Doping of copper wiring structures in back end of line processing

Abstract
A method of forming a metal interconnect structure includes forming a copper line within an interlevel dielectric (ILD) layer; directly doping a top surface of the copper line with a copper alloy material; and forming a dielectric layer over the ILD layer and the copper alloy material; wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.
Description
BACKGROUND

The present disclosure relates generally to semiconductor device manufacturing techniques and, more particularly, to doping of copper wiring structures in back end of line (BEOL) processing.


Integrated circuits are typically fabricated with multiple levels of patterned metallization lines, which are electrically separated from one another by interlayer dielectrics containing vias at selected locations, to provide electrical connections between levels of the patterned metallization lines. In recent years, copper (Cu) has replaced aluminum (Al) as the metal of choice for wiring of microelectronic devices, such as microprocessors and memories. However, copper has a tendency to diffuse through insulators, such as silicon dioxide, during high temperature processes. As a result, the use of copper wiring also necessitates the placement of efficient diffusion barriers surrounding the copper wires, thereby keeping the copper atoms confined to the intended wiring locations and preventing circuit malfunctions, such as shorts.


As electronic devices become smaller, there is also a continuing desire in the electronics industry to increase the circuit density in electronic components, e.g., integrated circuits, circuit boards, multi-chip modules, chip test devices, and the like, without degrading electrical performance, e.g., without introducing cross-talk capacitive coupling between wires while at the same time increasing speed or signal propagation of these components. One method for accomplishing these goals is to reduce the dielectric constant of the dielectric material in which the wires are embedded. Toward this end, a new class of low dielectric constant (low-K) materials has been created. Low-K interlevel dielectric (ILD) materials are advantageous so long as device reliability is not compromised. However, the lower the dielectric constant of the low-K dielectric material, the more challenging the integration becomes. For example, low-K generally corresponds to lower modulus, lower thermal conductivity, increased porosity, and greater susceptibility to plasma damage, in turn leading to lower reliability.


SUMMARY

In an exemplary embodiment, a method of forming a metal interconnect structure includes forming a copper line within an interlevel dielectric (ILD) layer; directly doping a top surface of the copper line with a copper alloy material; and forming a dielectric layer over the ILD layer and the copper alloy material; wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.


In another embodiment, a method of forming a metal interconnect structure includes forming an opening within an interlevel dielectric (ILD) layer; forming a first seed layer in the opening; forming a copper layer in the opening over the first seed layer; planarizing the copper layer and the first seed layer so as to define a copper line; directly doping a top surface of the copper line with a copper alloy material; and forming a dielectric layer over the ILD layer and the copper alloy material; wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.


In another embodiment, a metal interconnect structure includes a copper line formed within an interlevel dielectric (ILD) layer; a barrier layer surrounding bottom and sidewall surfaces of the copper line; a top surface of the copper line directly doped with a copper alloy material; and a dielectric layer formed over the ILD layer and the copper alloy material; wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Referring to the exemplary drawings wherein like elements are numbered alike in the several Figures:



FIG. 1 is a scanning electron microscope (SEM) image illustrating delamination of an NBLoK insulating layer from a lower copper wiring line;



FIG. 2 is an enlarged image of a portion of FIG. 1, illustrating delamination of an NBLoK insulating layer;



FIGS. 3 through 6 are a series of cross-sectional views illustrating a method of doping the top surface of the copper line with a metal dopant, in which:



FIG. 3 illustrates an ILD layer having a wiring opening patterned therein, and a high doped seed layer formed over the top surface of the ILD layer;



FIG. 4 illustrates a copper layer electroplated over the seed layer of FIG. 3;



FIG. 5 illustrates chemical mechanical planarization or polishing (CMP) of the excess copper layer and seed layer of FIG. 4;



FIG. 6 illustrates a layer of NBLoK formed over the layer and the copper layer of FIG. 5, resulting in diffusion of the dopant species from the seed layer into the copper layer;



FIGS. 7 through 12 are a series of cross-sectional views illustrating a method of a metal interconnect structure by doping the top surface of the copper line with a metal dopant, in accordance with an exemplary embodiment, in which:



FIG. 7 illustrates an ILD layer having a wiring opening patterned therein, and a high doped seed layer formed over the top surface of the ILD layer;



FIG. 8 illustrates a copper layer electroplated over the seed layer of FIG. 7;



FIG. 9 illustrates CMP of the excess copper layer and seed layer of FIG. 8;



