1. Field of the Invention
The subject disclosure relates to implantable spinal stabilization systems for surgical treatment of spinal disorders, and more particularly, to a device for connecting cylindrical spinal rods of a spinal stabilization system to the spine.
2. Background of the Related Art
The spinal column is a complex system of bones and connective tissue which protects critical elements of the nervous system. Despite these complexities, the spine is a highly flexible structure, capable of a high degree of curvature and twist through a wide range of motion. Trauma or developmental irregularities can result in spinal pathologies which limit this range of motion.
For many years, orthopedic surgeons have attempted to correct spinal irregularities and restore stability to traumatized areas of the spine through immobilization. Over the past ten years, spinal implant systems have been developed to achieve immobilization. Examples of such systems are disclosed in U.S. Pat. Nos. 5,102,412 and 5,181,917 to Rogozinski. Such systems often include spinal instrumentation having connective structures such as elongated rods which are placed on opposite sides of the portion of the spinal column intended to be immobilized. Screws and hooks are commonly utilized to facilitate segmental attachment of such connective structures to the posterior surfaces of the spinal laminae, through the pedicles, and into the vertebral bodies. These components provide the necessary stability both in tension and compression to achieve immobilization.
Various fastening mechanisms have been provided in the prior art to facilitate securement of screws and hooks to the connective structures of a spinal stabilization system. For example, U.S. Pat. No. 5,257,993 to Asher discloses an apparatus for use in retaining a spinal hook on an elongated spinal rod. The apparatus includes a body extending upwardly from a hook portion and having an open ended recess for receiving a spinal rod and an end cap engageable with the body to close the recess. A set screw is disposed in the center of the end cap to clamp the rod in the recess of the body. The end cap and body are interconnectable by different types of connectors including a bayonet connector, a linear cam connector or a threaded connector. Other examples of fastening mechanism for facilitating attachment of screws and hooks to the connective structures of a spinal stabilization system are disclosed in U.S. Pat. No. 5,437,669 to Yuan et al. and U.S. Pat. No. 5,437,670 to Sherman et al.
In each of these prior art examples, threaded fasteners are used to facilitate securement of the connector to the spinal rod. Yet it is well known that threaded fasteners can become loosened under the influence of cyclically applied loads commonly encountered by the spinal column. Furthermore, during assembly, excessive torque applied to a threaded fastener can cause damage to the fastener as well as to the connective device with which it is associated.
It would be beneficial to provide a more reliable and effective mechanism for facilitating the attachment of screws, hooks and clamps to the connective structures of a spinal stabilization system.
The subject disclosure is directed to a device for securing a spinal rod to a fixation device such as a pedicle screw or a lamina hook. The device disclosed herein includes a head portion configured to receive a spinal rod, a locking cap configured to engage the head portion and the spinal rod upon rotation of the locking cap relative to the head portion to secure the position of the head portion relative to the spinal rod, and a fastener portion extending from the head portion and configured to engage the spine. The fastener portion of the device can be in the form of a screw, hook or clamp, or any other configuration known in the art.
The head portion of the device has a channel extending therethrough for receiving a spinal rod and the channel is preferably bounded by opposed side walls each having an arcuate engagement slot defined therein. The locking cap preferably has opposed arcuate engagement flanges configured for reception in the opposed arcuate engagement slots of the head portion upon rotation of the locking cap relative to the head portion. Preferably, the opposed engagement slots are each defined in part by inclined slot surfaces, with the angle of the inclined surface of one engagement slot being opposite that of the opposed engagement slot. Similarly, the opposed engagement flanges are preferably each defined in part by inclined flange surfaces, with the angle of the inclined surface of one engagement flange being opposite that of the opposed engagement flange. The head portion also preferably includes structure for interacting with the locking cap to prevent the opposed side walls of the head portion from expanding radially outwardly when the arcuate flanges are engaged in the arcuate slots.
