Enzymatic nucleic acid treatment of diseases or conditions related to hepatitis C virus infection

Abstract
The present invention relates to compounds, including enzymatic nucleic acid molecules, ribozymes, DNAzymes, nuclease activating compounds and chimeras such as 2′,5′-adenylates, that modulate the expression and/or replication of hepatitis C virus (HCV).
Description


[0002] The Sequence Listing file named “MBHBOO-80sequenceListing.ST25” submitted on Compact Disc-Recordable (CD-R) medium (“0103231557”) in compliance with 37 C.F.R. §1.52(e) is incorporated herein by reference.


TECHNICAL FIELD OF THE INVENTION

[0003] This invention relates to methods and reagents for the treatment of diseases or conditions relating to the hepatitis C virus infection.



BACKGROUND OF THE INVENTION

[0004] The following is a discussion of relevant art, none of which is admitted to be prior art to the present invention.


[0005] In 1989, the Hepatitis C Virus (HCV) was determined to be an RNA virus and was identified as the causative agent of most non-A non-B viral Hepatitis (Choo et al., Science. 1989; 244:359-362). Unlike retroviruses such as HIV, HCV does not have a DNA replication phase and no integrated forms of the viral genome into the host chromosome have been detected (Houghton et al., Hepatology 1991;14:381-388). Rather, replication of the coding (plus) strand is mediated by the production of a replicative (minus) strand leading to the generation of several copies of plus strand HCV RNA. The genome consists of a single, large, open-reading frame that is translated into a polyprotein (Kato et al., FEBS Letters. 1991; 280: 325-328). This polyprotein subsequently undergoes post-translational cleavage, producing several viral proteins (Leinbach et al., Virology. 1994: 204:163-169).


[0006] Examination of the 9.5-kilobase genome of HCV has demonstrated that the viral nucleic acid can mutate at a high rate (Smith et al., Mol. Evol 1997 45:238-246). This rate of mutation has led to the evolution of several distinct genotypes of HCV that share approximately 70% sequence identity (Simmonds et al., J. Gen. Virol. 1994; 75 :1053-1061). It is important to note that these sequences are evolutionarily quite distant. For example, the genetic identity between humans and primates such as the chimpanzee is approximately 98%. In addition, it has been demonstrated that an HCV infection in an individual patient is composed of several distinct and evolving quasispecies that have 98% identity at the RNA level. Thus, the HCV genome is hypervariable and continuously changing. Although the HCV genome is hypervariable, there are 3 regions of the genome that are highly conserved. These conserved sequences occur in the 5′ and 3′ non-coding regions as well as the 5′-end of the core protein coding region and are thought to be vital for HCV RNA replication as well as translation of the HCV polyprotein. Thus, therapeutic agents that target these conserved HCV genomic regions can have a significant impact over a wide range of HCV genotypes. Moreover, it is unlikely that drug resistance will occur with enzymatic nucleic acids specific to conserved regions of the HCV genome. In contrast, therapeutic modalities that target inhibition of enzymes such as the viral proteases or helicase are likely to result in the selection for drug resistant strains since the RNA for these viral encoded enzymes is located in the hypervariable portion of the HCV genome.


[0007] After initial exposure to HCV, the patient will experience a transient rise in liver enzymes, which indicates that inflammatory processes are occurring (Alter et al., IN: Seeff LB, Lewis JH, eds. Current Perspectives in Hepatology. New York: Plenum Medical Book Co; 1989:83-89). This elevation in liver enzymes will occur at least 4 weeks after the initial exposure and can last for up to two months (Farci et al., New England Journal of Medicine. 1991:325:98-104). Prior to the rise in liver enzymes, it is possible to detect HCV RNA in the patient's serum using RT-PCR analysis (Takahashi et al., American Journal of Gastroenterology. 1993:88:2:240-243). This stage of the disease is called the acute stage and usually goes undetected since 75% of patients with acute viral hepatitis from HCV infection are asymptomatic. The remaining 25% of these patients develop jaundice or other symptoms of hepatitis.


[0008] Acute HCV infection is a benign disease, however, and as many as 80% of acute HCV patients progress to chronic liver disease as evidenced by persistent elevation of serum alanine aminotransferase (ALT) levels and by continual presence of circulating HCV RNA (Sherlock, Lancet 1992; 339:802). The natural progression of chronic HCV infection over a 10 to 20 year period leads to cirrhosis in 20 to 50% of patients (Davis et al., Infectious Agents and Disease 1993;2:150:154) and progression of HCV infection to hepatocellular carcinoma has been well documented (Liang et al., Hepatology. 1993; 18:1326-1333; Tong et al., Western Journal of Medicine, 1994; Vol. 160, No. 2: 133-138). There have been no studies that have determined sub-populations that are most likely to progress to cirrhosis and/or hepatocellular carcinoma, thus all patients have equal risk of progression.


[0009] It is important to note that the survival for patients diagnosed with hepatocellular carcinoma is only 0.9 to 12.8 months from initial diagnosis (Takahashi et al., American Journal of Gastroenterology. 1993:88:2:240-243). Treatment of hepatocellular carcinoma with chemotherapeutic agents has not proven effective and only 10% of patients will benefit from surgery due to extensive tumor invasion of the liver (Trinchet et al., Presse Medicine. 1994:23:831-833). Given the aggressive nature of primary hepatocellular carcinoma, the only viable treatment alternative to surgery is liver transplantation (Pichlmayr et al., Hepatology. 1994:20:33S-40S).


[0010] Upon progression to cirrhosis, patients with chronic HCV infection present with clinical features, which are common to clinical cirrhosis regardless of the initial cause (D'Amico et al., Digestive Diseases and Sciences. 1986;31:5: 468-475). These clinical features can include: bleeding esophageal varices, ascites, jaundice, and encephalopathy (Zakim D, Boyer TD. Hepatology a textbook of liver disease. Second Edition Volume 1. 1990 W.B. Saunders Company. Philadelphia). In the early stages of cirrhosis, patients are classified as compensated meaning that although liver tissue damage has occurred, the patient's liver is still able to detoxify metabolites in the blood-stream. In addition, most patients with compensated liver disease are asymptomatic and the minority with symptoms report only minor symptoms such as dyspepsia and weakness. In the later stages of cirrhosis, patients are classified as decompensated meaning that their ability to detoxify metabolites in the bloodstream is diminished and it is at this stage that the clinical features described above will present.


[0011] In 1986, D'Amico et al. described the clinical manifestations and survival rates in 1155 patients with both alcoholic and viral associated cirrhosis (D'Amico supra). Of the 1155 patients, 435 (37%) had compensated disease although 70% were asymptomatic at the beginning of the study. The remaining 720 patients (63%) had decompensated liver disease with 78% presenting with a history of ascites, 31% with jaundice, 17% had bleeding and 16% had encephalopathy. Hepatocellular carcinoma was observed in six (0.5%) patients with compensated disease and in 30 (2.6%) patients with decompensated disease.


[0012] Over the course of six years, the patients with compensated cirrhosis developed clinical features of decompensated disease at a rate of 10% per year. In most cases, ascites was the first presentation of decompensation. In addition, hepatocellular carcinoma developed in 59 patients who initially presented with compensated disease by the end of the six-year study.


[0013] With respect to survival, the D'Amico study indicated that the five-year survival rate for all patients on the study was only 40%. The six-year survival rate for the patients who initially had compensated cirrhosis was 54% while the six-year survival rate for patients who initially presented with decompensated disease was only 21%. There were no significant differences in the survival rates between the patients who had alcoholic cirrhosis and the patients with viral related cirrhosis. The major causes of death for the patients in the D'Amico study were liver failure in 49%; hepatocellular carcinoma in 22%; and, bleeding in 13% (D'Amico supra).


[0014] Chronic Hepatitis C is a slowly progressing inflammatory disease of the liver, mediated by a virus (HCV) that can lead to cirrhosis, liver failure and/or hepatocellular carcinoma over a period of 10 to 20 years. In the US, it is estimated that infection with HCV accounts for 50,000 new cases of acute hepatitis in the United States each year (NIH Consensus Development Conference Statement on Management of Hepatitis C March 1997). The prevalence of HCV in the United States is estimated at 1.8% and the CDC places the number of chronically infected Americans at approximately 4.5 million people. The CDC also estimates that up to 10,000 deaths per year are caused by chronic HCV infection. The prevalence of HCV in the United States is estimated at 1.8% and the CDC places the number of chronically infected Americans at approximately 4.5 million people. The CDC also estimates that up to 10,000 deaths per year are caused by chronic HCV infection.


