Not Applicable
The present invention generally relates to heat pumps. More specifically, the invention relates to hybrid heat pumps that may be used in combination with hot water and forced air systems for heating and domestic water supply and cooling systems.
Residential, commercial and industrial heat pump systems are a growing market worldwide because they can be high efficiency and may be used to replace less efficient heating and cooling systems. The growth in heat pumps has been primarily in new homes or existing residences that have forced hot air heating systems. Presently, converting homes that are heated by hot water is prohibitively expensive for the average homeowner. Retrofitting these homes are limited to several expensive options, which include for example:
The cost of these options can range from $70,000-$100,000, which is far too expensive for a typical homeowner. Additionally, the level of complexity in these retrofits can make these jobs undesirable to installers as well. The uptake of heat pump systems in the commercial and industrial markets has been slower than residential due, at least in part, to the additional complexity and requirements of these systems, such as the need for chilled water, etc.
As such, there is a continuing need for heat pumps, systems, and methods that may be used in new installations and retrofit applications for both existed forced air and water heating systems with lower cost and higher performance for residential, commercial and industrial buildings.
The present invention addresses the above noted needs by providing a double hybrid heat pump that may be used in new installations as well as retrofit applications for building with forced air or hot water heating systems.
The double hybrid heat pump includes a compressor for compressing low-pressure vapor phase refrigerant to high-pressure vapor phase refrigerant, a refrigerant to water condensing heat exchanger to produce and store heated water using heat from the high-pressure refrigerant. The condensed refrigerant then proceeds to a refrigerant cooling heat exchanger which exchanges heat with a lower temperature fluid than was used to exchange heat in the condensing heat exchanger, in which the high-pressure liquid refrigerant is further cooled. The high-pressure cooled liquid refrigerant is passed through an expansion valve to drop the pressure of the cooled liquid. The low-pressure cooled liquid or liquid/gas two phase mixture refrigerant is then provided to a refrigerant evaporating heat exchanger to vaporize the low-pressure refrigerant before it is returned to the compressor.
In various embodiments, the water heated by the condensing heat exchanger is provided to one or both of 1) a hot water tank for storage or for use as domestic hot water and 2) a hydronic heating loop that may serve a variety of uses. For example, in a hot water heating system including a boiler, in the heating mode, the double hybrid heat pump may make hot water for use as either domestic hot water or hydronic hot water to as a replacement for the boiler for heating, as well as providing hot air from the inside refrigerant to air heat exchanger for heating. Whereas, in the cooling mode, the double hybrid heat pump may provide hot water for domestic hot water and cool air for air conditioning. While in cooling mode, the first condenser shall first absorb the heat rejected by the compressor and any remaining heat will be rejected outside the system. In cooling mode, if the conditions permit, the system can prioritize condensing for producing useful hot water and then use a favorable temperature difference to further subcool the refrigerant before it reaches the thermal expansion valve, increasing the net efficiency of the system greatly.
The double hybrid heat pump may be used to eliminate many external components, complicated controls, and the huge amount of labor required to retrofit a home from an existing hot water heating system to a ground or water source heat pump. It can be installed with minimal training and has built-in features that limit the risk to the contractor. For example, in a hot water heating system, the present invention may be used to eliminate a domestic hot water pre-heat tank, 1 heat pump, 1 flow center, 1 HDPE manifold, 1 circulator, domestic hot water piping, hydronic fan coils and extra zone controls which result in substantial installation and operational savings.
Accordingly, the present disclosure addresses the continuing need for HVAC systems with improved cost and performance.
The accompanying drawings are included for the purpose of exemplary illustration of various aspects of the present invention, and not for purposes of limiting the invention, wherein:
In the drawings and detailed description, the same or similar reference numbers may identify the same or similar elements. It will be appreciated that the implementations, features, etc. described with respect to embodiments in specific figures may be implemented with respect to other embodiments in other figures, unless expressly stated, or otherwise not possible.
Systems 100, double hybrid heat pumps 50, and methods of use, operation, and control of the present invention may be employed in various heating and water supply solutions in a structure 200.