Preferably, the locking cap of the device is configured for rotation between an initial position in which the arcuate engagement flanges are 90° out of phase with the arcuate engagement slots, an intermediate position in which the arcuate engagement flanges are 45° out of phase with the arcuate engagement slots, and a locked position in which the arcuate engagement flanges are in phase and intimately engaged with the arcuate engagement slots.
In this regard, the bottom surface of the locking cap preferably includes a first recess oriented to accommodate a spinal rod when the locking cap is in an initial unlocked position, a second recesses which intersects the first recess at a first angle to accommodate a spinal rod when the locking cap is in an intermediate position, and a third recess which intersects the elongate recess at a second angle to accommodate a spinal rod when the locking cap is in a final locked position. In accordance with a preferred embodiment of the subject disclosure, the first recess is an elongate recess, the second recess is a transverse recess which intersects the elongate recess at a 45° angle, and the third recess is an orthogonal recess which intersects the elongate recess at a 90° angle.
The subject disclosure is also directed to a device for securing a spinal rod to the spine which comprises a head portion having a channel extending therethrough configured to receive a spinal rod, a locking cap including a first portion configured to engage an interior surface of the head portion and a second portion configured to engage an exterior surface of a spinal rod received by the channel to secure the position of the head portion relative to the spinal rod, and a fastener portion depending from the head portion and configured to engage the spine.
Preferably, the locking cap is a two-piece structure which includes an upper portion configured to engage an interior surface of the head portion and a lower portion configured to engage an exterior surface of the spinal rod to secure the position of the head portion relative to the spinal rod upon rotation of the upper portion relative to the lower portion and the head portion. The upper portion of the locking cap includes a bottom surface having an axial reception bore defined therein and the lower portion of the locking cap includes an upper surface having an axial post extending therefrom configured to engage the axial reception bore in the bottom surface of the upper portion of the locking cap and facilitate the relative rotation of the two parts. The upper portion further includes opposed arcuate engagement flanges configured for caromed engagement in correspondingly configured opposed arcuate engagement slots formed in the opposed side walls of the head portion upon rotation of the upper portion relative to the lower portion. The lower portion further includes a bottom surface having an elongated hemi-cylindrical recess that is oriented to accommodate a spinal rod extending through the channel in the head portion.
In accordance with one aspect of the subject disclosure, the fastener portion is formed monolithic with the head portion. In accordance with another aspect of the subject disclosure, the fastener portion is mounted for movement relative to the head portion. In this regard, the head portion defines a central axis oriented perpendicular to the spinal rod channel and the fastener portion is mounted for angular movement relative to the central axis of the head portion. More particularly, the fastener portion includes a generally spherical head and a threaded body which depends from the spherical head, and the head portion defines a seat to accommodate the spherical head and an aperture to accommodate the threaded body. In use, upon rotation of the upper portion of the locking cap relative to the lower portion of the locking cap into a locked position, the position of the head portion relative to the spinal rod and the position of the fastener relative to the head portion become fixed.
These and other unique features of the device disclosed herein and the method of installing the same will become more readily apparent from the following description of the drawings.
So that those having ordinary skill in the art to which the disclosed apparatus appertains will more readily understand how to construct and use the same, reference may be had to the drawings wherein:
These and other features of the apparatus disclosed herein will become more readily apparent to those having ordinary skill in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
Referring now to the drawings wherein like reference numerals identify similar structural elements of the subject apparatus, there is illustrated in
Referring to
It should be recognized that the subject disclosure is not limited in any way to the illustrated bone screw and right-angle hook. Rather, these particular fasteners are merely examples of the type of devices that can employ the novel locking cap disclosed herein. Other fasteners commonly utilized in spinal stabilization systems, such as, for example, hooks having alternative angular geometries as well as clamps are also envisioned. Indeed, it is envisioned that any component designed for attachment to an elongated spinal rod or transverse coupling rod, may incorporate the novel locking cap of the subject disclosure. Also, any number of fastening devices can be applied along the length of the spinal rod.