[0015] Numerous well controlled clinical trials using interferon (IFN-alpha) in the treatment of chronic HCV infection have demonstrated that treatment three times a week results in lowering of serum ALT values in approximately 50% (range 40% to 70%) of patients by the end of 6 months of therapy (Davis et al., New England Journal of Medicine 1989; 321:1501-1506; Marcellin et al., Hepatology. 1991; 13:393-397; Tong et al., Hepatology 1997:26:747-754; Tong et al., Hepatology 1997 26(6): 1640-1645). However, following cessation of interferon treatment, approximately 50% of the responding patients relapsed, resulting in a “durable” response rate as assessed by normalization of serum ALT concentrations of approximately 20 to 25%.


[0016] In recent years, direct measurement of the HCV RNA has become possible through use of either the branched-DNA or Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) analysis. In general, the RT-PCR methodology is more sensitive and leads to more accurate assessment of the clinical course (Tong et al., supra). Studies that have examined six months of type 1 interferon therapy using changes in HCV RNA values as a clinical endpoint have demonstrated that up to 35% of patients will have a loss of HCV RNA by the end of therapy (Marcellin et al., supra). However, as with the ALT endpoint, about 50% of the patients relapse six months following cessation of therapy resulting in a durable virologic response of only 12% (Marcellin et al., supra). Studies that have examined 48 weeks of therapy have demonstrated that the sustained virological response is up to 25% (NIH consensus statement: 1997). Thus, standard of care for treatment of chronic HCV infection with type 1 interferon is now 48 weeks of therapy using changes in HCV RNA concentrations as the primary assessment of efficacy (Hoofnagle et al., New England Journal of Medicine 1997; 336(5) 347-356).


[0017] Side effects resulting from treatment with type 1 interferons can be divided into four general categories, which include 1. Influenza-like symptoms; 2. Neuropsychiatric; 3. Laboratory abnormalities; and, 4. Miscellaneous (Dusheiko et al., Journal of Viral Hepatitis. 1994:1:3-5). Examples of influenza-like symptoms include; fatigue, fever; myalgia; malaise; appetite loss; tachycardia; rigors; headache and arthralgias. The influenza-like symptoms are usually short-lived and tend to abate after the first four weeks of dosing (Dushieko et al., supra). Neuropsychiatric side effects include: irritability, apathy; mood changes; insomnia; cognitive changes and depression. The most important of these neuropsychiatric side effects is depression and patients who have a history of depression should not be given type 1 interferon. Laboratory abnormalities include; reduction in myeloid cells including granulocytes, platelets and to a lesser extent red blood cells. These changes in blood cell counts rarely lead to any significant clinical sequellae (Dushieko et al., supra). In addition, increases in triglyceride concentrations and elevations in serum alanine and aspartate aminotransferase concentration have been observed. Finally, thyroid abnormalities have been reported. These thyroid abnormalities are usually reversible after cessation of interferon therapy and can be controlled with appropriate medication while on therapy. Miscellaneous side effects include nausea; diarrhea; abdominal and back pain; pruritus; alopecia; and rhinorrhea. In general, most side effects will abate after 4 to 8 weeks of therapy (Dushieko et al, supra).


[0018] Type 1 Interferon is a key constituent of many treatment programs for chronic HCV infection. Treatment with type 1 interferon induces a number of genes and results in an antiviral state within the cell. One of the genes induced is 2′, 5′ oligoadenylate synthetase, an enzyme that synthesizes short 2′, 5′ oligoadenylate (2-5A) molecules. Nascent 2-5A subsequently activates a latent RNase, RNase L, which in turn nonspecifically degrades viral RNA.


[0019] Welch et al., Gene Therapy 1996 3(11): 994-1001 describe in vitro an in vivo studies with two vector expressed hairpin ribozymes targeted against hepatitis C virus.


[0020] Sakamoto et al., J. Clinical Investigation 1996 98(12): 2720-2728 describe intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by certain vector expressed hammerhead ribozymes.


[0021] Lieber et al., J. Virology 1996 70(12): 8782-8791 describe elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of certain hammerhead ribozymes.


[0022] Ohkawa et al., 1997, J. Hepatology, 27; 78-84, describe in vitro cleavage of HCV RNA and inhibition of viral protein translation using certain in vitro transcribed hammerhead ribozymes.


[0023] Barber et al., International PCT Publication No. WO 97/32018, describe the use of an adenovirus vector to express certain anti-hepatitis C virus hairpin ribozymes.


[0024] Kay et al., International PCT Publication No. WO 96/18419, describe certain recombinant adenovirus vectors to express anti-HCV hammerhead ribozymes.


[0025] Yamada et al., Japanese Patent Application No. JP 07231784 describe a specific poly-(L)-lysine conjugated hammerhead ribozyme targeted against HCV.


[0026] Draper, U.S. Pat. Nos. 5,610,054 and 5,869,253, describes enzymatic nucleic acid molecules capable of inhibiting replication of HCV.


[0027] Macejak et al., 2000, Hepatology, 31, 769-776, describe enzymatic nucleic acid molecules capable of inhibiting replication of HCV.


[0028] Weifeng and Torrence, 1997, Nucleosides and Nucleotides, 16, 7-9, describe the synthesis of 2-5A antisense chimeras with various non-nucleoside components.


[0029] Torrence et al, U.S. Pat. No. 5,583,032 describe targeted cleavage of RNA using an antisense oligonucleotide linked to a 2′,5′-oligoadenylate activator of RNase L.


[0030] Suhadolnik and Pfleiderer, U.S. Pat. Nos. 5,863,905; 5,700,785; 5,643,889; 5,556,840; 5,550,111; 5,405,939; 5,188,897; 4,924,624; and 4,859,768 describe specific internucleotide phosphorothioate 2′,5′-oligoadenlyates and 2′,5′-oligoadenlyate conjugates.


[0031] Budowsky et al., U.S. Pat. No. 5,962,431 describe a method of treating papillomavirus using specific 2′,5′-oligoadenylates.


[0032] Torrence et al., International PCT publication No. WO 00/14219, describe specific peptide nucleic acid 2′,5′-oligoadenylate chimeric molecules.


[0033] Stinchcomb et al., U.S. Pat. No. 5,817,796, describe C-myb ribozymes having 2′-5′-Linked Adenylate Residues.



SUMMARY OF THE INVENTION

[0034] This invention relates to enzymatic nucleic acid molecules directed to cleave RNA species of hepatitis C virus (HCV) and/or encoded by the HCV. In particular, applicant describes the selection and function of enzymatic nucleic acid molecules capable of specifically cleaving HCV RNA. The invention further relates to compounds and chimeric molecules comprising nuclease activating activity. The invention also relates to compositions and methods for the cleavage of RNA using these nuclease activating compounds and chimeras. Nucleic acid molecules, nuclease activating compounds and chimeras, and compositions and methods of the invention can be used to treat diseases associated with HCV infection.


[0035] Due to the high sequence variability of the HCV genome, selection of nucleic acid molecules and nuclease activating compounds and chimeras for broad therapeutic applications would likely involve the conserved regions of the HCV genome. Specifically, the present invention describes nucleic acid molecules that cleave the conserved regions of the HCV genome. The invention further describes compounds and chimeric molecules that activate cellular nucleases that cleave HCV RNA, including conserved regions of the HCV genome. Examples of conserved regions of the HCV genome include but are not limited to the 5′-Non Coding Region (NCR), the 5′-end of the core protein coding region, and the 3′-NCR. HCV genomic RNA contains an internal ribosome entry site (IRES) in the 5′-NCR which mediates translation independently of a 5′-cap structure (Wang et al., 1993, J. Virol., 67, 3338-44). The full-length sequence of the HCV RNA genome is heterologous among clinically isolated subtypes, of which there are at least 15 (Simmonds, 1995, Hepatology, 21, 570-583), however, the 5′-NCR sequence of HCV is highly conserved across all known subtypes, most likely to preserve the shared IRES mechanism (Okamoto et al., 1991, J. General Virol., 72, 2697-2704) In general, enzymatic nucleic acid molecules and nuclease activating compounds, and chimeras that cleave sites located in the 5′ end of the HCV genome are expected to block translation while nucleic acid molecules and nuclease activating compounds, and chimeras that cleave sites located in the 3′ end of the genome would be expected to block RNA replication. Therefore, one nucleic acid molecule, compound, or chimera can be designed to cleave all the different isolates of HCV. Enzymatic nucleic acid molecules and nuclease activating compounds, and chimeras designed against conserved regions of various HCV isolates can enable efficient inhibition of HCV replication in diverse patient populations and can ensure the effectiveness of the nucleic acid molecules and nuclease activating compounds, and chimeras against HCV quasi species which evolve due to mutations in the non-conserved regions of the HCV genome.


[0036] In one embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH (Inozyme), G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, to inhibit the expression of HCV RNA.


