Drug-delivery stent formulations for restenosis and vulnerable plaque

Information

  • Patent Grant
  • 8017140
  • Patent Number
    8,017,140
  • Date Filed
    Monday, May 21, 2007
    17 years ago
  • Date Issued
    Tuesday, September 13, 2011
    13 years ago
Abstract
Drug-delivery stents capable of providing release of two or more drugs such as everolimus and estradiol are provided. The stents can be used for treating a disease such as restenosis and vulnerable plaque.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to drug combinations, formulations, and methods of application for the treatment or prevention of vascular disorder such as restenosis and/or vulnerable plaque. More superficially, the invention relates to application of everolimus and estradiol such as by a stent.


2. Description of the Background


Plaques have been associated with stenosis and restenosis. While treatments of plaque-induced stenosis and restenosis have advanced significantly over the last few decades, the morbidity and mortality associated with vascular plaques have remained significant. Recent work suggests that plaques may generally fall into one of two different general types: standard stenotic plaques and vulnerable plaques. Stenotic plaque, which is sometimes referred to as thrombosis-resistant plaque, can generally be treated effectively by the known intravascular lumen opening techniques. Although the stenosis the plaques induce may require treatment, these atherosclerotic plaques themselves are often a benign and effectively treatable disease.


Unfortunately, as plaque matures, narrowing of a blood vessel by a proliferation of smooth muscle cells, matrix synthesis, and lipid accumulation may result in formation of a plaque which is quite different than a standard stenotic plaque. Such atherosclerotic plaque becomes thrombosis-prone, and can be highly dangerous. This thrombosis-prone or vulnerable plaque may be a frequent cause of an acute coronary syndrome.


Coronary heart disease is generally thought to be caused by the narrowing of coronary arteries by atherosclerosis, the buildup of fatty deposits in the lining of the arteries. The process that may lead to atherosclerosis begins with the accumulation of excess fats and cholesterol in the blood. These substances infiltrate the lining of arteries, gradually increasing in size to form deposits commonly referred to as plaque or atherosclerotic occlusions. Plaques narrow the arterial lumen and impede blood flow. Blood cells may collect around the plaque, eventually creating a blood clot that may block the artery completely.


The phenomenon of “vulnerable plaque” has created new challenges in recent years for the treatment of heart disease. Unlike occlusive plaques that impede blood flow, vulnerable plaque develops within the arterial walls, but it often does so without the characteristic substantial narrowing of the arterial lumen which produces symptoms. As such, conventional methods for detecting heart disease, such as an angiogram, may not detect vulnerable plaque growth into the arterial wall. After death, an autopsy can reveal the plaque congested in arterial wall that could not have been seen otherwise with currently available medical technology.


The intrinsic histological features that may characterize a vulnerable plaque include increased lipid content, increased macrophage, foam cell and T lymphocyte content, and reduced collagen and smooth muscle cell (SMC) content. This fibroatheroma type of vulnerable plaque is often referred to as “soft,” having a large lipid pool of lipoproteins surrounded by a fibrous cap. The fibrous cap contains mostly collagen, whose reduced concentration combined with macrophage derived enzyme degradations can cause the fibrous cap of these lesions to rupture under unpredictable circumstances. When ruptured, the lipid core contents, thought to include tissue factor, contact the arterial bloodstream, causing a blood clot to form that can completely block the artery resulting in an acute coronary syndrome (ACS) event. This type of atherosclerosis is coined “vulnerable” because of the unpredictable tendency of the plaque to rupture. It is thought that hemodynamic and cardiac forces, which yield circumferential stress, shear stress, and flexion stress, may cause disruption of a fibroatheroma type of vulnerable plaque. These forces may rise as the result of simple movements, such as getting out of bed in the morning, in addition to in vivo forces related to blood flow and the beating of the heart. It is thought that plaque vulnerability in fibroatheroma types is determined primarily by factors which include: (1) size and consistency of the lipid core; (2) thickness of the fibrous cap covering the lipid core; and (3) inflammation and repair within the fibrous cap.


While the known procedures for treating plaque have gained wide acceptance and shown good efficacy for treatment of standard stenotic plaques, they may be ineffective (and possibly dangerous) when thrombotic conditions are superimposed on atherosclerotic plaques. Specifically, mechanical stresses caused by primary treatments like percutaneous transluminal coronary intervention (PTCI), such as stenting, may actually trigger release of fluids and/or solids from a vulnerable plaque into the blood stream, thereby potentially causing a coronary thrombotic occlusion. For example, rupture of the fibrous cap that overlies the thrombogenic necrotic core is presently believed to play an important role in acute ischemic events, such as stroke, transient ischemic attack, myocardial infarction, and unstable angina (Virmani R, et al. Arterioscler Thromb Vasc Biol. 20: 1262-1275 (2000)). There is evidence that fibrous cap can be ruptured during stent deployment. Human data from various sources have indicated that lipid rich and/or positively remodeled and/or echolucent lesions in sysmptomatic coronary atherosclerosis have higher likelihood for restenosis (See, for example, J. Am. Coll. Cardiol. 21(2):298-307 (1993); Am. J. Cardiol. 89(5):505 (2002); Circ. 94(12):3098-102 (1996)). Therefore, there is a need for stabilization of thin fibrous cap by building-up additional fibrous mass in a controlled manner without triggering occlusive restenosis.