With continuing reference to
Referring again to
Referring now to
Referring to
The flanged portion 64 of locking cap 20 is defined in part by two diametrically opposed arcuate engagement flanges 82 and 84 which are dimensioned and configured for operative engagement with two complementary diametrically opposed arcuate engagement slots 86 and 88 defined in the interior surfaces of the opposed side walls 30 and 32 of head portion 22. (See
With continuing reference to
As best seen in
Thereafter, as shown in
Once the desired position and orientation of the bone screw 14 has been attained, locking cap 20 is rotated another 90° to the locked position illustrated in
Since the rotational range of locking cap 20 is limited, i.e., the locking cap can only be rotated 90°, it will be readily appreciated that the cap cannot be over-torqued. Thus, the damage often caused by over-tightening a conventional threaded locking mechanism, such as a set screw, is avoided. Furthermore, since the locking cap of the subject disclosure has a predetermined locked position, it is unlikely that it will be under-torqued or left in a loose condition after installation as is common with threaded set screws found in the prior art. That is, by having a predetermined locked position, uniform locking forces are provided for all of the fastening devices used to secure the spinal rod 12 along its length and cross threading is reduced.
Referring now to
Referring to
With continuing reference to
Referring now to
Referring to
The head portion 222 of multi-axial bone screw 214 further defines a generally cylindrical vertical channel 227 which extends through and is aligned with the vertical axis “y” of the head portion 222. Vertical channel 227 is configured to receive and accommodate the fastener portion 224 of bone screw 214. More particularly, as best seen in
Bone screw 214 further includes an annular retention ring 232 that is accommodated within a corresponding annular groove 234 formed within the cylindrical wall of vertical channel 227 (see
Referring to
As illustrated in
The lower portion 220b of locking cap 220 is configured for cooperative reception within the cylindrical vertical channel 227 of head portion 222 and is adapted to engage the spinal rod 212 extending through the horizontal channel 228 of head portion 222. More particularly, the body 285 of the lower portion 220b has curved exterior surfaces which complement the curvature of the walls defining vertical channel 227. Thus, when the locking cap 220 is loaded into vertical channel 227, a positive mating relationship is achieved between the lower portion 220b of locking cap 220 and vertical channel 227. As a result, the axial position of lower portion 220b becomes fixed with respect to head portion 222 and spinal rod 212. Furthermore, as best seen in
As best seen in
As described in detail hereinbelow with reference to
Referring now in detail to
With reference to
Locking cap 220 must be loaded in such a manner so that the radially outwardly extending engagement flanges 284 and 286 of upper portion 220a are parallel to the axis of the spinal rod 212, as illustrated in
Once the upper portion 220a of locking cap 220 has been properly oriented with respect to head portion 222 with the extension flange 302 in alignment with spinal rod 212, it is rotated in a clockwise direction about the vertical axis “y” relative to the lower portion 220b of locking cap 220 and the head portion 222 of bone screw 214 using an appropriate surgical implement or tool (not shown). Thereupon, the arcuate engagement flanges 284, 286 of upper portion 220 cammingly engage the corresponding engagement slots 284. Once rotated into a locked portion, the lower portion 220b of the locking cap 220 will be seated within the recessed seating area 287 defined in the bottom surface 285 of the upper portion 220a of locking cap 220 (See
Referring now to
As discussed hereinabove with respect to multi-axial bone screw 214, the locking cap 220 includes an upper portion 220a and a lower portion 220b which are rotatably joined together. The upper portion includes a pair of circumferentially opposed arcuate engagement flanges 284 and 286 for cooperating with complementary opposed arcuate engagement slots 255 and 257 formed in the opposed side walls 250 and 252 of head portion 242. As described in more hereinabove with respect-to
Although the apparatus disclosed herein has been described with respect to preferred embodiments, it is apparent that modifications and changes can be made thereto without departing from the spirit and scope of the invention as defined by the claims.