[0037] In another embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, Inozyme, G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, to inhibit the expression of HCV minus strand RNA.


[0038] In yet another embodiment, the invention features the use of a nuclease activating compound and/or a chimera to inhibit the expression of HCV RNA.


[0039] In another embodiment, the invention features the use of a nuclease activating compound and/or a chimera to inhibit the expression of HCVminus strand RNA.


[0040] By “inhibit” it is meant that the activity of HCV or level of RNAs or equivalent RNAs encoding one or more protein subunits of HCV is reduced below that observed in the absence of the nucleic acid molecules, nuclease activating compounds, and chimeras of the invention. In one embodiment, inhibition with an enzymatic nucleic acid molecule is below that level observed in the presence of an enzymatically inactive or attenuated molecule that is able to bind to the same site on the target RNA, but is unable to cleave that RNA. In another embodiment, inhibition of HCV genes with the nucleic acid molecule, nuclease activating compound, or chimera of the instant invention is greater than in the presence of the nucleic acid molecule, nuclease activating compound, or chimera than in its absence.


[0041] In one embodiment, the invention features a compound having formula I:
1


[0042] wherein X1 is an integer of 1, 2, or 3; X2 is an integer greater than or equal to 1; R6 independently represents a 3′-ribofuranose sugar moiety, for example, H, OH, NH2, O NH2, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, or fluoro; each R1 and R2 independently represent non-bridging phosphate moiety, for example, O, alkyl, O-alkyl, or S; each R3 R4 and R8 independently represent a bridging phosphate moiety, for example, O, N, alkyl, fluoroalkyl, or S; and R5 represents an alkyl or alkylamine group, or an oligonucleotide comprising any of SEQ ID NOS. 4798-9637, an oligonucleotide having a sequence complementary to a sequence comprising SEQ ID NOS. 1-4556, or abasic moiety.


[0043] In another embodiment, the abasic moiety of the instant invention preferably includes:
2


[0044] wherein R8 is R8 shown in Formula I and R7 independently represents a ribofuranose sugar moiety, for example, H, OH, NH2, O—NH2, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, fluoro, oligonucleotide, alkyl, alkylamine or abasic moiety.


[0045] In another embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an enzymatic nucleic acid molecule.


[0046] In yet another embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an antisense nucleic acid molecule.


[0047] In another embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an enzymatic nucleic acid molecule selected from the group consisting of Hammerhead, Inozyme, G-cleaver, DNAzyme, Amberzyme, and Zinzyme motifs.


[0048] In another embodiment, the Inozyme enzymatic nucleic acid molecule of the instant invention comprises a stem II region of length greater than or equal to 2 base pairs.


[0049] In one embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an enzymatic nucleic acid comprising between 12 and 100 bases complementary to an RNA derived from HCV.


[0050] In another embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an enzymatic nucleic acid comprising between 14 and 24 bases complementary to said RNA derived from HCV.


[0051] In one embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an antisense nucleic acid comprising between 12 and 100 bases complementary to an RNA derived from HCV.


[0052] In another embodiment, the oligonucleotide R5 of Formula I having a sequence complementary to a sequence comprising SEQ ID NOs. 1-4556 is an antisense nucleic acid comprising between 14 and 24 bases complementary to said RNA derived from HCV.


[0053] In another embodiment, the invention features a pharmaceutical composition comprising a compound of Formula I, in a pharmaceutically acceptable carrier.


[0054] In yet another embodiment, the invention features a mammalian cell comprising a compound of Formula I. For example, the mammalian cell comprising a compound of Formula I is a human cell.


[0055] In one embodiment, the invention features a method for treatment of cirrhosis, liver failure or hepatocellular carcinoma comprising the step of administering to a patient a compound of Formula I under conditions suitable for said treatment.


[0056] In another embodiment, the invention features a method of treatment of a patient having a condition associated with HCV infection comprising contacting cells of said patient with a compound having Formula I, and further comprising contacting the cells with one or more other therapeutic compounds under conditions suitable for said treatment. Other therapeutic compounds include, for example, type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon, treatment with an enzymatic nucleic acid molecule, and treatment with an antisense molecule.


[0057] In one embodiment of the inventive method, the other therapeutic compounds, for example, type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon, treatment with an enzymatic nucleic acid molecule, and treatment with an antisense nucleic acid molecule, and the compound having Formula I are administered separately in separate pharmaceutically acceptable carriers.


[0058] In another embodiment, the other therapeutic compounds, for example, type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon, treatment with an enzymatic nucleic acid molecule, and treatment with an antisense nucleic acid molecule, and the compound having Formula I are administered simultaneously in a pharmaceutically acceptable carrier.


[0059] In yet another embodiment, the invention features a method for inhibiting HCV replication in a mammalian cell comprising the step of administering to said cell a compound having Formula I under conditions suitable for said inhibition.


[0060] In another embodiment, the invention features a method of cleaving a separate RNA molecule comprising, contacting a compound having Formula I with the separate RNA molecule under conditions suitable for the cleavage of the separate RNA molecule. In one example, the method of cleaving a separate RNA molecule is carried out in the presence of a divalent cation, for example Mg2+.


[0061] In yet another embodiment, the method of cleaving a separate RNA molecule of the invention is carried out in the presence of a protein nuclease, for example, RNAse L.


[0062] In one embodiment, a compound having Formula I is chemically synthesized. Additionally, a compound having Formula I comprises at least one 2′-sugar modification, at least one nucleic acid base modification, and/or at least one phosphate modification.


[0063] By “enzymatic nucleic acid molecule” it is meant a nucleic acid molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave target RNA. That is, the enzymatic nucleic acid molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. These complementary regions allow sufficient hybridization of the enzymatic nucleic acid molecule to the target RNA and thus permit cleavage. One hundred percent complementarity is preferred, but complementarity as low as 50-75% can also be useful in this invention. The nucleic acids can be modified at the base, sugar, and/or phosphate groups. The term enzymatic nucleic acid is used interchangeably with phrases such as enzymatic nucleic acids, catalytic RNA, enzymatic RNA, catalytic DNA, aptazyme or aptamer-binding enzymatic nucleic acid, regulatable enzymatic nucleic acid, allosteric catalytic nucleic acid, allosteric enzymatic nucleic acid, allosteric ribozyme, catalytic oligonucleotides, nucleozyme, DNAzyme, RNA enzyme, endoribonuclease, endonuclease, minizyme, leadzyme, oligozyme or DNA enzyme. All of these terminologies describe nucleic acid molecules with enzymatic activity. The specific enzymatic nucleic acid molecules described in the instant application are not meant to be limiting and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it have a specific substrate binding site which is complementary to one or more of the target nucleic acid regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart a nucleic acid cleaving activity to the molecule (Cech et al., U.S. Pat. No. 4,987,071; Cech et al., 1988, JAMA).


[0064] By “nucleic acid molecule” as used herein is meant a molecule having nucleotides. The nucleic acid can be single, double, or multiple stranded and can comprise modified or unmodified nucleotides or non-nucleotides or various mixtures and combinations thereof.


[0065] By “nuclease activating compound” is meant a compound, for example a compound having Formula I, that activates the cleavage of an RNA by a nuclease. The nuclease can comprise RNAse L. By “nuclease activating chimera” or “chimera” is meant a nuclease activating compound, for example a compound having Formula I, that is attached to a nucleic acid molecule, for example a nucleic acid molecule that binds preferentially to a target RNA. These chimeric nucleic acid molecules can comprise a nuclease activating compound and an antisense nucleic acid molecule, for example a 2′,5′-oligoadenylate antisense chimera, or an enzymatic nucleic acid molecule, for example a 2′,5′-oligoadenylate enzymatic nucleic acid chimera.


[0066] By “enzymatic portion” or “catalytic domain” is meant that portion/region of the enzymatic nucleic acid essential for cleavage of a nucleic acid substrate (for example, see FIG. 1).


[0067] By “substrate binding arm” or “substrate binding domain” is meant that portion/region of an enzymatic nucleic acid which is complementary to (i.e., able to base-pair with) a portion of its substrate. Generally, such complementarity is 100%, but can be less if desired. For example, as few as 10 bases out of 14 can be base-paired. Such arms are shown generally in FIGS. 1 and 3. That is, these arms contain sequences within an enzymatic nucleic acid which are intended to bring enzymatic nucleic acid and target RNA together through complementary base-pairing interactions. The enzymatic nucleic acid of the invention can have binding arms that are contiguous or non-contiguous and can be of varying lengths. The length of the binding arm(s) are preferably greater than or equal to four nucleotides; specifically 12-100 nucleotides; more specifically 14-24 nucleotides long. If two binding arms are chosen, the design is such that the length of the binding arms are symmetrical (i.e., each of the binding arms is of the same length; e.g., five and five nucleotides, six and six nucleotides or seven and seven nucleotides long) or asymmetrical (i.e., the binding arms are of different length; e.g., six and three nucleotides; three and six nucleotides long; four and five nucleotides long; four and six nucleotides long; four and seven nucleotides long; and the like).