The condensed refrigerant is provided from the outlet of the condensing heat exchanger 3 via connection 4 to a reversing element 15 via port 5 serving as an inlet. It will be appreciated by one skilled in the art that word “port” as used herein may describe access points to hardware and/or software. For example, a port may serve as an inlet or entry point to a device or an outlet or exit point from a device depending upon the direction of fluid flow, current flow, etc. Similarly, a connection may be a direct or indirect physical or logical connection between hardware and/or software.
In heating modes, such as depicted in
It will be appreciated by the skilled artisan that maintaining the temperature of the second cooling fluid, e.g., air, below the temperature of the first cooling fluid, e.g., water, the refrigerant can be subcooled more than achievable with only the first cooling fluid and greater efficiency can be derived from the system 50 relative to the prior art.
The heat exchanger 11 is usually deployed inside the structure 200. In various embodiments, the compressor 1, condensing heat exchanger-storage tank 36, and heat exchanger 11 may be housed in the same physical unit or multiple units that may be deployed in proximity for ease of installation and maintenance. It will be further appreciated that heat exchangers and other devices employed in the present invention may include one or more stages that may be operated as a single unit or separately by those skilled in the art.
In various embodiments using air as the second fluid, one or more blowers 12 may be provided proximate the heat exchanger 11 that may be controlled to control the amount of heat being transferred in the heat exchanger 11. The blowers 12 may be connected to ductwork inside the structure 200 to enable heated and cooled air to be distributed in the structure 200 in the heating and cooling modes, respectively. Various control algorithms may be used to control the amount of heat extracted by the blowers 12 to control for human comfort by balancing the flowrate of the air, refrigerant temperature and secondary effects caused by the further cooling of the refrigerant. By using the relatively cool temperature of the return air to subcool the condensed liquid entering the heat exchanger 11 via port 10, more heat can be extracted from the refrigerant and increase overall efficiency. The cooler refrigerant is then able to absorb more heat at heat exchanger 27 per pound of refrigerant that passes through the system.
In the heating mode, such as depicted in
In
The heat exchanger 27 is sometimes deployed outside the structure 200. The heat exchanger 27 may be embodied in various heat exchanger designs employing various heat exchanger media including gas, solid, or liquid, as is known in the art. For example, the heat exchanger 27 may be a geo-thermal heat exchanger in which heat is exchanged with solid ground and/or water in a well, or a refrigerant-air heat exchanger.
The low-pressure vaporized refrigerant enters and exits the heat exchanger 27 via connections 26 and 25, respectively, and travels to reversing element 23. In heating mode, the low-pressure vaporized refrigerant enters and exits the reversing element 23 via ports 22 and 28, respectively. As is known in the art, some reversing element 23, e.g., valves, come with a smaller inlet than outlet and an appropriate reversing element must be selected to allow for a small pressure drop across port 28. For instance, a 3 ton compressor which uses a ⅞″ suction inlet on the compressor may be best served by a reversing element with at least a ⅝″ inlet on port 28, but for further pressure reduction and higher efficiency, one may employ a larger reversing element with a ⅞″ inlet.
The low-pressure vaporized refrigerant leaves port 28 and travels to port 8 on reversing element 15. In heating mode, the low-pressure vapor refrigerant exits reversing element 15 via port 9 and is returned to the compressor 1 via connection 29 to complete and repeat the cycle.
The reversing element 23 used in
In cooling modes, as depicted in
Similar to in heating mode, a control algorithm is typically employed to adjust the amount of heat extraction from heat exchanger 27. If heat exchanger 27 has a lower temperature than heat exchanger 3, it may be capable of subcooling the refrigerant entering the expansion valve 17 to a substantial degree, which will increase the cooling capacity of the evaporating heat exchanger 11 compared with using heat exchanger 3 alone. More generally speaking, when the refrigerant cooling heat exchanger is used to exchange heat with a heat exchange media that is at a lower temperature than the water exchanging heat with the refrigerant in the refrigerant condensing heat exchanger, the overall efficiency of the system 100 may be improved.
