This disclosure relates to hearing assistance devices, and more particularly to method and apparatus for environment detection and adaptation in hearing assistance devices.
Many people use hearing assistance devices to improve their day-to-day listening experience. Persons who are hard of hearing have many options for hearing assistance devices. One such device is a hearing aid. Hearing aids may be worn on-the-ear, behind-the-ear, in-the-ear, and completely in-the-canal. Hearing aids can help restore hearing, but they can also amplify unwanted sound which is bothersome and sometimes ineffective for the wearer.
Many attempts have been made to provide different hearing modes for hearing assistance devices. For example, some devices can be switched between directional and omnidirectional receiving modes. However, different users typically have different exposures to sound environments, so that even if one hearing aid is intended to work substantially the same from person-to-person, the user's sound environment may dictate uniquely different settings.
However, even devices which are programmed for a person's individual use can leave the user without a reliable improvement of hearing. For example, conditions can change and the device will be programmed for a completely different environment than the one the user is exposed to. Or conditions can change without the user obtaining a change of settings which would improve hearing substantially.
What is needed in the art is an improved system for updating hearing assistance device settings to improve the quality of sound received by those devices. The system should be highly programmable to allow a user to have a device tailored to meet the user's needs and to accommodate the user's lifestyle. The system should provide intelligent and automatic switching based on detected environments and programmed settings and should provide reliable performance for changing conditions.
The above-mentioned problems and others not expressly discussed herein are addressed by the present subject matter and will be understood by reading and studying this specification. The present subject matter provides method and apparatus for environment detection and adaptation in hearing assistance devices. Various examples are provided to demonstrate aspects of the present subject matter. One example of an apparatus employing the present subject matter includes: a microphone; an analog-to-digital (A/D) converter connected to convert analog sound signals received by the microphone into time domain digital data; a processor connected to process the time domain digital data and to produce time domain digital output, the processor including: a frequency analysis module to convert the time domain digital data into subband digital data; a feature extraction module to determine features of the subband data; an environment detection module to determine one or more sources of the subband data based on a plurality of possible sources identified by predetermined classification parameters; an environment adaptation module to provide adaptations to processing using the determination of the one or more sources of the subband data; a subband signal processing module to process the subband data using the adaptations from the environment adaptation module; and a time synthesis module to convert processed subband data into the time domain digital output. Variations include, but are not limited to, the previous example plus combinations including one or more of: a digital-to-analog (D/A) converter connected to receive the time domain digital output and convert it to analog signals; a receiver to convert the analog signals to sound; examples where the environment detection module is adapted to determine sources including wind, machine noise, and speech; where the speech source includes a first speech source associated with a user of the apparatus and a second speech source; where the environment adaptation module includes parameter storage for each of the plurality of possible sources, the parameter storage including a plurality of subband gain parameter storages; where the parameter storage further includes an attack parameter storage and a release parameter storage; where the parameter storage further includes a misclassification threshold parameter storage; where the environment detection module includes a Bayesian classifier; where the environment detection module includes storage for one or more a priori probability variables; where the environment detection module comprises storage for training data; a second microphone; further including a second A/D converter connected to convert analog sound signals received by the second microphone into additional time domain digital data, the additional time domain digital data combined with the time domain digital data provided to the processor for processing; and where the processor further includes a directivity module.
Some other variations include: a microphone; an analog-to-digital (A/D) converter connected to convert analog sound signals received by the microphone into time domain digital data; a processor connected to process the time domain digital data and to produce time domain digital output, the processor including: a frequency analysis module to convert the time domain digital data into subband digital data; feature extraction means for extracting features of the subband data; environment detection means for determining one or more sources of the subband data based on a plurality of possible sources identified by predetermined classification parameters; environment adaptation means for providing adaptations to processing using the determination of the one or more sources of the subband data; and subband signal processing means for processing the subband data using the adaptations from the environment adaptation module. Some examples include a second microphone and second A/D converter and directivity means for adjusting receiving microphone configuration.