FIG. 10 illustrates the formation of a high doped seed layer over the ILD layer, low concentration seed layer, and copper layer of FIG. 9;



FIG. 11 illustrates an anneal of the device of FIG. 10 so as to drive dopant atoms into the top surface of the copper layer, creating a doped region;



FIG. 12 illustrates removal of the high concentration seed layer of FIG. 11 and deposition of a NBLoK layer;



FIGS. 13 through 16 are a series of cross-sectional views illustrating an alternative embodiment of FIGS. 9 through 12, in which:



FIG. 13 illustrates CMP of the excess copper layer and seed layer of FIG. 8, wherein the copper layer and seed layer are recessed below the ILD layer;



FIG. 14 illustrates the formation of a high doped seed layer over the ILD layer, low concentration seed layer, and copper layer of FIG. 13;



FIG. 15 illustrates planarization of the portion of the high doped seed layer over the ILD layer of FIG. 14, leaving the high doped seed layer, and an anneal to drive dopant atoms into the top surface of the copper layer, creating a doped region;



FIG. 16 illustrates deposition of a NBLoK layer over the device of FIG. 15;



FIGS. 17 and 18 are cross-sectional views illustrating an alternative embodiment of FIGS. 15 and 16, in which:



FIG. 17 illustrates planarization of the portion of the high doped seed layer over the ILD layer of FIG. 14, leaving the high doped seed layer; and



FIG. 18 illustrates deposition of an NBLoK layer over the device of FIG. 17.





DETAILED DESCRIPTION


FIG. 1 is a scanning electron microscope (SEM) image illustrating delamination of an NBLoK insulating layer from a lower copper wiring line. As illustrated in FIG. 1, the lower copper wiring line 102 has a layer of NBLoK dielectric 104 formed thereupon. The lower copper wiring line 102 is intended to be electrically connected to an upper copper wiring line 106 by vias 108. However, as will be noted, due to the weak NBLoK adhesion to copper, delamination of the NBLoK dielectric 104 from the top surface of the lower copper wiring line 102 has also caused separation of the vias from the lower copper wiring line 102, in turn leading to device opens. This delamination is also more clearly depicted in the enlarged image of FIG. 2.


Adhesion between the copper lines and NBLoK can be greatly enhanced by doping the top surface of the copper line with a heavy noble metal, such as manganese (Mn). One possible manner of locating the Mn at the top surface is by using a copper manganese (CuMn) seed layer prior to copper plating, and thereafter thermally diffusing the Mn through the copper line up to the top surface, as illustrated in FIGS. 3-6.


As particularly shown in FIG. 3, an interlevel dielectric (ILD) layer 302 (e.g., oxide, nitride, low-k dielectrics, etc.) has a wiring opening 304 patterned therein, in accordance with damascene processing techniques. A seed layer 306 is formed over the top surface of the ILD layer 302, as well as over sidewall and bottom surfaces of the opening 304 in preparation for copper material plating. Although not specifically illustrated in FIG. 3, one skilled in the art will appreciate one or more barrier layers (e.g., tantalum, titanium based) may be formed over the ILD layer 302 prior to seed layer deposition.


In the example depicted, the seed layer 306 includes a CuMn alloy having a manganese dopant concentration of about 2% atomic. Notably, such a concentration is higher than typically may be used in conjunction with a CuMn seed layer for electromigration prevention purposes. In the latter case, such a seed layer concentration may only be on the order of about 0.5% atomic. Generally speaking, electromigration concerns are more prevalent for the smaller thicknesses of wiring on the lower levels. However, CuMn seed concentrations higher than about 0.5% atomic on these levels may have the disadvantage of significantly increasing line resistance. It will be noted that other metal materials may also be used for dopant alloy materials such as, for example, cobalt (Co), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), platinum (Pt), and gold (Au).


In FIG. 4, a copper layer 308 is electroplated over the seed layer 306 so as to completely overfill the opening. This is followed by chemical mechanical planarization or polishing (CMP) of the excess copper layer 308 and seed layer 306 (and barrier layer) to expose the top surface of the ILD layer 302, as shown in FIG. 5. Then, as shown in FIG. 6, a layer of NBLoK 310 is formed over the ILD layer 302 and the copper layer 308. The deposition occurs at an elevated temperature of about 400° C., resulting in diffusion of the Mn species from the seed layer 306 into the copper layer 308. Those Mn atoms which diffuse to the top surface of the copper layer 308 are depicted by region 312 in FIG. 6, wherein the doped region 312 is intended to promote a better adhesion interface between the copper layer 308 and the NBLoK layer 310. Layer 302, in a preferred embodiment is NBLoK, but can be any dielectric layer which inhibits copper diffusion.