In cooling mode, with proper regulation of the speed of pump 30 to the source/sink heat exchanger, the system 50 will be able to condense high-pressure refrigerant in heat exchanger 3 and then further subcool this liquid with heat exchanger 27. The amount of subcooling will depend on the relative temperatures of the interacting fluids on heat exchanger 3 and 27, and the size and design of the heat exchangers. The refrigerant, being thoroughly condensed and subcooled, will be capable of extracting more heat from heat exchanger 11 and improving efficiency in cooling mode.
In
The low-pressure cooled liquid refrigerant is provided via port 13 to the heat exchanger 11, which serves as the evaporating heat exchanger. The refrigerant is partially or fully evaporated in the heat exchanger 11 and exits via port 10. In various embodiments, the blowers 12 circulate the cooled air from the heat exchanger 11 throughout the structure 200 via the ductwork. However, other heat exchange media may be employed in heat exchanger 11 depending upon various factors, such as desired efficiency and/or uses of the energy being transferred from the refrigerant.
In the cooling mode, the low-pressure vaporized refrigerant exiting the heat exchanger 11 via port 9 and is returned to the compressor 1 via the reversing element 15 through ports 7 and 9 to complete and repeat the cycle.
It will be appreciated that hot water production may be effectively bypassed or reduced and the heat pump system 50 may be used solely for providing hot or cool air by reducing the flow from circulator 35 to heat exchanger 3. In this mode, heat exchanger 11 would serve as the condensing heat exchanger in heating modes and the evaporating heat exchanger in cooling modes. Conversely, heat exchanger 27 would serve as the evaporating heat exchanger in heating modes and the condensing heat exchanger in cooling modes.
Similarly, forced hot or cool air distribution to the structure 200 may be reduced, stopped, or bypassed, if only hot water production was desired. In various embodiments, the blowers 12 may be slowed or not operated in the
In addition, the blower speed, and hence the amount of heat transferred in refrigerant-air heat exchanger 11 may be modulated based on a feedback loop to target a specific final refrigerant temperature. Since much of the heat from the refrigerant has already been removed by the condensing heat exchanger 3, the blower 12 may be operated at lower speeds, so to not blow a large volume of air into the building which may be unpleasant to the occupants. The blower 12 may be set to cool the refrigerant to a pre-determined temperature above the incoming air temperature. For example, if the incoming air temperature is 60 degrees and the refrigerant saturation temperature is 120 degrees and the predetermined setpoint is 15 degrees above the entering air temperature, the blower 12 would modulate to set the leaving refrigerant temperature at port 13 to be 75 degrees (60+15), yielding 45 degrees of subcooling from the discharge saturation temperature.
The effect of using a subcooling heat exchanger, (heat exchanger 11 when heating and heat exchanger 27 when cooling) is significant. The extra subcooling improves the overall efficiency of the refrigeration cycle by putting a larger load on the evaporator. Furthermore, since the subcooling is done by the subcooling heat exchanger, the pressure and temperature of the refrigerant entering the condensing heat exchanger can be lower, lowering the work done by the compressor.
A similar effect happens in the evaporator. When the high-pressure refrigerant is subcooled by a colder fluid in the refrigerant cooling heat exchanger the refrigerant passes through the expansion device with less residual heat. As a result, the expansion device will throttle less and allow the refrigerant pressure to rise, increasing efficiency and decreasing the compressor power input.
Performance data collected from experimental testing shows that 30 degrees of additional subcooling improves heat extraction by the evaporator heat exchanger 27 by between 21-30%. In addition, this increase in performance also reduced compressor power consumption by 3%.
The inclusion of the water storage tank 36 may provide several benefits compared to prior art systems depending upon the deployment scenario. For example, the double hybrid heat pump system 50 including the tank 36 may:
9. allow a heat pump controller to sense the building load by the change in temperature without the sudden swings in the refrigerant pressure that would be caused by directly piping the hot water return to the heat pump.