The present subject matter also includes variations of methods. For example a method, including: converting one or more time domain analog acoustic signals into frequency domain subband samples; extracting features from the subband samples using time domain analog signal information; detecting environmental parameters to categorize one or more sound sources based on a predetermined plurality of possible sound sources; and adapting processing of the subband samples using the one or more categorized sound sources. Further examples include the previous and combinations including one or more of: where the detecting includes using a Bayesian classifier to categorize the one or more sound sources; where the predetermined plurality of possible sound sources comprises: wind, machines, and speech; and including discriminating speech associated with a user of an apparatus performing the method from speech of other speakers; and including applying parameters associated with the one or more categorized sound sources, the parameters including a gain adjustment, an attack parameter, a release parameter, and a misclassification threshold parameter; where the gain adjustment is stored as individual gain settings per subband; including adjusting directionality using detected environmental parameters; and including processing the subband samples using hearing aid algorithms.
This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which are not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their legal equivalents.
The following detailed description of the present subject matter refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is demonstrative and not to be taken in a limiting sense. The scope of the present subject matter is defined by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
The present subject matter relates to methods and apparatus for environment detection and adaptation in hearing assistance devices.
The method and apparatus set forth herein are demonstrative of the principles of the invention, and it is understood that other method and apparatus are possible using the principles described herein.
System Overview
In one embodiment, mic 2103 is a directional microphone connected to amplifier 105 which provides signals to analog-to-digital converter 107 (“A/D converter”). The samples from A/D converter 107 are received by processor 120 for processing. In one embodiment, mic 2103 is another omnidirectional microphone. In such embodiments, directionality is controllable via phasing mic 1 and mic 2. In one embodiment, mic 1 is a directional microphone with an omnidirectional setting. In one embodiment, the gain on mic 2 is reduced so that the system 100 is effectively a single microphone system. In one embodiment, (not shown) system 100 only has one microphone. Other variations are possible which are within the principles set forth herein.
Processor 120 includes modules for execution that will detect environments and make adaptations accordingly as set forth herein. Such processing can be on one or more audio inputs, depending on the function. Thus, even though,
Feature extraction module 204 receives both frequency domain or subband samples 203 and time domain samples 205 to determine features of the incoming samples. The feature extraction module generates information based on its inputs, including, but not limited to: periodicity strength, high-to-low-frequency energy ratio, spectral slopes in various frequency regions, average spectral slope, overall spectral slope, spectral shape-related features, spectral centroid, omni signal power, directional signal power, and energy at a fundamental frequency. This information is used by the environment detection module 206 to determine what a probable source is from a predetermined number of possible sources. The environment adaptation module then adjusts signal processing based on the probable source of the sound, sending parameters for use in the subband signal processing module 210. The subband signal processing module 210 is used to adaptively process the subband data using both the adaptations due to environment and any other applications-specific signal processing tasks. For example, when the present system is used in a hearing aid, the subband signal processing module 210 also performs hearing aid processing associated with enhancing hearing of a particular wearer of the device.
Time synthesis module 212 converts the processed subband samples into time domain digital output which is sent to D/A converter 140 for conversion into analog signals. The references cited above pertaining to frequency synthesis also provide information for the conversion of subband samples into time domain. Other frequency domain to time domain conversions are possible without departing from the scope of the present subject matter. It is understood that the system set forth is an example, and that variations of the system are possible without departing from the scope of the present subject matter.
Environment Detection
If speech is not detected 402, the process then determines whether the sound is wind, machine or other sound 414. If wind noise 442, then special parameters for wind noise management are used 440. If machine noise 432, then special parameters for machine noise management are used 430. If other sound 422, then the sound is managed as if it were regular noise 420.
The process set forth here are intended to demonstrate principles of the present subject matter and are not intended to be an exhaustive or exclusive treatment of the possible embodiments. Other embodiments featuring variations of these features are possible without departing from the scope of the present subject matter.
If speech is not detected 502, the process then determines whether the sound is wind noise 515. If wind noise 542, then special parameters for wind noise management are used 540. If not wind noise, then the process detects for machine noise 517. If machine noise 532, then special parameters for machine noise management are used 530. If other sound 522, then the sound is managed as if it were regular noise 520.
The process set forth here are intended to demonstrate principles of the present subject matter and are not intended to be an exhaustive or exclusive treatment of the possible embodiments. Other embodiments featuring variations of these features are possible without departing from the scope of the present subject matter.
In one embodiment a linear Bayesian classifier was chosen as Bayesian classifier 614. Given a set of feature values for the input sound, the a priori probability of each sound class, and training data, the Bayesian classifier chooses the sound class with the highest probability (“posteriori probability”) as the classification result. The Bayesian classifier also produces a classification strength result.
