Becton Dickinson Labware, “Innovative Products for Cell Science Research, ” 41 pages. |
Bower, et al., “Influences on the antimicrobial activity of surface-adsorbed nisin,” Journal of Industrial Microbiology, vol. 15, pp. 227-233 (1995). |
Costerton, et al., “Microbial Biofilms,” Annual Reviews Microbial, vol. 49, pp. 711-743 (1995). |
Costerton, et al., “Mechanism of Electrical Enhancement of Efficacy of Antibiotics in Killing Biofilm Bacteria,” Antimicrobial Agents and Chemotherapy, vol. 38, No. 12, pp. 2803-2804, (Dec. 1994). |
Darouiche, et al., “Vancomycin Penetration into Biofilm Covering Infected Prostheses and Effect on Bacteria,” The Journal of Infectious Diseases, vol. 170, pp. 720-723 (1994). |
Evans, et al., “Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle,” Journal of Antimicrobial Chemotherapy, vol. 25, pp. 585-591 (1990). |
Gjaltema, et al., “Heterogeneity of Biofilms in Rotating Annular Reactors: Occurance, Structure, and Consequences,” Biotechnology and Bioengineering, vol. 44, pp. 194-204 (1994). |
Hussain, et al., “Radiochemical assay to measure the biofilm produced by coagulase-negative staphylococci on solid surfaces and its use to quantitate the effects of various antibacterial compounds on the formation of the biofilm,” J. Med. Microbial, vol. 37, pp. 62-69 (1992). |
Ichimiya, et al., “The Influence of Azithromycin on the Biofilm Formation of Psuedomonas aeruginosa in vitro,” Chemotherapy, vol. 42, pp. 186-191 (1996). |
Ichimiya, et al., “In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation,” Journal of Antimicrobial Chemotherapy, vol. 34, pp. 331-341 (1994). |
Johnston, et al., “Disinfection tests with intact biofilms: combined use of the Modified Robbins Device with impedance detection,” Journal of Microbiological Methods, vol. 21, pp. 15-26 (1995). |
Miyake, et al., “Simple Method for Measuring the Antibiotic Concentration Required to Kill Adherent Bacteria,” Chemotherapy, vol. 38, pp. 286-290 (1992). |
Morek, et al., “Comparative evaluation of fleroxacin, ampicillin, trimethoprimsulfamethozazole, and gentamicin as treatment of catheter-associated urinary tract infection in a rabbit model,” International Journal of Antimicrobial Agents, vol. 4, pp. S21-S27 (1994). |
Nunc, “Weleome to Nunc,” Nunc Inter Med, 48 pages. (Oct. 1990). |
Oie, et al., “Efficacy of disinfectants against biofilms cells of methicillin-resistant Staphylococcus aureus,” Microbios, vol. 85, pp. 223-225 (1996). |
Olson, et al., “Evaluation of strategies for central venous catheter replacement,” Critical Care Medicine, vol. 22, No. 6, pp. 797-804 (1992). |
Olson, et al., “Amdinocillan Treatment of Catheter-Associated Bacteriuria in Rabbits,” The Journal of Infectious Diseases, vol. 159, pp. 1065-1072 (Jun. 1989). |
Patel, et al., “Susceptibilty of Biofilms of Streptococcus sanguis to chlorhexidine gluconate and cetylpyridinium chloride,” Oral Microbiology and Immunology, vol. 11, 2 pages (1996). |
Prosser, “Method of Evaluating Effects of Antiobiotics on Bacterial Biofilm,” Antimicrobial Agents and Chemotherapy, vol. 31, No. 10, pp. 1502-1506 (1987). |
Richards, et al., “An assay of Staphylococcus epidermidis biofilm responses to therapeutic agents,” The International Journal of Artificial Organs, vol. 15, No. 11, pp. 777-787 (1993). |
Richards, et al., “An assay to measure antibiotic efficacy against Staphylococus epidermidis Biofilms on Implant Surfaces,” ASAIO Journal, pp. M570-M571 (1994). |
Shigeta, et al., “Permeation of Antimicrobial Agents through Pseudomonas aeruginosa Biofilms: A Simple Method,” Chemotherapy, vol. 43, pp. 340-345 (1997). |
Zimmerli, et al., “Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus,” Journal of Antimicrobial Chemotherapy, vol. 33, pp. 959-967 (1994). |
McCoy, et al., “Observations of fouling biofilm formation”, Canadian Journal of Microbiology, vol. 27, Issue 9, pp. 910-917 (Sep. 1981). |
Morck, et al., “Therapeutic Efficacy of Fleroxacin for Eliminating Catheter-Associated Urinary Tract Infection in a Rabbit Model”, The American Journal of Medicine, vol. 94 (suppl. 3A), pp. 3A-23S-3A30S (Mar. 22, 1993). |