The drug formulations and delivery methods of the present invention address issues of restenosis, vulnerable plaque and other disorders.


SUMMARY OF THE INVENTION

Described herein is a coating formulation for controlled release of two or more drugs for treating a medical condition. The coating is capable of a variety of combinations of release of the two or more drugs.


The release profiles of the drugs are tailored to meet various therapeutic needs. Therapeutic intervention of a drug may vary as a function of time because the mechanistic target of the drug may be a function of time. For example, anti-proliferative drugs may need to be released between 5 days to 30 days after implantation, and anti-inflammatory or antiplatelet drugs may need to be delivered acutely during the implantation procedure followed by a sustained release up to 2 months after implantation. Antimigratory drugs may need to be released within 1-4 weeks. The coating described herein, in one embodiment, is capable of providing a pulse or fast release of a first drug followed by a sustained release the first drug. The coating can further provide a fast release and/or followed by a sustained release of a second drug over a defined period.


A stent having a coating formulation defined herein can be used to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the in vivo percent release of everolimus and 17-beta-estradiol, further showing that it is possible to have a controlled release of everolimus and 17-beta-estradiol simultaneously (designated as “Combo”). For comparison, stents that elute only everolimus were formed to have a coating that includes an EVAL primer and a layer that includes 1:3 everolimus to EVAL polymer ratio (total solid 284 μg) (designated as “F1”).



FIG. 2 shows the comparative vascular response of the two systems, the F1 and the Combo systems, at 14 days post implant, based on analysis of histology slides.



FIG. 3 shows the simultaneous release of everolimus and 17-beta-estradiol in phosphate-buffered saline (PBS)/Triton™ solution (polyoxyethylene octyl phenyl ether) (SPI Supplies, West Chester, Pa.).



FIG. 4 shows the percent lipid area, total fibrous cap thickness, and collagen type III percent area for the thin-cap fibroatheromas stented as indicated in an experimental animal model of atherosclerosis.



FIG. 5 shows the neointimal areas measured in cases of both fibrous cap rupture and intact fibrous cap for the thin-cap fibroatheromas stented as indicated in an experimental animal model of atherosclerosis.





DETAILED DESCRIPTION

In one embodiment a drug release profile or drug formulation is disclosed for the treatment of vascular disorder or related disorder. More specifically, the vascular disorder is restenosis and/or vulnerable plaque. The term “treatment” includes prevention, reduction, delay or elimination of the referred to disorder. In some embodiments, treatment also includes repairing damage caused by the disorder or the mechanical intervention, e.g., stenting. The mode of deliver of any one or the combination of the drugs can be local or systemic. Local administration can be by a stent (e.g., coated stent or biodegradable or bioabsorbable stent), a drug delivery particle or other known methods of local drug delivery. Systemic administration can be accomplished orally or parenterally, including intravascularly. For example, in one embodiment, a first drug can be delivered by a stent and the other by a catheter at the site of treatment. The delivery can be simultaneous or in sequence. In one embodiment, one of the drugs can be delivered before the other while there is some or a significant overlap between the deliveries of both. Preferably, the drug treatment is via a stent.


Therapeutic intervention of a drug may vary as a function of time because the mechanistic target of the drug may be a function of time. For example, anti-proliferative drugs may need to be released within a period of time between 3 days to 30 days after implantation, and anti-inflammatory or antiplatelet drugs may need to be delivered acutely during the implantation procedure followed by a sustained release up to 2 months after implantation. Antimigratory drugs may need to be released within 1-4 weeks.