The Double Hybrid system 50, as previously described, has several advantages for retrofitting residential structures that have existing hydronic heating infrastructure. These buildings may have hydronic heat emitters, typically baseboards, radiators or radiant floors, that were sized at the time of installation based on higher temperature hot water; i.e., the 160-180 degrees that is a common supply temperature of a conventional boiler. These same heat emitters may have only a fraction of their original capacity when connected with supply water that is at a temperature typical of a heat pump system (110-120 degrees).
The double hybrid heat pump 50 may be configured to produce hot water for the hydronic systems and hot air for heating at the same time, from the same unit to overcome the heat deficiency created by using lower temperature water in the hydronic system. As previously described, by producing these two at the same time, the efficiency is greatly improved and the warm air can be used to supplement the heat emitters in a retrofitted building.
In addition, the double hybrid system 50 has further advantages in terms of overall system efficiency compared to prior art hot water only heat pumps. For example, a building that could be heated on a peak day with 120 degree hot water would require that the hot water only heat pump to deliver 120 degree hot water, whereas the double hybrid system 50 may be operated with a lower hot water temperature, for example to 100 or 110 degrees, and then supply heated forced air at the same time to provide the same total heating effect to the building. The skilled artisan will appreciate that a lower supply temperature of even a few degrees makes a large difference on heat pump efficiency. For example, a 10 degree reduction in supply temperature may increase the coefficient of performance by 0.25.
In addition, if the building's heat emitters were severely limiting, the unit could cycle between producing only hot air and both hot air and hot water to ensure that the heat production of the unit is not limited by the capacity of the heat emitters in the building.
The skilled artisan may employ other devices in the system 50. For example, a desuperheater may be employed between the compressor 1 and the condensing heat exchanger 3, to pre-cool the high-pressure, high temperature vapor prior to entering the condensing heat exchanger 3.
Though the use of two circulator pumps is not necessary, including them in a packaged product does provide several advantages, such as:
The present invention reduces installation time and cost by reducing the need for extensive ductwork, complex controls, hydronic air handlers, buffer tanks, additional circulators or any other external equipment to operate.
Using prior art methods, the refit may involve the installation of:
Prior art installation such as shown in
By contrast, the same retrofit with a Double Hybrid heat pump (
While the present invention was described in various embodiments as being used in combination with a boiler, unlike prior art units, the DHHP 50 of the present invention may be used to replace an existing boiler. The integration of the refrigerant subcooling function may enable substantially higher coefficients of performance (COP), such as 3.5-4.5 in regular heating mode and up to 8-12 in cooling mode (accounting for the hot water benefit) compared of COP of between 2.8-3.2 in heating mode and 4.5-6 in cooling mode that is typical of water to water heat pumps with a desuperheater. In addition, system 100 employing the DHHP system 50 of the present invention are simpler to install resulting in a lower risk of job failure or recall for the contractor.
One of skill in the art will appreciate that the system 50 may be implemented with fixed or variable speed pumps and blowers 12 to provide flexibility in the operation and control. For example, the system 50 may employ variable speed blowers 12, which typically have a lower parasitic electric load than multiple small single speed fans that may be used by hydronic air handlers and more flexibility than one fixed speed fan. Likewise, one more pumps 30 and 35 in the system 50 may be variable speed.
One advantage of the DHHP system of the present invention is that it releases more heat by using the integrated air coil to subcool the refrigerant, as previously described on
In addition, compared with prior art systems that employ modular, water to water heat pumps, the double hybrid heat pump of the present invention is able to achieve significantly higher efficiency for 2 reasons. 1. The DHHP widens the refrigeration cycle by subcooling the refrigerant, producing more net heating and cooling effect while using less electricity. 2. When heating or cooling, the approach temperature of the refrigerant to air heat exchanger will be favorable to the transferring through 2 heat exchangers. For instance, in cooling mode, the DHHP system 50 could receive 80 degree air and cool it with approximately 50 degree refrigerant. However, a hydronic heat pump would need to make 50-degree chilled water, and this would require the refrigerant to be even colder, perhaps 30-35 degrees. As is well known by those familiar with the art, the lower temperature refrigerant would be less efficient because the compressor will need to work harder to compress the lower pressure refrigerant to high-pressure.