[0068] By “Inozyme” or “NCH” motif is meant an enzymatic nucleic acid molecule comprising a motif as is generally described in FIG. 1 and in Ludwig et al., International PCT publication Nos. WO 98/58058 and WO 98/58057. Inozymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCH/, where N is a nucleotide, C is cytidine and H is adenosine, uridine or cytidine, and/represents the cleavage site. H is used interchangeably with X. Inozymes can also possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCN/, where N is a nucleotide, C is cytidine, and/represents the cleavage site. “I” in FIG. 1 represents an Inosine nucleotide, preferably a ribo-Inosine or xylo-Inosine nucleotide.


[0069] By “G-cleaver” motif is meant an enzymatic nucleic acid molecule comprising a motif as is generally described in FIG. 2 and in Eckstein et al., International PCT publication No. WO/9916871. G-cleavers possess endonuclease activity to cleave RNA substrates having a cleavage triplet NYN/, where N is a nucleotide, Y is uridine or cytidine and/represents the cleavage site. G-cleavers can be chemically modified as is generally shown in FIG. 2. G-cleavers can be used, for example, to cleave RNA substrates after an AUG/triplet, where A is adenosine, U is uridine, G is guanosine, and/represents the cleavage site.


[0070] By “zinzyme” motif is meant an enzymatic nucleic acid molecule comprising a motif as is generally described in FIG. 3 and in Beigelman et al, International PCT publication No. WO/9955857. Zinzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet including but not limited to YG/Y, where Y is uridine or cytidine, and G is guanosine and/represents the cleavage site. Zinzymes can be chemically modified to increase nuclease stability through chemical modifications or substitutions as generally shown in FIG. 3, including substituting 2′-O-methyl guanosine nucleotides for guanosine nucleotides. In addition, differing nucleotide and/or non-nucleotide linkers can be used to substitute the 5′-gaaa-2′ loop shown in the figure. Zinzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2′-OH) group within its own nucleic acid sequence for activity.


[0071] By “amberzyme” motif is meant an enzymatic nucleic acid molecule comprising a motif as is generally described in FIG. 4 and in Beigelman et al., International PCT publication No. WO/9955857. Amberzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NG/N, where N is a nucleotide, G is guanosine, and/represents the cleavage site. Amberzymes can be chemically modified to increase nuclease stability through substitutions as are generally shown in FIG. 4. In addition, differing nucleoside and/or non-nucleoside linkers can be used to substitute the 5′-gaaa-3′ loops shown in the figure. Amberzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2′-OH) group within its own nucleic acid sequence for activity.


[0072] By ‘DNAzyme’ is meant an enzymatic nucleic acid molecule that does not require the presence of a 2′-OH group for its activity. In particular embodiments the enzymatic nucleic acid molecule can have an attached linker(s) or other attached or associated groups, moieties, or chains containing one or more nucleotides with 2′-OH groups. DNAzymes can be synthesized chemically or expressed endogenously in vivo, by means of a single stranded DNA vector or equivalent thereof. An example of a DNAzyme is shown in FIG. 5 and is generally reviewed in Usman et al., International PCT Publication No. WO 95/11304; Chartrand et al., 1995, NAR 23, 4092; Breaker et al., 1995, Chem. Bio. 2, 655; Santoro et al., 1997, PNAS 94, 4262; Breaker, 1999, Nature Biotechnology, 17, 422-423; and Santoro et. al., 2000, J. Am. Chem. Soc., 122, 2433-39. Additional DNAzyme motifs can be selected by using techniques similar to those described in these references, and hence, are within the scope of the present invention.


[0073] By “antisense nucleic acid”, it is meant a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 Nature 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 Science 261, 1004 and Woolf et al., U.S. Pat. No. 5,849,902). Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both. For a review of current antisense strategies, see Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense N. A. Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad. Pharmacol., 40, 1-49. In addition, antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. The antisense oligonucleotides can comprise one or more RNAse H activating region, which is capable of activating RNAse H cleavage of a target RNA. Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof.


[0074] By “RNase H activating region” is meant a region (generally greater than or equal to 4-25 nucleotides in length, preferably from 5-11 nucleotides in length) of a nucleic acid molecule capable of binding to a target RNA to form a non-covalent complex that is recognized by cellular RNase H enzyme (see for example Arrow et al., U.S. Pat. No. 5,849,902; Arrow et al., U.S. Pat. No. 5,989,912). The RNase H enzyme binds to the nucleic acid molecule-target RNA complex and cleaves the target RNA sequence. The RNase H activating region comprises, for example, phosphodiester, phosphorothiote (preferably at least four of the nucleotides are phosphorothiote substitutions; more specifically, 4-11 of the nucleotides are phosphorothiote substitutions); phosphorodithioate, 5′-thiophosphate, or methylphosphonate backbone chemistry or a combination thereof. In addition to one or more backbone chemistries described above, the RNase H activating region can also comprise a variety of sugar chemistries. For example, the RNase H activating region can comprise deoxyribose, arabino, fluoroarabino or a combination thereof, nucleotide sugar chemistry. Those skilled in the art will recognize that the foregoing are non-limiting examples and that any combination of phosphate, sugar and base chemistry of a nucleic acid that supports the activity of RNase H enzyme is within the scope of the definition of the RNase H activating region and the instant invention.


[0075] By “2-5A antisense” or “2-5A antisense chimera” is meant an antisense oligonucleotide containing a 5′-phosphorylated 2′-5′-linked adenylate residue. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which, in turn, cleaves the target RNA (Torrence et al., 1993 Proc. Natl. Acad. Sci. USA 90, 1300; Silverman et al., 2000, Methods Enzymol., 313, 522-533; Player and Torrence, 1998, Pharmacol. Ther., 78, 55-113).


[0076] By “sufficient length” is meant an oligonucleotide of greater than or equal to 3 nucleotides.


[0077] By “stably interact” is meant, interaction of the oligonucleotides with target nucleic acid (e.g., by forming hydrogen bonds with complementary nucleotides in the target under physiological conditions).


[0078] By “equivalent” RNA to HCV is meant to include those naturally occurring RNA molecules associated with HCV infection in various animals, including human, rodent, primate, rabbit and pig. The equivalent RNA sequence also includes in addition to the coding region, regions such as 5′-untranslated region, 3′-untranslated region, introns, intron-exon junction and the like.


[0079] By “homology” is meant the nucleotide sequence of two or more nucleic acid molecules is partially or completely identical.


[0080] In one of the preferred embodiments of the inventions described herein, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but can also be formed in the motif of a hepatitis delta virus, group I intron, group II intron or RNase P RNA (in association with an RNA guide sequence), DNAzymes, NCH cleaving motifs (inozymes), or G-cleavers. Examples of such hammerhead motifs (FIG. 1a) are described in Dreyfus, supra, Rossi et al., 1992, AIDS Research and Human Retroviruses 8, 183; Examples of hairpin motifs are described in Hampel et al., EP0360257, Hampel and Tritz, 1989 Biochemistry 28, 4929, Feldstein et al., 1989, Gene 82, 53, Haseloff and Gerlach, 1989, Gene, 82, 43, Hampel et al., 1990 Nucleic Acids Res. 18, 299; Chowrira & McSwiggen, U.S. Pat. No. 5,631,359. The hepatitis delta virus motif is generally described in Perrotta and Been, 1992 Biochemistry 31, 16. The RNase P motif is generally described in Guerrier-Takada et al., 1983 Cell 35, 849; Forster and Altman, 1990, Science 249, 783; Li and Altman, 1996, Nucleic Acids Res. 24, 835. Examples of group II introns are generally described in Griffin et al., 1995, Chem. Biol. 2, 761; Michels and Pyle, 1995, Biochemistry 34, 2965; Pyle et al, International PCT Publication No. WO 96/22689. The Group I intron is generally described in Cech et al., U.S. Pat. No. 4,987,071. DNAzymes (FIG. 4) are generally described in Usman et al., International PCT Publication No. WO 95/11304; Chartrand et al., 1995, NAR 23, 4092; Breaker et al., 1995, Chem. Bio. 2, 655; Santoro et al., 1997, PNAS 94, 4262; Breaker, 1999, Nature Biotechnology, 17, 422-423; Santoro et. al., 2000, J. Am. Chem. Soc., 122, 2433-39). NCH cleaving motifs (FIG. 1b) are generally described in Ludwig & Sproat, International PCT Publication No. WO 98/58058; and G-cleavers (FIG. 1c) are generally described in Kore et al., 1998, Nucleic Acids Research 26, 4116-4120 and Eckstein et al., International PCT Publication No. WO 99/16871. Additional motifs contemplated by the instant invention include the Allozyme or allosteric enzymatic nucleic acid molecule (Breaker et al., WO 98/43993, Shih et. al., U.S. Pat. No. 5,589,332, George et al., U.S. Pat. No. 5,741,679), Amberzyme (FIG. 2, Class I motif in Beigelman et al., International PCT publication No. WO 99/55857) and Zinzyme (FIG. 3, Class II motif in Beigelman et al, International PCT publication No. WO 99/55857), all these references are incorporated by reference herein in their totalities, including drawings and can also be used in the present invention. These specific motifs are not limiting in the invention. Those skilled in the art will recognize that all that is important is that the enzymatic molecule have a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule (Cech et al., U.S. Pat. No. 4,987,071).


