Claims
- 1. In a linear-phase non-recursive digital filter comprising a shift register which receives an input signal at an input sampling frequency, said shift register having a specified number of serially connected delay elements having a specified delay time, and a plurality of calculating means for performing product summing operations on outputs from said delay elements to produce an output signal at an output sampling frequency which is twice said input sampling frequency, the improvement wherein said specified number is odd and greater than 1, and each of said calculating means includes a multiplier and a first-grade adder which transmits a sum signal to said multiplier.
- 2. The filter of claim 1 wherein said plurality of calculating means include first through ((N-1)/2)th first stage adders and first through ((N+1)/2)th multipliers where N is said specified odd number, the output lines from the ith and (N+1-i)th of said delay elements being connected to input terminals of the ith of said first-stage adders where i is a dummy index varying between 1 and (N-1)/2 inclusive, the ith of said first-stage adders being connected to the ith of said multipliers, the output line from the ((N+1)/2)th of said delay elements being connected to the ((N+1)/2)th of said multipliers.
- 3. The filter of claim 2 further comprising a final-stage adder connected to each of said multipliers.
- 4. In a digital filter comprising a serial shift register with serially connected delay elements with a specified delay time, output lines individually connected to said delay elements, read-only memory means to be addressed through said output lines, and adding means for performing adding operations on outputs from said ROM means, the improvement wherein said read-only memory means are divided into a plural N-number of segments and said adding means comprises N accumulators each for performing adding operations on outputs from one of said segments, there being a final-stage adder for adding outputs from said accumulators, and wherein each of said accumulators comprises a parallel adder with an input terminal connected to one of said segments and an output terminal, and a register with an input terminal connected to said output terminal of said parallel adder, said register having an output terminal connected to said final-stage adder and another output terminal connected to another input terminal of said parallel adder through a shifter.
- 5. The filter of claim 4 wherein said segments are sequentially numbered from 1 to N, said serial shift register having 2 nN delay elements which are sequentially numbered from 1 to 2 nN, n being an integer greater than 1, said filter further comprising nN first-stage adders sequentially numbered from 1 to nN, the jth of said first-stage adders having input terminals connected to the jth and the (2nN+1-j)th of said delay elements, j being a dummy index varying between 1 and nN inclusive.
- 6. The filter of claim 5 wherein the kth of said segments is connected to the (k-1)n+1)st through (kn)th parallel adders where k is an integer varying between 1 and N.
- 7. The filter of claim 4 wherein said segments are sequentially numbered from 1 to N, said serial shift registers having nN delay elements which are sequentially numbered from 1 to nN, n being an integer greater than 1, the jth of said segments being connected to the output lines from n of said delay elements from the ((j-1)n+1)st through the (nj)th where j is a dummy index varying between 1 and N inclusive.
Priority Claims (2)
Number |
Date |
Country |
Kind |
59-18927 |
Feb 1984 |
JPX |
|
59-18928 |
Feb 1984 |
JPX |
|
Parent Case Info
This is a continuation of application Ser. No. 698,008 filed Feb. 4, 1985, now abandoned.
US Referenced Citations (12)
Continuations (1)
|
Number |
Date |
Country |
Parent |
698008 |
Feb 1985 |
|