For stent applications, the release profiles of the drugs can be tailored by using different types of coating material in mixed, bonded, or layered format; modifying the coating material; or positioning of the coating layers on the stents. Coating layers can include any combinations of a primer layer, a reservoir layer, a topcoat layer and a finishing coat layer. Any of the layers can include a biocompatible polymer as described below. For example, any of the layers, such as the barrier polymer can be a biocompatible polymer capable of controlled release of a drug by virtue of very low equilibrium water uptake. The term “very low equilibrium water uptake” can be defined as having a water permeability of less than about 1% by weight. Generally, a barrier formed of a hydrophobic biocompatible polymer would have a very low equilibrium water uptake. Polymers fall within this category include, for example, polystyrene, poly(butyl methacrylate) (PBMA), poly(D,L-lactic acid) (PDLLA), poly(L-lactic acid) (PLLA) or poly(D,L-lactic acid-co-glycolic acid) (PDLLAGA). In one embodiment, a layer, such as the barrier polymer, can be formed of a bioabsorable polymer such as polycaprolactone (PCL), poly(ester amides) (PEA), polyhydroxyalkanoate (PHA), or poly(3-hydroxybutyrate) (PHB), vinylidene fluoride based homopolymers such as polyvinylidene fluoride (PVDF) and copolymers such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP). Vinylidene fluoride based polymers are commercially available under the trade name Kynar™ and Solef™.


In one embodiment, the coating can have any one or combination of a pulse, burst or sustained release profile. For example, the coating can be made to have a pulse or burst release of a drug, followed by a sustained release of the same drug. The drug can be a bioactive agent as defined below. Preferably, the drug is an anti-proliferative 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of everolimus, available from Novartis as Certican™), estradiol such as 17-beta-estradiol, other estrogen receptors, anti-proliferative drugs, immunosuppresant drugs, anti-inflammatory drugs, anti platelet drugs, antimigratory drugs, anti-thrombotic drugs, drugs that regress plaque such as high density lipoprotein (HDL)-mimetics, agents that promotes endothelial cell growth, prohealing drugs and combinations thereof.


As used herein, the term “pulse release” generally refers to a release profile of a drug that features a sudden surge of the release rate of the drug. The release rate surge of the drug would then disappear within a period. A more detailed definition of the term can be found in Encyclopedia of Controlled Drug Delivery, Edith Mathiowitz, Ed., Culinary and Hospitality Industry Publications Services.


In some embodiments, the term “fast release” refers to a release profile of a drug that features a release rate in the range between about 15 μg and about 40 μg per day (typically for one to three days) (or between about 45 μg and about 120 μg in three days) for a 18 mm stent, about 10 μg to about 27 μg per day (typically for one to three days) for a 13 mm stent, and about 6 (6.7) μg to about 17.2 μg per day (typically for one to three days) for a 8 mm stent. Equivalent profiles can be derived by one having ordinary skill in the art for stents having other sizes. The term “fast release” is used interchangeably with the term “burst release.”


As used herein, the term “sustained release” generally refers to a release profile of a drug that can include zero-order release, exponential decay, step-function release or other release profiles that carry over a period of time, for example, ranging from several days to several weeks or years. The terms “zero-order release”, “exponential decay” and “step-function release” as well as other sustained release profiles are well known in the art (see, for example, Encyclopedia of Controlled Drug Delivery, Edith Mathiowitz, Ed., Culinary and Hospitality Industry Publications Services). In some embodiments, sustained release refers to 2 to 15 μg per day for a selected number of days or weeks.


In another embodiment, the coating may include two or more drugs. One of the drugs or both drugs can have any one or combination of the pulsed, burst or sustained delivery profile. The coating can have a delivery profile that features a burst delivery of one or more drugs together with a sustained delivery of the one or more drugs. In one embodiment, the coating can be made to have a profile of a burst release of a first drug and sustained release of the first drug and a second drug. Alternatively, the coating can be made to have a burst release of a first and a second drug followed by a sustained release of the first and the second drug. The release rate of the drugs can be tailored by coating concentration of a drug and the equilibrium water uptake of the barrier if the barrier is formed of a hydrophobic, nonabsorable polymer or the absorption rate if the barrier is formed of an absorbable polymer.


For example, the coating can have a burst release in the first three days after implantation of an immunosuppresant, followed by a sustained release of the immunosuppresant thereafter or a sustained release of an anti-inflammatory drug or an antiplatelet drug over a period of two months.


In another embodiment of the present invention, a coating can be made to provide a release profile that includes a pulse release of one or more drugs and optionally a sustained release of the same or different drugs. The art of formulation to provide a pulsed release profile is well developed (see, for example, Encyclopedia of Controlled Drug Delivery, Edith Mathiowitz, Ed., Culinary and Hospitality Industry Publications Services). In one example, the upper most stent coating or surface thereof can be concentrated with the drug. In another example, a drug can be encapsulated within microcapsules. The degradation of the microcapsule wall can generate a pulsed release of the drug.