[0081] By “complementarity” is meant that a nucleic acid can form hydrogen bond(s) with another RNA sequence by either traditional Watson-Crick or other non-traditional types. In reference to the nucleic molecules of the present invention, the binding free energy for a nucleic acid molecule with its target or complementary sequence is sufficient to allow the relevant function of the nucleic acid to proceed, e.g., enzymatic nucleic acid cleavage. Determination of binding free energies for nucleic acid molecules is well known in the art (see, e.g., Turner et al., 1987, CSH Symp. Quant. Biol. LII pp.123-133; Frier et al., 1986, Proc. Nat. Acad. Sci. USA 83:9373-9377; Turner et al., 1987, J. Am. Chem. Soc. 109:3783-3785). A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). “Perfectly complementary” means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.


[0082] In a preferred embodiment, the invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule, nuclease activating compound or chimera is preferably targeted to a highly conserved sequence region of a target mRNAs encoding HCV proteins such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids. Such nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the enzymatic nucleic acid molecules can be expressed from DNA/RNA vectors that are delivered to specific cells. DNAzymes can be synthesized chemically or expressed endogenously in vivo, by means of a single stranded DNA vector or equivalent thereof.


[0083] By “highly conserved sequence region” is meant a nucleotide sequence of one or more regions in a target gene does not vary significantly from one generation to the other or from one biological system to the other.


[0084] Such enzymatic nucleic acid molecules, nuclease activating compound or chimera molecules are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the levels of HCV activity in a cell or tissue.


[0085] By “related” is meant that the inhibition of HCV RNAs and thus reduction in the level respective viral activity will relieve to some extent the symptoms of the disease or condition.


[0086] The nucleic acid-based inhibitors, nuclease activating compounds and chimeras of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes, and nuclease activating compounds or chimeras can be locally administered to relevant tissues ex vivo, or in vivo through injection or infusion pump, with or without their incorporation in biopolymers. In preferred embodiments, the enzymatic nucleic acid inhibitors, and nuclease activating compounds or chimeras comprise sequences, which are complementary to the substrate sequences in Tables III, IV, V and VIII. Examples of such enzymatic nucleic acid molecules also are shown in Tables III, IV, V, VI and VIII. Examples of such enzymatic nucleic acid molecules consist essentially of sequences defined in these tables. In additional embodiments, the enzymatic nucleic acid inhibitors of the invention that comprise sequences which are complementary to the substrate sequences in Tables III, IV, V and VIII are covalently attached to nuclease activating compound or chimeras of the invention, for example a compound having Formula I.


[0087] In yet another embodiment, the invention features antisense nucleic acid molecules and 2-5A chimera including sequences complementary to the substrate sequences shown in Tables III, IV, V and VIII. Such nucleic acid molecules can include sequences as shown for the binding arms of the enzymatic nucleic acid molecules in Tables III, IV, V, VI and VIII. Similarly, triplex molecules can be provided targeted to the corresponding DNA target regions, and containing the DNA equivalent of a target sequence or a sequence complementary to the specified target (substrate) sequence. Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both.


[0088] By “consists essentially of” is meant that the active compound or nucleic acid molecule of the invention, for example an enzymatic nucleic acid molecule, contains an enzymatic center or core equivalent to those in the examples, and binding arms able to bind RNA such that cleavage at the target site occurs. Other sequences can be present which do not interfere with such cleavage. Thus, a core region can, for example, include such a loop, stem-loop, nucleotide linker, and/or non-nucleotide linker and can be represented generally as sequence “X”. For example, a core sequence for a hammerhead enzymatic nucleic acid can comprise a conserved sequence, such as 5′-CUGAUGAG-3′ and 5′-CGAA-3′ connected by “X”, where X is 5′-GCCGUUAGGC-3′ (SEQ ID NO. 9704), or any other Stem II region known in the art, or a nucleotide and/or non-nucleotide linker. Similarly, for other compounds and nucleic acid molecules of the instant invention, such as Inozyme, G-cleaver, amberzyme, zinzyme, DNAzyme, antisense, and 2-5A antisense, other sequences or non-nucleotide linkers can be present that do not interfere with the function of the nucleic acid molecule.


[0089] Sequence X can be a linker of ≧2 nucleotides in length, preferably 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 26, 30, where the nucleotides can preferably be internally base-paired to form a stem of preferably ≧2 base pairs. Alternatively or in addition, sequence X can be a non-nucleotide linker. In yet another embodiment, the nucleotide linker X can be a nucleic acid aptamer, such as an ATP aptamer, HIV Rev aptamer (RRE), HIV Tat aptamer (TAR) and others (for a review see Gold et al., 1995, Annu. Rev. Biochem., 64, 763; and Szostak & Ellington, 1993, in The RNA World, ed. Gesteland and Atkins, pp. 511, CSH Laboratory Press). A “nucleic acid aptamer” as used herein is meant to indicate a nucleic acid sequence capable of interacting with a ligand. The ligand can be any natural or a synthetic molecule, including but not limited to a resin, metabolites, nucleosides, nucleotides, drugs, toxins, transition state analogs, peptides, lipids, proteins, amino acids, nucleic acid molecules, hormones, carbohydrates, receptors, cells, viruses, bacteria and others.


[0090] In yet another embodiment, the non-nucleotide linker X is as defined herein. The term “non-nucleotide” as used herein include either abasic nucleotide, polyether, polyamine, polyamide, peptide, carbohydrate, lipid, or polyhydrocarbon compounds. Specific examples include those described by Seela and Kaiser, Nucleic Acids Res. 1990, 18:6353 and Nucleic Acids Res. 1987, 15:3113; Cload and Schepartz, J. Am. Chem. Soc. 1991, 113:6324; Richardson and Schepartz, J. Am. Chem. Soc. 1991, 113:5109; Ma et al., Nucleic Acids Res. 1993, 21:2585 and Biochemistry 1993, 32:1751; Durand et al., Nucleic Acids Res. 1990, 18:6353; McCurdy et al., Nucleosides & Nucleotides 1991, 10:287; Jschke et al., Tetrahedron Lett. 1993, 34:301; Ono et al., Biochemistry 1991, 30:9914; Arnold et al., International Publication No. WO 89/02439; Usman et al., International Publication No. WO 95/06731; Dudycz et al., International Publication No. WO 95/11910 and Ferentz and Verdine, J. Am. Chem. Soc. 1991, 113:4000, all hereby incorporated by reference herein. A “non-nucleotide” further means any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound can be abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine. Thus, in a preferred embodiment, the invention features an enzymatic nucleic acid molecule having one or more non-nucleotide moieties, and having enzymatic activity to cleave an RNA or DNA molecule.


[0091] Thus, in a first aspect, the invention features nucleic acid molecules and nuclease activating compounds or chimeras that inhibit gene expression and/or viral replication. These chemically or enzymatically synthesized nucleic acid molecules can contain substrate binding domains that bind to accessible regions of their target mRNAs. The nucleic acid molecules also contain domains that catalyze the cleavage of RNA. The enzymatic nucleic acid molecules are preferably molecules of the hammerhead, Inozyme, DNAzyme, Zinzyme, Amberzyme, and/or G-cleaver motifs. Upon binding, the enzymatic nucleic acid molecules cleave the target mRNAs, preventing translation and protein accumulation. In the absence of the expression of the target gene, HCV gene expression and/or replication is inhibited.


[0092] In one embodiment, the nucleic acid molecules and nuclease activating compounds or chimeras are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells using delivery methods described herein and known in the art. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In another embodiment, the nucleic acid molecule, nuclease activating compound or chimera is administered to the site of HCV activity (e.g., hepatocytes) in an appropriate liposomal vehicle.