In various embodiments, different features may be used to determine sound classifications. Some features that demonstrate the principles herein are found in one embodiment as follows:
Speech Detection Features
a. Periodicity strength
b. High-to-low-frequency energy ratio
c. Low frequency spectral slope
d. M/D at 0-750 Hz
e. M/D at 4000-7750 Hz
Wind and Machine Noise Detection Features For Omni Hearing Assistance Devices
a. Periodicity strength
b. High-to-low-frequency energy ratio
c. Low frequency spectral slope
d. M/D at 750-1750 Hz
e. M/D at 4000-7750 Hz
Machine Noise Detection Features for Directional Hearing Assistance Devices
a. Periodicity strength in logarithmic scale
b. High-to-low-frequency energy ratio
c. Low frequency spectral slope
d. M/D at 0-750 Hz
e. M/D at 4000-7750 Hz
Own Speech Detection
a. High-to-low frequency energy ratio
b. Energy at the fundamental frequency
c. Average spectral slope
d. Overall spectral slope
Wind Noise Detection for Directional Hearing Assistance Devices
a. Omni signal power (unfiltered)
b. Directional signal power (unfiltered)
c. Detection Rules (Hysteresis Example)
The Wind Noise Detection for Directional Hearing Assistance Devices in various embodiments can provide hysteresis to avoid undue switching between detections. In various embodiments, the upper threshold (Tu) and lower threshold (Tl) are determined empirically. In various embodiments each microphone can be fed into a signal conditioning circuit which acts as a long term averager of the incoming signal. For example, a one-pole filter can be implemented digitally to perform measurement of power from a microphone by averaging a block of 8 samples from the microphone for wind noise detection.
It is understood that departures from the foregoing embodiments are contemplated and that other features and variables and variable ranges may be employed using the principles set forth herein.
Environment Adaptation
In various embodiments, the system employs gain adjustments that raise gain if the incoming sound level is too low and lower gain if the incoming sound level is too high.
It is further understood that the principles set forth herein can be applied to a variety of hearing assistance devices, including, but not limited to occluding and non-occluding applications. Some types of hearing assistance devices which may benefit from the principles set forth herein include, but are not limited to, behind-the-ear devices, on-the-ear devices, and in-the-ear devices, such as in-the-canal and/or completely-in-the-canal hearing assistance devices. Other applications beyond those listed herein are contemplated as well.
Conclusion
This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. Thus, the scope of the present subject matter is determined by the appended claims and their legal equivalents.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5604812 | Meyer | Feb 1997 | A |
| 6389142 | Hagen et al. | May 2002 | B1 |
| 6522756 | Maisano et al. | Feb 2003 | B1 |
| 6718301 | Woods | Apr 2004 | B1 |
| 6782361 | El-Maleh et al. | Aug 2004 | B1 |
| 6912289 | Vonlanthen et al. | Jun 2005 | B2 |
| 7149320 | Haykin et al. | Dec 2006 | B2 |
| 7158931 | Allegro | Jan 2007 | B2 |
| 7349549 | Bachler et al. | Mar 2008 | B2 |
| 7383178 | Visser et al. | Jun 2008 | B2 |
| 7454331 | Vinton et al. | Nov 2008 | B2 |
| 7986790 | Zhang et al. | Jul 2011 | B2 |
| 8068627 | Zhang et al. | Nov 2011 | B2 |
| 8143620 | Malinowski et al. | Mar 2012 | B1 |
| 20020012438 | Leysieffer et al. | Jan 2002 | A1 |
| 20020039426 | Takemoto et al. | Apr 2002 | A1 |