One difficulty, however, with a seed layer/diffusion approach to top surface doping is relatively large thickness (e.g., about 3 micron (μm)) of copper line the dopant atoms must travel to reach the surface. As a result, the doping levels of the Mn at the doped region 312 are relatively low, which ultimately limits the adhesion benefit of the Mn. In other words, it is difficult to get enough Mn through the thick copper lines to reach the top surface where it is beneficial for adhesion. In addition, the increase in Mn concentration at the seed layer will increase the line resistance of the copper lines, as compared to lines having a lower CuMn seed layer concentration, or lines having only a Cu seed layer. Moreover, diffusion through the entire line structure also leads to larger variability in the line resistances themselves.


Accordingly, FIGS. 7 through 12 are a series of cross-sectional views illustrating a method of forming a metal interconnect structure by doping the top surface of a copper line with a metal dopant, in accordance with an exemplary embodiment. The exemplary embodiment improves NBLoK-to-copper adhesion by directly doping the top surface of the copper lines with up to 2% CuMn (or other suitable copper alloy material). Specifically, an exemplary embodiment involves doping the top surface of the copper lines with an dopant material such as Mn by sputtering CuMn directly on the top surface of the copper lines, thermally driving the Mn into the copper surface, and thereafter removing the sputtered CuMn with a touch-up CMP step.


In comparison with the previously described technique, FIG. 7 illustrates an ILD layer 302 (e.g., oxide, nitride, etc.) having a wiring opening 304 patterned therein, in accordance with damascene processing techniques. A seed layer 314 is formed over the top surface of the ILD layer 302, as well as over sidewall and bottom surfaces of the opening 304 in preparation for copper material plating. However, whereas the seed layer 306 of FIG. 3 has the increased 2% CuMn concentration, the seed layer 314 may have a low CuMn concentration of about 0.5% atomic Mn, or perhaps no dopant material at all. In FIG. 8, a copper layer 308 is electroplated over the seed layer 314 so as to completely overfill the opening. This is followed by CMP of the excess copper layer 308 and seed layer 314 (and barrier layer, not shown), as shown in FIG. 9.


Then, as shown in FIG. 10, a high concentration CuMn seed layer 316 (e.g., 2% atomic Mn) is formed over the ILD layer 302, low concentration CuMn seed layer 314, and copper layer 308. The seed layer 316 may be formed by sputtering, for example. An anneal is then performed so as to drive Mn atoms into the top surface of the copper layer, creating a doped region 312 as shown in FIG. 11. The sputtered high concentration CuMn seed layer 316 is then removed such as by CMP, leaving the doped region 312 as an interface for better adhesion of NBLoK. The deposition of the NBLoK layer 310 is illustrated in FIG. 12.


In an alternative embodiment, following the processing shown in FIG. 8, the copper layer 308 and seed layer 314 may be further recessed below the top surface of the ILD layer 302, such as by intentional dishing (over-polish) during CMP or by a separate wet etch step to create a recess 318 as shown in FIG. 13. The recess 318 may be on the order of about 0.2 μm in depth, for example. Then, as shown in FIG. 14, a high concentration CuMn seed layer 316 (e.g., 2% atomic Mn) is formed over the ILD layer 302, low concentration CuMn seed layer 314, and copper layer 308. Again, the seed layer 316 may be formed by sputtering, for example. In one embodiment, an anneal may then be performed as described above so as to drive Mn atoms into the top surface of the copper layer, creating a doped region 312.


As shown in FIG. 15, the portions of the high concentration CuMn seed layer 316 atop the ILD layer 302 may be removed by CMP, leaving a portion of the high concentration CuMn seed layer 316 over the low concentration CuMn seed layer 314 and copper layer 308. As such, the combination of the doped region 312 and remaining high concentration CuMn seed layer 316 provide an interface for better adhesion of NBLoK by ensuring high Mn doping (˜2%) on this surface. The deposition of the NBLoK layer 310 is illustrated in FIG. 16.


In still another embodiment, because of the recessing in FIG. 13, which leaves a portion of the high concentration CuMn seed layer 316 atop the low concentration CuMn seed layer 314 and copper layer 308, an anneal need not be performed. That is, as shown in FIG. 17, the sputtered high concentration CuMn seed layer 316 atop the low concentration CuMn seed layer 314 and copper layer 308 serves as the interface for the subsequently deposited NBLoK layer. The deposition of the NBLoK layer 310 is illustrated in FIG. 18.