In one embodiment, a coating providing a pulse release profile can be made from nano or microparticulate drug loaded particles (DrugP) formed of a drug encapsulated within a degradable polymer. The drugP can be nanoparticles or microparticles of the drugP having a size ranging for example, from about 0.5 nm to about 1000 nm, or from about 1 μm to about 100 μm. Representative drug particles can have a size of about 0.5 nm, about 2 nm, about 5 nm, about 10 nm, about 20 nm, about 50 nm, about 75 nm, about 100 nm, about 200 nm, about 500 nm, about 750 nm, about 1000 nm, about 2 μm, about 5 μm, about 10 μm, about 20 μm, about 50 μm, about 75 μm, or about 100 μm.


The drugs forming the drugP can be any one or more bioactive agents described below. Representative drugs can be anti-proliferative everolimus, estradiol (e.g., 17-beta-estradiol), other estrogen receptors, anti-proliferative drugs, immunosuppresant drugs, anti-inflammatory drugs, anti platelet drugs, antimigratory drugs, anti-thrombotic drugs, agents that promotes endothelial cell growth, drugs that regress plaque such as high density lipoprotein (HDL)-mimetics, prohealing drugs and combinations thereof. The encapsulating polymer can be any degradable biocompatible polymer having a range of hydrolysis rate. Representative polymers include, but are not limited to, poly(glycolic acid) (PGA), poly(D,L-lactic acid) (DLPLA), polyhydroxyalkanoates (PHA), poly(ester amides) (PEA), and polyether esters such as poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG). The drugP can be formed by emulsion methods known in the art (see, for example, Hans Mollet, Formulation Technology: Emulsions, Suspensions, Solid Forms, Wiley-VCH, 2001). The drugP can be suspended in a solution of a polymer and optionally the drug forming the drugP particles and then sprayed on the stent. Hydrolysis of the encapsulating polymer will allow the drug to be released from the drugP. The drugP having a size ranging from about 0.5 nm to 2 nm or from about 1 μm to 4 μm would favor surface degradation over bulk degradation. A population distribution of drugP can result in the drug release in the coating matrix at times that appear as a pulsed dosing from the coating matrix impressed on a background release of the same drug or a different drug if a drug is optionally included in the coating solution in which the drugP is suspended. The background release can be the same drug, a different drug or no drug at all. The background release of drug can be tailored to have a different profile as well. In one embodiment, the background release is sustained release.


In a further aspect of the present invention, the coating can be made to simultaneously release an agent that reduces smooth muscle cell migration and/or proliferation and an agent that promotes endothelial cell growth. Simultaneous delivery means that there is at least some overlap in the release of the drug. Under this embodiment, at least one of the drugs can be released first such as by pulsed, burst, or sustained delivery so long as there is an overlap in delivery with the second drug. Smooth muscle cell proliferation has been identified as a cause of restenosis, and endothelial cell growth contributes to vessel healing (see, for example, Chandrasekar, et al., J. Am. Coll. Cardiol. 38: 1570-6 (2001)). A combination of an anti-proliferative agent and an agent that promotes endothelial cell growth allows one to treat restenosis through different channels and may have a synergistic effect on ameliorating restenosis.


Coatings capable of simultaneously releasing an anti-proliferative agent and an agent that promotes endothelial cell growth can have a variety of configurations. For example, the coating can have a layer that comprises a mixture of the two agents or have two layers, each of which comprises a polymer and either the anti-proliferative agent or the agent that promotes endothelial cell growth.


In one embodiment, a composition containing a drug such as drugP particles described above can be formed from a polymer and one of the anti-proliferative agent and the agent that promotes endothelial cell growth. The composition such as the drugP particles can be suspended in a solution of the polymer and the other agent of the anti-proliferative agent or the agent that promotes endothelial cell growth and then coated on to a stent. The resultant coating would provide a pulsed release of one agent and a background release of the other agent.


The ani-proliferative agent useful for forming the various formulations described herein includes any anti-proliferative agents that reduce smooth muscle cell migration and/or proliferation. In one embodiment, the ani-proliferative agent is rapamycin, rapamycin derivatives, paclitaxel, docetaxel, 40-O-(3-hydroxy) propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole -rapamycin, ABT-578, everolimus and combinations thereof.


The agent that promotes endothelial cell growth useful for forming the various formulations described herein can be any agent that provides beneficial effect on endothelial cell growth. Exemplary agents promoting endothelial cell growth include, for example, vascular endothelial growth factor (VEGF), estradiol such as 17-beta-estradiol, agents that do not inhibit endothelial cell growth, and combinations thereof. Preferably, the endothelial cell growth promoting agent is estradiol, more preferably 17-beta-estradiol.


In one embodiment, the ani-proliferative agent is everolimus and the endothelial cell growth promoting agent is 17-beta-estradiol, and the simultaneous release of everolimus and 17-beta-estradiol can be achieved by three-layer coating on a stent. The first layer can be only a primer layer, the second layer can include a blend of everolimus and a polymer such as an EVAL polymer, and the third layer can have a blend of 17-beta-estradiol and a polymer such as an EVAL polymer.