[0093] In another embodiment of the invention, nucleic acid molecules that cleave target molecules and inhibit HCV activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Nucleic acid molecule expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of nucleic acid molecules. Such vectors can be repeatedly administered as necessary. Once expressed, the nucleic acid molecules cleave the target mRNA. Delivery of enzymatic nucleic acid molecule expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review see Couture and Stinchcomb, 1996, TIG., 12, 510). In another aspect of the invention, nucleic acid molecules that cleave target molecules and inhibit viral replication are expressed from transcription units inserted into DNA, RNA, or viral vectors. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are locally delivered as described above, and transiently persist in smooth muscle cells. However, other mammalian cell vectors that direct the expression of RNA can be used for this purpose.


[0094] By “patient” is meant an organism which is a donor or recipient of explanted cells or the cells themselves. “Patient” also refers to an organism to which enzymatic nucleic acid molecules can be administered. Preferably, a patient is a mammal or mammalian cells. More preferably, a patient is a human or human cells.


[0095] As used in herein “cell” is used in its usual biological sense, and does not refer to an entire multicellular organism, e.g., specifically does not refer to an entire human. The cell can be present in a multicellular organism, e.g., birds, plants and mammals such as cows, sheep, apes, monkeys, swine, dogs, and cats.


[0096] By RNA is meant a molecule comprising at least one ribonucleotide residue. By “ribonucleotide” is meant a nucleotide with a hydroxyl group at the 2′ position (eg; 2′-OH) of a β-D-ribo-furanose moiety.


[0097] By “vectors” is meant any nucleic acid- and/or viral-based technique used to deliver a desired nucleic acid.


[0098] These nucleic acid molecules, nuclease activating compounds and chimeras individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For example, to treat a disease or condition associated with HCV levels, the patient can be treated, or other appropriate cells can be treated, as is evident to those skilled in the art.


[0099] In a further embodiment, the described molecules can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules could be used in combination with one or more known therapeutic agents to treat liver failure, hepatocellular carcinoma, cirrhosis, and/or other disease states associated with HCV infection. Additional known therapeutic agents are those comprising antivirals, interferons, and/or antisense compounds.


[0100] By “comprising” is meant including, but not limited to, whatever follows the word “comprising”. Thus, use of the term “comprising” indicates that the listed elements are required or mandatory, but that other elements are optional and can or can not be present. By “consisting of” is meant including, and limited to, whatever follows the phrase “consisting of”. Thus, the phrase “consisting of” indicates that the listed elements are required or mandatory, and that no other elements can be present. By “consisting essentially of” is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase “consisting essentially of” indicates that the listed elements are required or mandatory, but that other elements are optional and can or can not be present depending upon whether or not they affect the activity or action of the listed elements.


[0101] Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.







DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0102] The drawings will first briefly be described.


[0103] Drawings:


[0104]
FIG. 1 is a diagrammatic representation of a Hammerhead and an Inozyme motif. The examples shown are chemically stabilized with 2′-O-methyl substitutions (lower case), a 2′-deoxy-2′-C-allyl Uridine substitution at position U-4, and a 3′-terminal inverted deoxyabasic moiety. Conserved ribonucleotides are shown as rN, for example G-5, A-6, G-8, G-2, and I-15.1. Phosphorothioate internucleotide substitutions can be introduced, for example, at the four terminal 5′ end nucleotides for increased stability to nuclease degradation. Stem II can be >2 base-pair long, preferably, 2, 3, 4, 5, 6, 7, 8, and 10 base-pairs long. Each N and N′ is independently any base or non-nucleotide as used herein; X is adenosine, cytidine or uridine; Stems I-III are meant to indicate three stem-loop structures; stems I-III can be of any length and can be symmetrical or asymmetrical; arrow indicates the site of cleavage in the target RNA; Rz refers to enzymatic nucleic acid; Loop II can be present or absent. If Loop II is present it is greater than or equal to three nucleotides, preferably four nucleotides. The Loop II sequence is preferably 5′-GAAA-3′ or 5′-GUUA-3′. Inozyme position 15.1 comprises an Inosine nucleotide, which can be ribo-Inosine or xylo-Inosine.


[0105]
FIG. 2 is a diagrammatic representation of a G-cleaver motif. The example shown is chemically stabilized with 2′-O-methyl substitutions, phosphorothioate internucleotide linkage substitutions, and a 3′-termianl inverted deoxyabasic moiety. In the figure, lower case a, g, c, and u represent 2′-O-methyl adenosine, guanosine, cytidine, and uridine nucleotides respectively; upper case A, G, C and U represent adenosine, guanosine, cytidine and uridine nucleotides respectively; “s” refers to phosphorothioate internucleotide linkages, and iB represents an 3′-terminal inverted deoxyabasic moiety.


[0106]
FIG. 3 is a diagrammatic representation of a zinzyme motif. The example shown is chemically stabilized with 2′-O-methyl substitutions, phosphorothioate internucleotide linkage substitutions, and a 3′-termianl inverted deoxyabasic moiety. C in the figure represents a 2′-deozy-2′-amino cytidine nucleotide; lower case a, g, c, and u represent 2′-O-methyl adenosine, guanosine, cytidine, and uridine nucleotides respectively; uppercase A, G, C and U represent adenosine, guanosine, cytidine and uridine nucleotides respectively; “s” refers to phosphorothioate internucleotide linkages, and iB represents an 3′-terminal inverted deoxyabasic moiety. All of the ribo-guanosine nucleotides in the zinzyme motif can be replaced with 2′-O-methyl guanosine nucleotides. The 5′-gaaa-3′ loop can be replaced with other nucleotide containing loop structures and/or non-nucleotide linkers, including PEG linkers. The guanosine nucleotide represented as G′ in the figure can be replaced with either 2′-O-methyl guanosine, 5′-cytidine-adenosine-3′, or 5′-cytidine-adenosine-adenosine-3′ nucleotides and/or their corresponding 2′-O-methyl nucleotide derivatives.


[0107]
FIG. 4 is a diagrammatic representation of an amberzyme motif. The example shown is chemically stabilized with 2′-O-methyl substitutions and a 3′-termianl inverted deoxyabasic moiety. C in the figure represents a 2′-deoxy-2′-amino cytidine nucleotide; lower case a, g, c, and u represent 2′-O-methyl adenosine, guanosine, cytidine, and uridine nucleotides respectively; uppercase A, G, C and U represent adenosine, guanosine, cytidine and uridine nucleotides respectively; and iB represents an 3′-terminal inverted deoxyabasic moiety. The amberzyme motif can be further stabilized through introducing phosphorothioate internucleotide linkages, for example at the four terminal 5′-internucleotide linkages.


[0108]
FIG. 5 is a diagrammatic representation of a DNAzyme motif described generally, for example in Santoro et al., 1997, PNAS, 94, 4262.


[0109]
FIG. 6 is a schematic representation of the Dual Reporter System utilized to demonstrate enzymatic nucleic acid mediated reduction of luciferase activity in cell culture.


[0110]
FIG. 7 shows a schematic view of the secondary structure of the HCV 5′UTR (Brown et al., 1992, Nucleic Acids Res., 20, 5041-45; Honda et al., 1999, J. Virol., 73, 1165-74). Major structural domains are indicated in bold. Enzymatic nucleic acid cleavage sites are indicated by arrows. Solid arrows denote sites amenable to amino-modified enzymatic nucleic acid inhibition. Lead cleavage sites (195 and 330) are indicated with oversized solid arrows.


[0111]
FIG. 8 shows a non-limiting example of a nuclease resistant enzymatic nucleic acid molecule. Binding arms are indicated as stem I and stem III. Nucleotide modifications are indicated as follows: 2′-O-methyl nucleotides, lowercase; ribonucleotides, uppercase G, A; 2′-amino-uridine, u; inverted 3′-3′ deoxyabasic, B. The positions of phosphorothioate linkages at the 5′-end of each enzymatic nucleic acid are indicated by subscript “s”. H indicates A, C or U ribonucleotide, N′ indicates A, C G or U ribonucleotide in substrate, n indicates base complementary to the N′. The U4 and U7 positions in the catalytic core are indicated.


[0112]
FIG. 9 is a set of bar graphs showing enzymatic nucleic acid mediated inhibition of HCV-luciferase expression in OST7 cells. OST7 cells were transfected with complexes containing reporter plasmids (2 μg/mL), enzymatic nucleic acids (100 nM) and lipid. The ratio of HCV-firefly luciferase luminescence/Renilla luciferase luminescence was determined for each enzymatic nucleic acid tested and was compared to treatment with the ICR, an irrelevant control enzymatic nucleic acid lacking specificity to the HCV 5′UTR (adjusted to 1). Results are reported as the mean of triplicate samples ±SD. In FIG. 9A, OST7 cells were treated with enzymatic nucleic acids (100 nM) targeting conserved sites (indicated by cleavage site) within the HCV 5′UTR. In FIG. 9B, OST7 cells were treated with a subset of enzymatic nucleic acids to lead HCV sites (indicated by cleavage site) and corresponding attenuated core (AC) controls. Percent decrease in firefly/Renilla luciferase ratio after treatment with active enzymatic nucleic acids as compared to treatment with corresponding ACs is shown when the decrease is ≧50% and statistically significant. Similar results were obtained with 50 nM enzymatic nucleic acid.