As discussed above, prior to forming a low concentration CuMn seed layer or perhaps a Cu seed layer in a patterned opening, a diffusion barrier layer is typically formed prior to seed layer deposition. It will be noted that a similar barrier layer(s) may also be formed prior to deposition of the high concentration CuMn seed layer 316.


While the disclosure has been described with reference to a preferred embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A method of forming a metal interconnect structure, the method comprising: forming a copper line within an interlevel dielectric (ILD) layer;directly doping a top surface of the copper line with a copper alloy material by sputtering the copper alloy material on the top surface of the copper line; andforming a dielectric layer over the ILD layer and the copper alloy material;wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.
  • 2. The method of claim 1, wherein the copper alloy material comprises a copper manganese (CuMn) seed layer.
  • 3. The method of claim 2, wherein the CuMn layer has a manganese concentration of about 2.0% atomic.
  • 4. The method of claim 3, wherein the dielectric layer comprises an NBLoK (SiC(N,H)) layer.
  • 5. A method of forming a metal interconnect structure, the method comprising: forming a copper line within an interlevel dielectric (ILD) layer;directly doping a top surface of the copper line with a copper alloy material comprising a copper manganese (CuMn) seed layer having a manganese concentration of about 2.0% atomic; andforming an NBLoK (SiC(N,H)) dielectric layer over the ILD layer and the copper alloy material;wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.
  • 6. A method of forming a metal interconnect structure, the method comprising: forming a copper line within an interlevel dielectric (ILD) layer;directly doping a top surface of the copper line with a copper alloy material comprising a copper manganese (CuMn) seed layer having a manganese concentration of about 2.0% atomic; andforming an NBLoK (SiC(N,H)) dielectric layer over the ILD layer and the copper alloy material;wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer; andwherein the directly doping further comprises:forming the CuMn seed layer atop the ILD layer and the copper line;performing an anneal to drive Mn atoms from the CuMn seed layer into top surface of the copper line, thereby defining a doped region at the top surface of the copper line; andremoving the CuMn seed layer prior to forming the NBLoK layer.
  • 7. A method of forming a metal interconnect structure, the method comprising: forming a copper line within an interlevel dielectric (ILD) layer;directly doping a top surface of the copper line with a copper alloy material comprising a copper manganese (CuMn) seed layer having a manganese concentration of about 2.0% atomic; andforming an NBLoK (SiC(N,H)) dielectric layer over the ILD layer and the copper alloy material;wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer; andwherein the directly doping further comprises:recessing the copper line below a top surface of the ILD layer;forming the CuMn seed layer atop the ILD layer, into a recess and atop the copper line; andremoving a first portion of the CuMn seed layer atop the ILD layer and leaving a second portion of the CuMn seed layer atop the copper line; andforming the NBLoK layer over the ILD layer and the second portion of the CuMn seed layer.
  • 8. The method of claim 7, further comprising annealing the CuMn seed layer prior to forming the NBLoK layer.
  • 9. The method of claim 7, wherein the recess has a depth of about 0.2 microns (μm).
  • 10. The method of claim 9, wherein the copper line has a thickness of about 3 μm.
  • 11. A method of forming a metal interconnect structure, the method comprising: forming an opening within an interlevel dielectric (ILD) layer;forming a first copper manganese (CuMn) seed layer in the opening;forming a copper layer in the opening over the first seed layer;planarizing the copper layer and the first seed layer so as to define a copper line;directly doping a top surface of the copper line with a copper alloy material; andforming an NBLoK (SiC(N,H)) dielectric layer over the ILD layer and the copper alloy material, the copper alloy material comprising a second CuMn seed layer;wherein the copper alloy material serves an adhesion interface layer between the copper line and the dielectric layer.