In a further embodiment, a coating can be formed to include (1) a first drug that can be one of rapamycin, rapamycine derivatives, paclitaxel, docetaxel, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole -rapamycin, ABT-578, everolimus and combinations thereof, (2) a second drug that can be one of vascular endothelial growth factor (VEGF), estradiol such as 17-beta-estradiol, agents that do not inhibit endothelial cell growth, and combinations thereof. The first and second drugs can have any of the aforementioned release profiles such as the first drug can have a pulse, burst and/or sustained release profile, and the second drug can have a pulse, burst and/or sustained release profile. The first drug can have a burst release followed by sustained release while the second drug has a sustained release. Alternatively, the second drug can have a burst release followed by sustained release while the first drug has a sustained release. Preferably, the first drug is everolimus and the second drug is 17-beta-estradiol.


The coating can have different constructs. For example, the coating can have a first layer that comprises a first drug and a first polymer, and a second layer that comprises a second drug and a second polymer. The first polymer and the second polymer can be same or different. In addition, the first layer and the second layer can have a drug/polymer ratio between 1/99 and 99/1, e.g., a ratio between 10/90 and 90/10.



FIGS. 1 and 2 show an embodiment of the coatings described herein, which allows simultaneous release of both everolimus and 17-beta-estradiol. FIG. 1 shows porcine in vivo release profile of everolimus and 17-beta-estradiol in which “Combo” describes the stents that simultaneously release everolimus and 17-beta-estradiol and “F1” describes the stents that release only everolimus. The Combo stents include an EVAL primer layer and a layer of mixture of 1:3 everolimus to EVAL polymer ratio (total solid 284 μg) under a layer of mixture of 1:3 17-beta-estradiol to EVAL polymer ratio (total solid 372 μg). The F1 stents include an EVAL primer layer under a layer of a mixture of 1:3 everolimus to EVAL polymer ratio (total solid 284 μg). Vascular responses to the implants of F1 and Combo stents are shown in FIG. 2, which shows that the stent that simultaneously releases everolimus and 17-beta-estradiol can result in lower chances of peristrut thrombosis and higher chances of re-endothelialization as compared to the stent that releases only everolimus. Foreign body response (FBR) and inflammation were generally the same.



FIG. 3 shows another embodiment of the present invention, which is simultaneous fractional release of everolimus and 17-beta-estradiol in Solef™ in phosphate-buffered saline (PBS)/Triton™ solution (polyoxyethylene octyl phenyl ether) (SPI Supplies, West Chester, Pa.). The stents have a PBMA primer layer and a layer of everolimus in PVDF under a layer of 17-beta-estradiol in PVDF. The designation of “Design 1” and that of “Design 2” in FIG. 3 correspond to two different stents of the same configuration with different polymer/drug ratios.


The coatings described above can be designed to have a topcoat or a finish coat that is capable of promoting accelerated-healing. This topcoat or finish coat can be made non-inflammatory and/or non-fouling. Non-inflammatory is defined as preventing inflammation or reducing inflammation to an acceptable degree. Non-fouling or anti-fouling is defined as preventing, delaying or reducing the amount of formation of protein build-up caused by the body's reaction to foreign material. The topcoat or finish coat can be combined with a tailored release of a drug or drugs at the finalcoat and/or the drug reservoir layers to further modulate the plaque stabilization and controlled healing. The accelerated-healing topcoat can be formed of one of polyester amide, Silk-elastin, elastin-epitoped supramolecular assembly of peptide amiphile or combinations thereof. The accelerated-healing topcoat can be made non-inflammatory, non-fouling by including a non-inflammatory, non-fouling material such as PolyActive™, PEG, hyaluronic acid and its derivatives, and heparin and its derivatives that can be a fragment heparin such as pentasaccharide, a derivative heparin or a complexed heparin. Heparin derivatives can be any functional or structural variation of heparin. Representative variations include alkali metal or alkaline—earth metal salts of heparin, such as sodium heparin (e.g., hepsal or pularin), potassium heparin (e.g., clarin), lithium heparin, calcium heparin (e.g., calciparine), magnesium heparin (e.g., cutheparine), low molecular weight heparin (e.g., ardeparin sodium) with a molecular weight of from about 4,000 to about 5,000 Daltons and high affinity heparin (see, e.g., Scully, et al., Biochem. J. 262:651-658 (1989)). Other examples include heparin sulfate, heparinoids, heparin based compounds and heparin having a hydrophobic counter-ion such as tridodecylmethylammonium and benzalkonium.