[0113]
FIG. 10 is a series of line graphs showing the dose-dependent inhibition of HCV/luciferase expression following enzymatic nucleic acid treatment. Active enzymatic nucleic acid was mixed with corresponding AC to maintain a 100 nM total oligonucleotide concentration and the same lipid charge ratio. The concentration of active enzymatic nucleic acid for each point is shown. FIGS. 10A-E shows enzymatic nucleic acids targeting sites 79, 81, 142, 195, or 330, respectively. Results are reported as the mean of triplicate samples ±SD.


[0114]
FIG. 11 is a set of bar graphs showing reduction of HCV/luciferase RNA and inhibition of HCV-luciferase expression in OST7 cells. OST7 cells were transfected with complexes containing reporter plasmids (2 μg/ml), enzymatic nucleic acids, BACs or SACs (50 nM) and lipid. Results are reported as the mean of triplicate samples ±SD. In FIG. 1A the ratio of HCV-firefly luciferase RNA/Renilla luciferase RNA is shown for each enzymatic nucleic acid or control tested. As compared to paired BAC controls (adjusted to 1), luciferase RNA levels were reduced by 40% and 25% for the site 195 or 330 enzymatic nucleic acids, respectively. In FIG. 11B the ratio of HCV-firefly luciferase luminescence/Renilla luciferase luminescence is shown after treatment with site 195 or 330 enzymatic nucleic acids or paired controls. As compared to paired BAC controls (adjusted to 1), inhibition of protein expression was 70% and 40% for the site 195 or 330 enzymatic nucleic acids, respectively P<0.01.


[0115]
FIG. 12 is a set a bar graphs showing interferon (IFN) alpha 2a and 2b dose response in combination with site 195 anti-HCV enzymatic nucleic acid treatment. FIG. 12A shows data for IFN alfa 2a treatment. FIG. 12B shows data for IFN alfa 2b treatment. Viral yield is reported from HeLa cells pretreated with IFN in units/ml (U/ml) as indicated for 4 h prior to infection and then treated with either 200 nM control (SAC) or site 195 anti-HCV enzymatic nucleic acid (195 RZ) for 24 h after infection. Cells were infected with a MOI=0.1 for 30 min and collected at 24 h post infection. Error bars represent the S.D. of the mean of triplicate determinations.


[0116]
FIG. 13 is a line graph showing site 195 anti-HCV enzymatic nucleic acid dose response in combination with interferon (IFN) alpha 2a and 2b pretreatment. Viral yield is reported from HeLa cells pretreated for 4 h with or without IFN and treated with doses of site 195 anti-HCV enzymatic nucleic acid (195 RZ) as indicated for 24 h after infection. Anti-HCV enzymatic nucleic acid was mixed with control oligonucleotide (SAC) to maintain a constant 200 nM total dose of nucleic acid for delivery. Cells were infected with a MOI=0.1 for 30 min and collected at 24 h post infection. Error bars represent the S.D. of the mean of triplicate determinations.


[0117]
FIG. 14 is a set of bar graphs showing data from consensus interferon (CIFN)/enzymatic nucleic acid combination treatment. FIG. 14A shows CIFN dose response with site 195 anti-HCV enzymatic nucleic acid treatment. Viral yield is reported from cells pretreated with CIFN in units/ml (U/ml) as indicated and treated with either 200 nM control (SAC) or site 195 anti-HCV enzymatic nucleic acid (195 RZ). FIG. 14B shows site 195 anti-HCV enzymatic nucleic acid dose response with CIFN pretreatment. Viral yield is reported from cells pretreated with or without CIFN and treated with concentrations of site 195 anti-HCV enzymatic nucleic acid (195 RZ) as indicated. Anti-HCV enzymatic nucleic acid was mixed with control oligonucleotide (SAC) to maintain a constant 200 nM total dose of nucleic acid for delivery. Cells were infected with a MOI=0.1 for 30 min. and collected at 24 h post infection. Error bars represent the S.D. of the mean of triplicate determinations.


[0118]
FIG. 15 is a bar graph showing enzymatic nucleic acid activity and enhanced antiviral effect of an anti-HCV enzymatic nucleic acid targeting site 195 used in combination with consensus interferon (CIFN). Viral yield is reported from cells treated as indicated. BAC, cells were treated with 200 nM BAC (binding attenuated control) for 24 h after infection; CIFN+BAC, cells were treated with 12.5 U/ml CIFN for 4 h prior to infection and with 200 nM BAC for 24 h after infection; 195 RZ, cells were treated with 200 nM site 195 anti-HCV enzymatic nucleic acid for 24 h after infection; CIFN+195 RZ, cells were treated with 12.5 U/ml CIFN for 4 h prior to infection and with 200 nM site 195 anti-HCV enzymatic nucleic acid for 24 h after infection. Cells were infected with a MOI=0.1 for 30 min. Error bars represent the S.D. of the mean of triplicate determinations.


[0119]
FIG. 16 is a bar graph showing inhibition of a HCV-PV chimera replication by treatment with zinzyme enzymatic nucleic acid molecules targeting different sites within the HCV 5′-UTR compared to a scrambled attenuated core control (SAC) zinzyme.


[0120]
FIG. 17 is a bar graph showing inhibition of a HCV-PV chimera replication by antisense nucleic acid molecules targeting conserved regions of the HCV 5′-UTR compared to scrambled antisense controls.


[0121]
FIG. 18 shows the structure of compounds (2-5A) utilized in the study. “X” denotes the position of oxygen (0) in analog I or sulfur (S) in thiophosphate (P═S) analog II. The 2-5A compounds were synthesized, deprotected and purified as described herein utilizing CPG support with 3′-inverted abasic nucleotide. For chain extension 5′-O-(4,4′-dimetoxytrityl)-3′-O-(tert-butyldimethylsilyl)-N6-benzoyladenosine-2-cyanoethyl-N,N-diisopropyl-phosphoramidite (Chem. Genes Corp., Waltham, Mass.) was employed. Introduction of a 5′-terminal phosphate (analog I) or thiophosphate (analog II) group was performed with “Chemical Phosphorylation Reagent” (Glen Research, Sterling, Va.). Structures of the final compounds were confirmed by MALDI-TOF analysis.


[0122]
FIG. 19 is a bar graph showing ribozyme activity and enhanced antiviral effect. (A) Interferon/ribozyme combination treatment. (B) 2-5A/ribozyme combination treatment. HeLa cells seeded in 96-well plates (10,000 cells per well) were pretreated as indicated for 4 hours. For pretreatment, SAC (RPI 17894), RZ (RPI 13919), and 2-5A analog I (RPI 21096) (200 nM) were complexed with lipid cytofectin. Cells were then infected with HCV-PV at a multiplicity of infection of 0.1. Virus inoculum was replaced after 30 minutes with media containing 5% serum and 100 nM RZ or SAC as indicated, complexed with cytofectin RPI.9778. After 20 hours, cells were lysed by 3 freeze/thaw cycles and virus was quantified by plaque assay. Plaque forming units (PFU)/ml are shown as the mean of triplicate samples +SEM. The absolute amount of viral yield in treated cells varied from day to day, presumably due to day to day variations in cell plating and transfection complexation. None, normal media; IFN, 10 U/ml consensus interferon; SAC, scrambled arm attenuated core control (RPI 17894); RZ, anti-HCV ribozyme (RPI 13919); 2-5A, (RPI 21096).


[0123]
FIG. 20 is a graph showing the inhibition of viral replication with anti-HCV ribozyme (RPI 13919) or 2-5A (RPI 21096) treatment. HeLa cells were treated as described in FIG. 19 except that there was no pretreatment and 200 nM oligonucleotide was used for treatment. 2-5A P═S contains a 5′-terminal thiophosphate (RPI21095) (see FIG. 18).


[0124]
FIG. 21 is a bar graph showing anti-HCV ribozyme in combination with 2-5A treatment. HeLa cells were treated as described in FIG. 20 except concentrations were co-varied as shown to maintain a constant 200 nM total oligonucleotide dose for transfection. Cells treated with 50 nM anti-HCV ribozyme (RPI 13919) (middle bars) were also treated with 150 nM SAC (RPI 17894) or 2-5A (RPI 21096); likewise, cells treated with 100 nM anti-HCV ribozyme (bars at right) were also treated with 100 nM SAC or 2-5A.