| 20020191799 | Nordqvist et al. | Dec 2002 | A1 |
| 20020191804 | Luo et al. | Dec 2002 | A1 |
| 20030112988 | Naylor | Jun 2003 | A1 |
| 20030144838 | Allegro | Jul 2003 | A1 |
| 20040015352 | Ramakrishnan et al. | Jan 2004 | A1 |
| 20040190739 | Bachler et al. | Sep 2004 | A1 |
| 20050069162 | Haykin et al. | Mar 2005 | A1 |
| 20050129262 | Dillon et al. | Jun 2005 | A1 |
| 20070116308 | Zurek et al. | May 2007 | A1 |
| 20070117510 | Elixmann | May 2007 | A1 |
| 20070217620 | Zhang et al. | Sep 2007 | A1 |
| 20070217629 | Zhang et al. | Sep 2007 | A1 |
| 20070299671 | McLachlan et al. | Dec 2007 | A1 |
| 20080019547 | Baechler | Jan 2008 | A1 |
| 20080037798 | Baechler et al. | Feb 2008 | A1 |
| 20080107296 | Bachler et al. | May 2008 | A1 |
| 20120155664 | Zhang et al. | Jun 2012 | A1 |
| 20120213392 | Zhang et al. | Aug 2012 | A1 |
| Number | Date | Country |
|---|---|---|
| 2005100274 | Jun 2005 | AU |
| 2002224722 | Apr 2008 | AU |
| 2439427 | Apr 2002 | CA |
| 0396831 | Nov 1990 | EP |
| 0335542 | Dec 1994 | EP |
| 1256258 | Mar 2005 | EP |
| WO-0176321 | Oct 2001 | WO |
| WO-0232208 | Apr 2002 | WO |
| Entry |
|---|
| U.S. Appl. No. 11/276,795, Non Final Office Action mailed May 7, 2009, 13 pgs. |
| U.S. Appl. No. 11/276,795, Final Office Action mailed Oct. 14, 2009, 15 pgs. |
| U.S. Appl. No. 11/276,795, Response filed Sep. 8, 2009 to Non-Final Office Action mailed May 7, 2009, 10 pgs. |
| Preves, David A., “Field Trial Evaluations of a Switched Directional/Omnidirectional In-the-Ear Hearing Instrument”, Journal of the American Academy of Audiology, 10(5), (May 1999),273-283. |
| U.S. Appl. No. 11/276,795, Advisory Action mailed Jan. 12, 2010, 13 pgs. |
| U.S. Appl. No. 11/276,795, Non-Final Office Action mailed May 27, 2010, 14 pgs. |
| U.S. Appl. No. 11/276,795, Pre-Appeal Brief Request mailed Feb. 16, 2010, 4 pgs. |
| U.S. Appl. No. 11/276,795, Response filed Dec. 14, 2009 to Final Office Action mailed Oct. 14, 2009, 10 pgs. |
| U.S. Appl. No. 11/276,795, Decision on Pre-Appeal Brief Request mailed Apr. 14, 2010, 2 pgs. |
| U.S. Appl. No. 11/276,795, Final Office Action mailed Nov. 24, 2010, 17 pgs. |
| U.S. Appl. No. 11/276,795, Response filed Sep. 28, 2010 to Non Final Office Action mailed May 27, 2010, 6 pgs. |
| El-Maleh, Khaled Helmi, “Classification-Based Techniques for Digital Coding of Speech-plus-Noise”, Department of Electrical & Computer Engineering, McGill University, Montreal, Canada, A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy., (Jan. 2004), 152 pgs. |
| U.S. Appl. No. 11/276,795, Examiner Interview Summary filed Mar. 11, 2011, 1 pg. |
| U.S. Appl. No. 11/276,795, Examiner Interview Summary mailed Feb. 9, 2011, 3 pgs. |
| U.S. Appl. No. 11/276,795, Notice of Allowance mailed Mar. 18, 2011, 12 pgs. |
| U.S. Appl. No. 11/276,795, Response filed Jan. 24, 2011 to Final Office Action mailed Nov. 24, 2010, 11 pgs. |
| European Application Serial No. 07250920.1, Extended European Search Report mailed May 11, 2007, 6 pgs. |
| U.S. Appl. No. 11/686,275, Notice of Allowance mailed Aug. 31, 2011, 9 pgs. |
| U.S. Appl. No. 11/686,275, Supplemental Notice of Allowability mailed Oct. 28, 2011, 3 pgs. |
| European Application Serial No. 07250920.1, Office Action mailed Sep. 27, 2011, 5 pgs. |
| European Application Serial No. 07250920.1, Office Action Response filed Feb. 1, 2012, 15 pgs. |
| U.S. Appl. No. 13/189,990, Non Final Office Action mailed Nov. 26, 2012, 12 pgs. |
| Number | Date | Country | |
|---|---|---|---|
| 20070219784 A1 | Sep 2007 | US |