The coatings described herein can optionally have one or more bioactive agents, which may be the same or different from the drugs described in the above. Examples of such agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Other examples of drugs include antibodies, receptor ligands, and enzymes, adhesion peptides, oligosaccharides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Such agents can also include a prohealing drug that imparts a benign neointimal response characterized by controlled proliferation of smooth muscle cells and controlled deposition of extracellular matrix with complete luminal coverage by phenotypically functional (similar to uninjured, healthy intima) and morphologically normal (similar to uninjured, healthy intima) endothelial cells. Such agents can also fall under the genus of antineoplastic, cytostatic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include heparinoids, hirudin, recombinant hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, antibody, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of cytostatic agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. Other drugs include calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium.


Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, antibodies such as CD-34 antibody, abciximab (REOPRO), and progenitor cell capturing antibody, prohealing drugs that promotes controlled proliferation of muscle cells with a normal and physiologically benign composition and synthesis products, enzymes, anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl(4-amino-TEMPO), dexamethasone, clobetasol, aspirin, pro-drugs thereof, co-drugs thereof, and a combination thereof. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.


The stent coating formulation provided herein can include any biocompatible polymer. Representative examples of polymers that can be used to coat an implantable device in accordance with the present invention include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA) such as poly(3-hydroxyalkanoates), e.g., poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) or poly(3-hydroxyoctanoate), poly(4-hydroxyalknaote), e.g., poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, polyesters, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L-lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as vinylidene fluoride based homopolymer (PVDF) and copolymers such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) known as Solef™ or Kynar™ polymers and polyvinylidene chloride, polyfluoroalkenes such as tetrafluoroethylene (Teflon™), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as poly(ethylene glycol) (PEG), copoly(ether esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as collagen, chitosan, alginate, fibrin, fibrinogen, starch, collagen, dextran, dextrin, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, alginate, and combinations thereof.


As used herein, the terms poly(D,L-lactide) (PDLL), poly(L-lactide) (PLL), poly(D,L-lactide-co-glycolide) (PDLLG), and poly(L-lactide-co-glycolide) (PLLG) are used interchangeably with the terms poly(D,L-lactic acid) (PDLLA), poly(L-lactic acid) (PLLA), poly(D,L-lactic acid-co-glycolic acid) (PDLLAGA), and poly(L-lactic acid-co-glycolic acid) (PLLAGA), respectively.


Although embodiments of local drug delivery has been described in reference to a stent (balloon or self expandable), other medical substrates that can be implanted in a human or veterinary patient are also applicable with the embodiments of the invention. Examples of such implantable devices include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.


In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.


For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.


EXAMPLES

The embodiments of the present invention will be illustrated by the following set forth examples. All parameters and data are not to be construed to unduly limit the scope of the embodiments of the invention.


Examples 1-2
Drug-Eluting Coatings having a Fast and Slow Release of Estradiol from 13 mm Penta™ Stents

Penta™ stents (available from Guidant) can be coated according to the configurations defined in Table 1 to provide a fast release or a slow release of estradiol.









TABLE 1







Coating configurations of Penta ™ stents for delivery of estradiol











Reservoir

Topcoat
















Primer

Drug
Solid


Topcoat




















Release
Polymer
Primer

Polymer
Content
Target

Polymer
Target






















1
Fast
EVAL
40 μg
A
EVAL
300 μg
600 mg
B
EVAL
100 μg
C


2
Slow
EVAL
40 μg
A
EVAL
300 μg
600 mg
B
PBMA
 40 μg
D





A: 3% EVAL/72% DMAC/25% ethanol.


B: 2% EVAL/1% Estradiol/77% DMAC/20% pentane.


C: 4% EVAL/76% DMAC/20% pentane.


D: 1% PBMA/43% Techspray ™/6% acetone/50% xylene.






Examples 3-4
Drug-Eluting Coatings having a Fast and Slow Release of Everolimus

Penta™ stents can be coated according to the configurations defined in Table 2 to provide a fast release or a slow release of everolimus.









TABLE 2







Coating configurations of Penta ™ stents for delivery of everolimus











Reservoir

Topcoat
















Primer

Drug
Solid


Topcoat




















Release
Polymer
Primer

Polymer
Content
Target

Polymer
Target






















3
Fast
EVAL
40 μg
A
EVAL
385 mg
615 μg
B
EVAL
 40 μg
C


4
Slow
EVAL
40 μg
A
EVAL
273 mg
478 μg
B
PBMA
189 μg
C





A: 3% EVAL/72% DMAC/25% ethanol.


B: 2% EVAL/1% everolimus/77% DMAC/20% pentane.


