering it to the applied surface.



FIG. 7 illustrates, in stepwise fashion, the installation of the pad assembly 60 of, the present invention onto the film holder 15. The first step comprises opening the packing material housing the pad assembly 60 (S1), and thereafter removing any release paper 63 therefrom (S2). Installation on the patient contact surfaces of the x-ray plate 15 are shown in steps S3 and S4, S3 showing the placement of the pad element 61 on functional surface 19, and optionally extending to front face surface 18. Finally, the pad element may be removed and disposed of and the sequence repeated for the next patient. It may be desirable to score or otherwise provide a fold in the pad element at a fixed point from the edge of the pad to accommodate folding the pad onto the front face of the applied surface.


A similar sequence of steps (S1 to S4) is illustrated in FIG. 8 showing the installation of pad assembly 60 of the present invention onto compression paddle 14. It should be noted that the pad of the present invention may be installed on the x-ray plate 15 and the compression paddle 14, as shown in FIG. 12, or one and not the other, and further optionally on the front face of either surface depending on the amount of additional cushioning desired. In experimentation with the present invention, increased comfort was noted in all of the various configurations as compared to unpadded compression surfaces.


An alternative technique for use of the pad is to attach it to the breast of the patient instead of on the mammography machine itself. In this technique (not shown) the release paper is removed and the adhesive side of the pad is placed directly on the breast in an area of tissue to be compressed prior to placing the breast into the mammography machine.


Typical geometries of the present invention are illustrated in FIG. 9, including pad elements for x-ray plate 15 (G1), pad elements with windows for stereotactic use (G2), spot compression paddles (G3), coned compression paddles (G4), and axillary paddles (GS).


It is noted that while these configurations reflect the geometries of various commercially available compression paddles and x-ray cassette holders, the present invention may be manufactured in a wide array of sizes and shapes. The present invention includes pad assemblies, where the pad elements are modular (e.g. using more than one pad to cover a desired surface), or cut to fit the desired surface (oversized with an overlay pattern to guide the operator in cutting the pad to fit).


An alternative embodiment of the present invention is illustrated in FIGS. 10A-10C. FIG. 10A shows a modular configuration of the present invention wherein the pad assembly is constructed from a self skinned foam (PA), i.e., foam having an impermeable membrane covering, such as a vinyl, deployed over a frame (not shown) and fastened to a compression paddle by suction cups, magnets rivets or adhesive (AD) on the non-functional surface of the compression paddle or x-ray plate. The self-skinned configuration of the pad assembly allows for washing or disinfecting and can therefore be applied for multiple patients. FIG. 10B illustrates a pad assembly (PA) attached to the paddle on the non-functional surface by snaps or rivets 110.



FIG. 10C further illustrates an alternative embodiment of the present invention wherein the pad 120 of and compression paddle 121 are a single integral unit.



FIG. 11 illustrates a dispensing unit according to the present invention for housing and dispensing the inventive pad assemblies. Dispensing unit 100 includes a housing 101 allowing multiple pad assemblies 103 to be stacked for compact storage, and an access slot 102 for allowing the user to access one pad assembly at a time.


While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the present invention.

Claims
  • 1. A compression device for a mammography unit, comprising: a compression plate positionable in an x-ray field of the mammography unit; and a radiolucent foam pad on the compression plate comprising an impermeable exposed surface for contacting tissue disposed on the pad within the x-ray field, the pad producing no significant visual artifact on a mammogram while in use; wherein the pad and compression plate are a single integral unit.
  • 2. The compression device of claim 1, wherein the impermeable exposed surface comprises an impermeable membrane covering the pad.
  • 3. The compression device of claim 1, wherein the pad comprises skinned foam.
  • 4. A method for performing a procedure using a mammography unit including a compression plate comprising an opening, comprising: providing a cushioning element on a compression surface of the compression plate in an x-ray field of the mammography unit, the cushioning element comprising an opening therethrough; compressing a breast using the compression plate, the cushioning element deforming under forces applied during compression to provide comfort; obtaining an x-ray of the compressed breast; and accessing the breast through the opening in the compression plate.
  • 5. The method of claim 4, wherein the breast is accessed through the opening to perform a biopsy of tissue of the breast.
  • 6. The method of claim 4, wherein the breast is accessed through the opening to place a device to identify a specific location in the breast.
  • 7. The method of claim 4, wherein the opening through the cushioning element comprises a window.
  • 8. The method of claim 4, wherein the cushioning clement is removably attached to the compression surface, and wherein the method further comprises removing the cushioning element from the compression surface.
Parent Case Info

This application is a Continuation of application Ser. No. 09/620,730, filed Jul. 20, 2000, U.S. Pat. No. 6,577,702 Provisional Data. This application claims the benefit of Provisional application No. 60/187,198 filed Mar. 6, 2000.

US Referenced Citations (28)
Number Name Date Kind
3963933 Henkes, Jr. Jun 1976 A
4346298 Dixit Aug 1982 A
4433690 Green et al. Feb 1984 A
4691333 Gabriele et al. Sep 1987 A
4923187 Mombrinie May 1990 A
4943986 Barbarisi Jul 1990 A
5044008 Jackson Aug 1991 A
5081657 Klawitter et al. Jan 1992 A
5161273 Deck Nov 1992 A
5166968 Morse Nov 1992 A
5185776 Townsend Feb 1993 A
5189686 Hixson, Sr. Feb 1993 A
5226070 Ariba et al. Jul 1993 A
5377254 Walling Dec 1994 A
5398272 Bouscary et al. Mar 1995 A
5474072 Shmulewitz Dec 1995 A
5479927 Shmulewitz Jan 1996 A
5541972 Anthony Jul 1996 A
5553111 Moore Sep 1996 A
5613254 Clayman Mar 1997 A
5632275 Browne et al. May 1997 A
5657367 Couch Aug 1997 A
5664573 Shmulewitz Sep 1997 A
5719916 Nelson et al. Feb 1998 A
5754997 Lüssi et al. May 1998 A
5832550 Hauger et al. Nov 1998 A
5891074 Cesurczyk Apr 1999 A
6049583 Galkin Apr 2000 A
Foreign Referenced Citations (10)
Number Date Country
23 35 576 Jan 1975 DE
4324508 Jan 1995 DE
19926 446 Jan 2000 DE
19921 100 Mar 2000 DE
0 682 913 Nov 1995 EP
2 702 059 Sep 1994 FR
938410 Jun 1962 GB
WO 9607353 Mar 1996 WO
WO 9613211 May 1996 WO
WO 0166013 Sep 2001 WO
Related Publications (1)
Number Date Country
20030174807 A1 Sep 2003 US
Provisional Applications (1)
Number Date Country
60187198 Mar 2000 US
Continuations (1)
Number Date Country
Parent 09620730 Jul 2000 US
Child 10389392 US