The subject application is a divisional application of U.S. application Ser. No. 09/487,942 filed Jan. 19, 2000, now U.S. Pat. No. 6,565,565, which is a continuation-in-part of both U.S. application Ser. No. 09/167,439, filed Oct. 6, 1998, now abandoned, and U.S. application Ser. No. 09/098,927, filed Jun. 17, 1998, now U.S. Pat. No. 6,090,111, the disclosures of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1956745 | Payne | May 1934 | A |
3352344 | Lanius, Jr. | Nov 1967 | A |
3961854 | Jaquet | Jun 1976 | A |
4269178 | Keene | May 1981 | A |
4641636 | Cotrel | Feb 1987 | A |
4805602 | Puno et al. | Feb 1989 | A |
4815453 | Cotrel | Mar 1989 | A |
4887596 | Sherman | Dec 1989 | A |
4946458 | Harms et al. | Aug 1990 | A |
5005562 | Cotrel | Apr 1991 | A |
5010879 | Moriya et al. | Apr 1991 | A |
5074864 | Cozad et al. | Dec 1991 | A |
5102412 | Rogozinski | Apr 1992 | A |
5112332 | Cozad et al. | May 1992 | A |
5116334 | Cozad et al. | May 1992 | A |
5176678 | Tsou | Jan 1993 | A |
5176680 | Vignaud et al. | Jan 1993 | A |
5181917 | Rogozinski | Jan 1993 | A |
5190543 | Schläpfer | Mar 1993 | A |
5207678 | Harms et al. | May 1993 | A |
5217497 | Mehdian | Jun 1993 | A |
5257993 | Asher et al. | Nov 1993 | A |
5261912 | Frigg | Nov 1993 | A |
5281222 | Allard et al. | Jan 1994 | A |
5334203 | Wagner | Aug 1994 | A |
5346493 | Stahurski et al. | Sep 1994 | A |
5360431 | Puno et al. | Nov 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5380326 | Lin | Jan 1995 | A |
5385583 | Cotrel | Jan 1995 | A |
5437669 | Yuan et al. | Aug 1995 | A |
5437670 | Sherman et al. | Aug 1995 | A |
5437671 | Lozier et al. | Aug 1995 | A |
5439463 | Lin | Aug 1995 | A |
5443467 | Biedermann et al. | Aug 1995 | A |
5466237 | Byrd, III et al. | Nov 1995 | A |
5474555 | Puno et al. | Dec 1995 | A |
5476462 | Allard et al. | Dec 1995 | A |
5496321 | Puno et al. | Mar 1996 | A |
5498263 | DiNello et al. | Mar 1996 | A |
5507746 | Lin | Apr 1996 | A |
5520689 | Schläpfer et al. | May 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5549608 | Errico et al. | Aug 1996 | A |
5554157 | Errico et al. | Sep 1996 | A |
5562663 | Wisnewski et al. | Oct 1996 | A |
5584833 | Fournet-Fayard et al. | Dec 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5591166 | Bernhardt et al. | Jan 1997 | A |
5613968 | Lin | Mar 1997 | A |
5615965 | Saurat et al. | Apr 1997 | A |
5624440 | Huebner | Apr 1997 | A |
5628740 | Mullane | May 1997 | A |
5630817 | Rokegem et al. | May 1997 | A |
5643260 | Doherty | Jul 1997 | A |
5647873 | Errico et al. | Jul 1997 | A |
5667508 | Errico et al. | Sep 1997 | A |
5669911 | Errico et al. | Sep 1997 | A |
5672176 | Biedermann et al. | Sep 1997 | A |
5683390 | Metz-Stavenhagen et al. | Nov 1997 | A |