C: 4% EVAL/76% DMAC/20% pentane






Example 5
Preclinical Study of Drug-Delivery Implants

The following preclinical data are representative results from the drug-eluting stent (DES) implants of everolimus and 17-beta-estradiol in a hypercholesterolemic rabbit model of human thin-cap fibroatheroma (TCFA). The MULTI-LINK Penta™ 13 mm was the platform for all DES and metallic stents. Both a slow release and fast release formulation of each drug were tested and the results were evaluated at 28 days. In both FIGS. 4 and 5, the test results concerning the slow release formulation were labeled with “s”, the test results concerning the fast release formulation were labeled with “f”, and the test results data concerning a formulation having both a slow and a fast release of an agent are labeled with “s+f.”


As shown in FIG. 4, compared to the unstented (de novo) TCFAs, both formulations of beta estradiol reduced the percent lipid area and increased the total fibrous cap thickness. Compared to TCFAs treated with metallic stents, both formulations of beta estradiol reduced the percent lipid area and decreased the total fibrous cap thickness. The slow release formulation resulted in a smaller total fibrous cap thickness but with a larger percent lipid area compared to the fast release formulation. Compared to the metallic stents, both formulations of everolimus reduced the percent lipid area and decreased the total fibrous cap thickness. As with the beta-estradiol, the slow release formulation of everolimus yielded a smaller total fibrous cap thickness but with a larger percent lipid area compared to the fast release formulation. Together, these results illustrate that on de novo TCFAs, both beta-estradiol and everolimus drug-delivery stent reduce percent lipid area and increase total cap thickness. The increase in cap thickness in the drug-delivery stent arms was more controlled than the increase observed with the metallic stents. In particular, the slow release formulations may be effective at stabilizing TCFA by reducing percent lipid area while reducing the chance of restenosis as a result of the attenuated fibrous cap thickening. The increased expression of newer collagen type III suggests a reparative process post-stenting, such that the overall increase in interstitial collagen imparts increased structural integrity to the fibrous cap, thereby providing a possible mechanism for stabilizing the TCFA. In this respect, both drug-delivery stent arms were as effective as metallic stents in this animal model of atherosclerosis.



FIG. 5 shows the neointimal areas measured in cases of both fibrous cap rupture and intact fibrous cap for all stent arms in this animal model. These preclinical results have clinical significance in that with current interventional devices and procedures, the fibrous cap is likely to be ruptured during stent deployment. In each stent arm, rupture of the fibrous cap (hatched areas) by stent struts resulted in increased neointimal formation as compared to sections where the fibrous cap remained intact (solid areas). This response of increased neointimal formation in the case of fibrous cap rupture was attenuated, but not completely eliminated, by drug-delivery stent at 28 days. The lowest neointimal areas were obtained in the everolimus arms. For the full range of intact and ruptured fibrous caps, the slow release everolimus yielded similar results as compared to the fast release everolimus.


Example 6
Simultaneous Release of Everolimus and 17-Beta-Estradiol

Onto Vision 12 mm small stents (available from Guidant) can be coated according to the following configurations. An auto coater can be used to coat the abluminal surface of the stent.


Configuration A


Drug coating: coating with 200 μg of poly(D,L-lactic acid) (PDLLA)/estradiol, from 4.8% poly(D,L-lactic acid) (PDLLA), 4.8% estradiol, and 90.4% acetone, by 3 passes, drying at 35° C. for 8 hours, and then coating with 200 μg of DL-PLA/everolimus, from 4.8% DL-PLA, 4.8% everolimus, and 90.4% acetone, coating by 3 passes, drying at 35 ° C. for 8 hours.


Configuration B


Primer: coating with 80 μg PDLLA, using one pass coating, from 9.6% DL-PLA in acetone solution, baking at 120° C. for 1 hr; and


Drug coating: coating with 200 μg of PDLLA/estradiol, from 4.8% PDLLA, 4.8% estradiol, and 90.4% acetone, by 3 passes, drying at 35 ° C. for 8 hours, and then coating with 200 μg of PDLLA/everolimus, from 4.8% PDLLA, 4.8% everolimus, and 90.4% acetone, by 3 passes, drying at 35° C. for 8 hours.


Configuration C


Primer: coating with 80 μg PDLLA, using one pass coating, from 9.6% PDLLA in acetone solution, baking at 120° C. for 1 hr;


Drug: coating with 200 μg of estradiol, from 5% estradiol solution in acetone, using 3 pass coating;


Inter coat: coating with 80 μg PDLLA, using one pass coating, from 9.6% PDLLA in acetone solution, baking at 35° C. for 1 hr; and


Drug coat: coating with 200 μg of PDLLA/everolimus, from 4.8% PDLLA, 4.8% everolimus, and 90.4% acetone, by 3 passes, drying at 35 ° C. for 8 hours.