  • 12. The method of claim 11, wherein the first CuMn seed layer has a manganese concentration of about 0.5% atomic and the second CuMn seed layer has a manganese concentration of about 2.0% atomic.
  • 13. The method of claim 12, wherein the directly doping further comprises: forming the second CuMn seed layer atop the ILD layer, the first CuMn seed layer and the copper line;performing an anneal to drive Mn atoms from the second CuMn seed layer into top surface of the copper line, thereby defining a doped region at the top surface of the copper line; andremoving the second CuMn seed layer prior to forming the NBLoK layer.
  • 14. The method of claim 12, wherein the directly doping further comprises: recessing the first CuMn seed layer and the copper line below a top surface of the ILD layer;forming the second CuMn seed layer atop the ILD layer, into a recess and atop the first CuMn seed layer and the copper line; andremoving a first portion of the second CuMn seed layer atop the ILD layer and leaving a second portion of the second CuMn seed layer atop the first CuMn seed layer and the copper line; andforming the NBLoK layer over the ILD layer and the second portion of the second CuMn seed layer.
  • 15. The method of claim 14, further comprising annealing the second CuMn seed layer prior to forming the NBLoK layer.
US Referenced Citations (56)
Number Name Date Kind
6181012 Edelstein et al. Jan 2001 B1
6399496 Edelstein et al. Jun 2002 B1
6528412 Wang et al. Mar 2003 B1
6627995 Paranjpe et al. Sep 2003 B2
6645852 Taguchi et al. Nov 2003 B1
6731006 Halliyal et al. May 2004 B1
6787800 Weiland et al. Sep 2004 B2
6911229 Andricacos et al. Jun 2005 B2
6967155 Lin et al. Nov 2005 B2
7026714 Cunningham Apr 2006 B2
7154115 Stine et al. Dec 2006 B2
7197726 Ciplickas et al. Mar 2007 B2
7205667 Koura et al. Apr 2007 B2
7220674 Marieb et al. May 2007 B2
7348594 Ciplickas et al. Mar 2008 B2
7351655 Cunningham Apr 2008 B2
7361589 Cunningham Apr 2008 B2
7372152 Cunningham May 2008 B2
7388289 Rhodes Jun 2008 B1
7585766 Cunningham Sep 2009 B2
7771018 Silverbrook Aug 2010 B2
7838413 Lee Nov 2010 B2
7855147 Dulkin et al. Dec 2010 B1
7863194 Yin et al. Jan 2011 B2
7871924 Koura et al. Jan 2011 B2
7902852 Hess et al. Mar 2011 B1
7932176 Gordon et al. Apr 2011 B2
8017523 Wu et al. Sep 2011 B1
8034711 Yu et al. Oct 2011 B2
8076239 Kawamura et al. Dec 2011 B2
8110504 Nakao et al. Feb 2012 B2
8119524 Sunayama et al. Feb 2012 B2
20040113238 Hasunuma et al. Jun 2004 A1
20040145062 Nopper et al. Jul 2004 A1
20050121791 Yamada et al. Jun 2005 A1
20050186793 Omoto et al. Aug 2005 A1
20050218519 Koike et al. Oct 2005 A1
20060105475 Ciplickas et al. May 2006 A1
20070190780 Chung et al. Aug 2007 A1
20070259519 Yang et al. Nov 2007 A1
20080124924 Naik May 2008 A1
20090321937 Haneda et al. Dec 2009 A1
20100052028 Hayashi et al. Mar 2010 A1
20100207177 Liu et al. Aug 2010 A1
20100219157 Matsumoto Sep 2010 A1
20100323478 Kuo Dec 2010 A1
20100327447 Iguchi et al. Dec 2010 A1
20110163062 Gordon et al. Jul 2011 A1
20110237066 Sato et al. Sep 2011 A1
20110241205 Kirby et al. Oct 2011 A1
20110244676 Chen et al. Oct 2011 A1
20120061838 Edelstein et al. Mar 2012 A1
20120074584 Lee et al. Mar 2012 A1
20120273949 Liu et al. Nov 2012 A1
20130069234 Lee et al. Mar 2013 A1
20130075908 Cabral, Jr. et al. Mar 2013 A1
Foreign Referenced Citations (5)
Number Date Country
2008047719 Feb 2008 JP
2008060431 Mar 2008 JP
2008066428 Mar 2008 JP
2008147252 Jun 2008 JP
0250882 Jun 2002 WO
Non-Patent Literature Citations (2)
Entry
Yeung Au and Roy G. Gordon, “Vapor Deposition of Highly Conformal Copper Seed Layers for Plating through-Silicon Vias (TSVs),” ECS, 220th ECS Meeting, Boston,MA; Oct. 2011, pp. 1-26.
Jing Zhang, et al., “Thermal Stresses in 3D IC Inter-Wafer Interconnects,” ST Paper: Journal Microelectronic Engineering v82 Issue 3-4, Dec. 2005, pp. 534-547.
Related Publications (1)
Number Date Country
20140061914 A1 Mar 2014 US