5683392 | Richelsoph et al. | Nov 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5690630 | Errico et al. | Nov 1997 | A |
5697929 | Mellinger | Dec 1997 | A |
5702393 | Pfaifer | Dec 1997 | A |
5702395 | Hopf | Dec 1997 | A |
5716355 | Jackson et al. | Feb 1998 | A |
5716356 | Biedermann et al. | Feb 1998 | A |
5725527 | Biedermann et al. | Mar 1998 | A |
5728098 | Sherman et al. | Mar 1998 | A |
5733285 | Errico et al. | Mar 1998 | A |
5733286 | Errico et al. | Mar 1998 | A |
5738685 | Halm et al. | Apr 1998 | A |
5752957 | Ralph et al. | May 1998 | A |
5782833 | Haider | Jul 1998 | A |
5797911 | Sherman et al. | Aug 1998 | A |
5817094 | Errico et al. | Oct 1998 | A |
5863293 | Richelsoph | Jan 1999 | A |
5873878 | Harms et al. | Feb 1999 | A |
5879350 | Sherman et al. | Mar 1999 | A |
5882350 | Ralph et al. | Mar 1999 | A |
5885286 | Sherman et al. | Mar 1999 | A |
5891145 | Morrison et al. | Apr 1999 | A |
5910142 | Tatar | Jun 1999 | A |
5928233 | Apfelbaum et al. | Jul 1999 | A |
5954725 | Sherman et al. | Sep 1999 | A |
5961517 | Biedermann et al. | Oct 1999 | A |
5964760 | Richelsoph | Oct 1999 | A |
5989254 | Katz | Nov 1999 | A |
6010503 | Richelsoph et al. | Jan 2000 | A |
6030388 | Yoshimi et al. | Feb 2000 | A |
6053917 | Sherman et al. | Apr 2000 | A |
6063090 | Schlapfer | May 2000 | A |
6074391 | Metz-Stavenhagen et al. | Jun 2000 | A |
6077262 | Schlapfer et al. | Jun 2000 | A |
6077263 | Ameil et al. | Jun 2000 | A |
6090111 | Nichols | Jul 2000 | A |
6100172 | Furukawa et al. | Aug 2000 | A |
6110172 | Jackson | Aug 2000 | A |
6139549 | Keller | Oct 2000 | A |
6146383 | Studer et al. | Nov 2000 | A |
6171311 | Richelsoph | Jan 2001 | B1 |
6258090 | Jackson | Jul 2001 | B1 |
6264658 | Lee et al. | Jul 2001 | B1 |
6302888 | Mellinger et al. | Oct 2001 | B1 |
RE37479 | Kuslich | Dec 2001 | E |
6371957 | Amrein et al. | Apr 2002 | B1 |
6565565 | Yuan et al. | May 2003 | B1 |
6585737 | Baccelli et al. | Jul 2003 | B1 |
20020007183 | Lee et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
2215485 | Sep 1996 | CA |
2206853 | Dec 1997 | CA |
653799 | Dec 1937 | DE |
94 03 231.9 | Apr 1994 | DE |
9403231 | Apr 1994 | DE |
0446092 | Sep 1991 | EP |
0553042 | Jul 1993 | EP |
0565149 | Oct 1993 | EP |
0 535 623 | Apr 1994 | EP |
0535623 | Mar 1997 | EP |
0811357 | Dec 1997 | EP |
2730155 | Sep 1996 | FR |
2051581 | Jan 1981 | GB |
9514437 | Jun 1995 | WO |
WO 9727604 | Feb 1997 | WO |
WO 9965415 | Dec 1999 | WO |
WO 9965415 | Dec 1999 | WO |
WO 0019923 | Apr 2000 | WO |
WO 0019923 | Apr 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20020120272 A1 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09487942 | Jan 2000 | US |
Child | 10091708 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09167439 | Oct 1998 | US |
Child | 09487942 | US | |
Parent | 09098927 | Jun 1998 | US |
Child | 09167439 | US |