The DHHP system 50 may be designed in a modular fashion, to conserve space, reduce transportation challenges and allow the units to be combined onsite in a cascade fashion to ramp up and down depending on the varying building requirements.
For example, if the building had a need for cooling the air, the DHHP systems 50 may condense the high-pressure refrigerant into a liquid in the first heat exchanger, providing useful heat for purposes such as domestic hot water, and then would use the reversing element to send the refrigerant to a second heat exchanger that would be connected to a ground or air source of heat exchange for further heat rejection. If the temperature of the water entering the second heat exchanger was colder than the water that entered the first, the double hybrid can leverage the temperature difference to further subcool the refrigerant, releasing more heat from the refrigerant prior to the expansion and evaporation. After the second heat exchanger, the subcooled refrigerant enters the expansion device and becomes a low-pressure, low temperature fluid. The DHHP system 50 may use the low-pressure, low temperature fluid to pre-cool the incoming air prior to it reaching the first heating air coil.
The foregoing disclosure provides examples, illustrations and descriptions of the present invention, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the implementations. These and other variations and modifications of the present invention are possible and contemplated, and it is intended that the foregoing specification and the following claims cover such modifications and variations.
As used herein, the term component is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code—it being understood that software and hardware can be designed to implement the systems and/or methods based on the description herein.
Some implementations are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, more than the threshold, higher than the threshold, greater than or equal to the threshold, less than the threshold, fewer than the threshold, lower than the threshold, less than or equal to the threshold, equal to the threshold, etc.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” and the term “set” is intended to include one or more items and may be used interchangeably with “one or more”. Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/183,615 filed on May 3, 2021, which is incorporated by reference in its entireties.
Number | Name | Date | Kind |
---|---|---|---|
4249390 | Jones | Feb 1981 | A |
4528822 | Glamm | Jul 1985 | A |
4598557 | Robinson | Jul 1986 | A |
4645908 | Jones | Feb 1987 | A |
4653287 | Martin | Mar 1987 | A |
4688396 | Takahashi | Aug 1987 | A |
4924681 | Devit | May 1990 | A |
5806331 | Brown | Sep 1998 | A |
6212894 | Brown | Apr 2001 | B1 |
6434972 | Geiger | Aug 2002 | B1 |
8056348 | Murakami | Nov 2011 | B2 |
8074459 | Murakami | Dec 2011 | B2 |
8079229 | Lifson | Dec 2011 | B2 |
8220531 | Murakami | Jul 2012 | B2 |
D700689 | Obosu | Mar 2014 | S |
8756943 | Chen | Jun 2014 | B2 |
8789382 | Ko | Jul 2014 | B2 |
9383126 | Chen | Jul 2016 | B2 |
9562708 | Medlock | Feb 2017 | B2 |
9739492 | Medlock | Aug 2017 | B2 |
10107508 | Medlock | Oct 2018 | B2 |
10119738 | Hammond | Nov 2018 | B2 |
10753661 | Hammond | Aug 2020 | B2 |
10788227 | Brown | Sep 2020 | B2 |
10866002 | Taras | Dec 2020 | B2 |
10900675 | Medlock | Jan 2021 | B2 |
10907848 | Wallace | Feb 2021 | B2 |
20150285539 | Kopko | Oct 2015 | A1 |
20210018234 | Lingrey | Jan 2021 | A1 |
Entry |
---|
GeoSmart Energy, Systems Operation Technical Manual, Oct. 2016, Cambridge, Ontario, Canada. |
ClimateMaster Geothermal Heating & Cooling, Trilogy Q-Mode (QE) Series IOM, Residential Horizontal, Vertical & Downflow Packaged Geothermal Heat Pumps Installation, Operation & Maintenance Instructions, 97B0112N01, Jul. 25, 2017, Oklahoma City, Oklahoma, USA. |
Number | Date | Country | |
---|---|---|---|
20220349631 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
63183615 | May 2021 | US |