Configuration D


Primer: coated with 80 μg PDLLA, using one pass coating, from 9.6% PDLLA in acetone solution, baking at 120° C. for 1 hr;


PDLLA /drug: coating with 300 μg of PDLLA /estradiol, from 4.8% PDLLA, 4.8% estradiol, and 90.4% acetone, by 4 passes, drying at 35° C. for 8 hours;


Pure everolimus: coating with 100 μg everolimus, from 10% drug solution in MEK (methylethylketone), by 2 passes, baking at 50° C. for 1 hr; and


Top coat: coating with 100 μg Polyactive™, using one pass coating, from a 5% solution of 5% Polyactive™, 76% chloroform, and 19% 1,1,2-trichloroethane.


Configuration E


Primer: coating with 80 μg PDLLA, using one pass coating, from 9.6% PDLLA in acetone solution, and baking at 120° C. for 1 hr;


Poly(ester amide) (PEA)/estradiol: coating with 200 μg of PEA/estradiol, from 5% PEA, 5% estradiol, 72% chloroform, and 18% 1,1,2-trichloroethane, by 3 passes, drying at 35° C. for 8 hours;


PEA/everolimus: coating with 200 μg of PEA/everolimus, from a solution that includes 5% PEA, 5% everolimus, 72% chloroform, and 18% 1,1,2-trichloroethane, by 3 passes, and drying at 35° C. for 8 hours; and


Top coat: coating with 100 μg Polyactive™, using one pass coating, from a 5% solution of 5% PolyactiveTM in 76% chloroform, and 19% 1,1,2-trichloroethane.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A drug delivery stent, comprising: a primer;a reservoir layer comprising estradiol;an intercoat;a second reservoir layer comprising everolimus encapsulated in nano- and/or micro- particles and unencapsulated everolimus.
  • 2. The drug delivery stent of claim 1, wherein the estradiol is 17-beta-estradiol.
  • 3. The drug delivery stent of claim 1, wherein the stent is capable of: burst and/or pulsed and sustained release of everolimus; andsustained release of estradiol.
  • 4. The drug delivery stent of claim 1, wherein the first drug reservoir layer and/or the second drug reservoir layer further comprise a polymer wherein the polymer may be the same or different in each layer.
  • 5. The drug delivery stent of claim 4, wherein the first and second polymers are independently selected from the group consisting of poly(ethylene vinyl alcohol) (EVAL), poly(D,L-lactic acid) (PDLLA), poly(ester amide) (PEA), polybutylmethacrylate (PBMA), poly(ether ester), and poly(vinylidene fluoride) (PVDF).
  • 6. A method of treating a disorder in a patient comprising implanting in the patient the stent of claim 1, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor, and combinations thereof.
  • 7. The method of claim 6, wherein: the everolimus is released from an 18 mm stent at a rate of about 15 μg to about 40 μg per day for at least one day after implantation.
  • 8. The method of claim 7, wherein the everolimus is released from the stent at a rate of about 15 μg to about 40 μg per day for one to three days after implantation.
  • 9. The method of claim 6, wherein: the everolimus is released from a 13 mm stent at a rate of about 10 μg to about 27 μg per day for at least one day after implantation.
  • 10. The method of claim 6, wherein: the everolimus is released from an 8 mm stent at a rate of about 6 μg to about 17.2 μg per day for at least one day after implantation.
CROSS-REFERENCE TO RELATED APPLICATION

This is a divisional application of U.S. application Ser. No. 10/881,540, filed on Jun. 29, 2004now abandoned, the teaching of which is incorporated herein by reference in its entirety.

US Referenced Citations (306)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray, Jr. et al. Nov 1974 A
4226243 Shalaby et al. Oct 1980 A
4304767 Heller et al. Dec 1981 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4611051 Hayes et al. Sep 1986 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5219980 Swidler Jun 1993 A
5258020 Froix Nov 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5516881 Lee et al. May 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5581387 Cahill Dec 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5759205 Valentini Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5858746 Hubbell et al. Jan 1999 A
5861387 Labrie et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6383215 Sass May 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6471979 New et al. Oct 2002 B2
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6616765 Hossaony et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6703040 Katsarava et al. Mar 2004 B2
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6908624 Hossainy et al. Jun 2005 B2
20010007083 Roorda Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020062147 Yang May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030068355 Shanley et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030125800 Shulze et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040037886 Hsu Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040143322 Litvack et al. Jul 2004 A1
Foreign Referenced Citations (71)
Number Date Country
42 24 401 Jan 1994 DE
0 301 856 Feb 1989 EP
0 396 429 Nov 1990 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 2004000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
WO 2004017892 Mar 2004 WO
Related Publications (1)
Number Date Country
20070269484 A1 Nov 2007 US
Divisions (1)
Number Date Country
Parent 10881540 Jun 2004 US
Child 11804997 US