MECHANISM OF ACTION OF NUCLEIC ACID MOLECULES OF THE INVENTION

[0125] Antisense:


[0126] Antisense molecules can be modified or unmodified RNA, DNA, or mixed polymer oligonucleotides and primarily function by specifically binding to matching sequences resulting in inhibition of peptide synthesis (Wu-Pong, November 1994, BioPharm, 20-33). The antisense oligonucleotide binds to target RNA by Watson Crick base-pairing and blocks gene expression by preventing ribosomal translation of the bound sequences either by steric blocking or by activating RNase H enzyme. Antisense molecules can also alter protein synthesis by interfering with RNA processing or transport from the nucleus into the cytoplasm (Mukhopadhyay & Roth, 1996, Crit. Rev. in Oncogenesis 7, 151-190).


[0127] In addition, binding of single stranded DNA to RNA can result in nuclease degradation of the heteroduplex (Wu-Pong, supra; Crooke, supra). To date, the only backbone modified DNA chemistry which will act as substrates for RNase H are phosphorothioates, phosphorodithioates, and borontrifluoridates. Recently it has been reported that 2′-arabino and 2′-fluoro arabino-containing oligos can also activate RNase H activity.


[0128] A number of antisense molecules have been described that utilize novel configurations of chemically modified nucleotides, secondary structure, and/or RNase H substrate domains (Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., International PCT Publication No. WO 99/54459; Hartmann et al., U.S. Ser. No. 60/101,174 which was filed on Sep. 21, 1998) all of these are incorporated by reference herein in their entirety.


[0129] In addition, antisense deoxyoligoribonucleotides can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. Antisense DNA can be expressed via the use of a single stranded DNA intracellular expression vector or equivalents and variations thereof.


[0130] 2-5A Antisense Chimera:


[0131] The 2-5A system is an interferon mediated mechanism for RNA degradation found in higher vertebrates (Mitra et al., 1996, Proc Nat Acad Sci USA 93, 6780-6785). Two types of enzymes, 2-5A synthetase and RNase L, are required for RNA cleavage. The 2-5A synthetases require double stranded RNA to form 2′-5′ oligoadenylates (2-5A). 2-5A then acts as an allosteric effector for utilizing RNase L which has the ability to cleave single stranded RNA. The ability to form 2-5A structures with double stranded RNA makes this system particularly useful for inhibition of viral replication.


[0132] (2′-5′) oligoadenylate structures can be covalently linked to antisense molecules to form chimeric oligonucleotides capable of RNA cleavage (Torrence, supra). Alternatively, (2′-5′) oligoadenylate structures can be covalently linked to enzymatic nucleic acid molecules to form chimeric oligonucleotides capable of RNA cleavage. These molecules putatively bind and activate a 2-5A dependent RNase, the oligonucleotide/enzyme complex then binds to a target RNA molecule which can then be cleaved by the RNase enzyme and the enzymatic nucleic acid.


[0133] Enzymatic Nucleic Acid Molecules


[0134] There are several known classes of enzymatic nucleic acid molecules capable of cleaving target RNA. In addition, several in vitro selection (evolution) strategies (Orgel, 1979, Proc. R. Soc. London, B 205, 435) have been used to evolve new nucleic acid catalysts capable of catalyzing cleavage and ligation of phosphodiester linkages (Joyce, 1989, Gene, 82, 83-87; Beaudry et al., 1992, Science 257, 635-641; Joyce, 1992, Scientific American 267, 90-97; Breaker et al., 1994, TIBTECH 12, 268; Bartel et al., 1993, Science 261:1411-1418; Szostak, 1993, TIBS 17, 89-93; Kumar et al., 1995, FASEB J., 9, 1183; Breaker, 1996, Curr. Op. Biotech., 7, 442; Santoro et al., 1997, Proc. Natl. Acad. Sci., 94, 4262; Tang et al., 1997, RNA 3, 914; Nakamaye & Eckstein, 1994, supra; Long & Uhlenbeck, 1994, supra; Ishizaka et al., 1995, supra; Vaish et al., 1997, Biochemistry 36, 6495; all of these are incorporated by reference herein). Each can catalyze a series of reactions including the hydrolysis of phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of some of these enzymatic nucleic acids. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of an enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA destroys its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.


[0135] The enzymatic nature of an enzymatic nucleic acid molecule is advantageous over other technologies, since the concentration of enzymatic nucleic acid molecule necessary to affect a therapeutic treatment is lower. This advantage reflects the ability of the enzymatic nucleic acid molecule to act enzymatically. Thus, a single enzymatic nucleic acid molecule is able to cleave many molecules of target RNA. In addition, the enzymatic nucleic acid molecule is a highly specific inhibitor, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can be chosen to completely eliminate catalytic activity of an enzymatic nucleic acid molecule.


[0136] Nucleic acid molecules having an endonuclease enzymatic activity are able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence-specific manner. Such enzymatic nucleic acid molecules can be targeted to virtually any RNA transcript, and efficient cleavage achieved in vitro (Zaug et al., 324, Nature 429 1986; Uhlenbeck, 1987 Nature 328, 596; Kim et al., 84 Proc. Natl. Acad. Sci. USA 8788, 1987; Dreyfus, 1988, Einstein Quart. J. Bio. Med., 6, 92; Haseloff and Gerlach, 334 Nature 585, 1988; Cech, 260 JAMA 3030, 1988; and Jefferies et al., 17 Nucleic Acids Research 1371, 1989; Chartrand et al., 1995, Nucleic Acids Research 23, 4092; Santoro et al., 1997, PNAS 94, 4262).


[0137] Because of their sequence-specificity, trans-cleaving enzymatic nucleic acid molecules show promise as therapeutic agents for human disease (Usman & McSwiggen, 1995 Ann. Rep. Med. Chem. 30, 285-294; Christoffersen and Marr, 1995 J. Med. Chem. 38, 2023-2037). Enzymatic nucleic acid molecules can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders the RNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited.


[0138] Enzymatic nucleic acid molecules that cleave the specified sites in HCV RNAs represent a novel therapeutic approach to infection by the hepatitis C virus. As shown herein, enzymatic nucleic acids are able to inhibit the activity of HCV and the catalytic activity of the enzymatic nucleic acids is required for their inhibitory effect. Those of ordinary skill in the art will find that it is clear from the examples described that other enzymatic nucleic acid molecules that cleave HCV RNAs can be readily designed and are within the invention.


[0139] Target sites


[0140] Targets for useful nucleic acid molecules and nuclease activating compounds or chimeras can be determined as disclosed in Draper et al., WO 93/23569; Sullivan et al., WO 93/23057; Thompson et al., WO 94/02595; Draper et al., WO 95/04818; McSwiggen et al., U.S. Pat. No. 5,525,468 and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to other available methods known in the art. Nucleic acid molecules and nuclease activating compounds or chimeras to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described. Such nucleic acid molecules and nuclease activating compounds or chimeras can also be optimized and delivered as described therein.


[0141] The sequence of HCV RNAs were screened for optimal enzymatic nucleic acid molecule target sites using a computer folding algorithm. Enzymatic nucleic acid cleavage sites were identified. These sites are shown in Tables III, IV, V and VIII (All sequences are 5′ to 3′ in the tables). The nucleotide base position is noted in the tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule. The nucleotide base position is noted in the tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule.


[0142] Because HCV RNAs are highly homologous in certain regions, some enzymatic nucleic acid molecule target sites are also homologous. In this case, a single enzymatic nucleic acid molecule will target different classes of HCV RNA. The advantage of one enzymatic nucleic acid molecule that targets several classes of HCV RNA is clear, especially in cases where one or more of these RNAs can contribute to the disease state.


[0143] Enzymatic nucleic acid molecules were designed that could bind and were individually analyzed by computer folding (Jaeger et al., 1989 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the enzymatic nucleic acid molecule sequences fold into the appropriate secondary structure. Those enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 4 bases on each arm are able to bind to, or otherwise interact with, the target RNA. Enzymatic nucleic acid molecules were designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above.


[0144] Nucleic Acid Synthesis


[0145] Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small nucleic acid motifs (“small refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., antisense oligonucleotides, hammerhead or the Inozyme enzymatic nucleic acids) are preferably used for exogenous delivery. The simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of RNA structure. Exemplary molecules of the instant invention are chemically synthesized, and others can similarly be synthesized.


[0146] The method of synthesis used for normal RNA including certain enzymatic nucleic acid molecules follows the procedure as described in Usman et al., 1987, J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990, Nucleic Acids Res., 18, 5433; and Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684 Wincott et al., 1997, Methods Mol. Bio., 74, 59, and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μmol scale protocol with a 7.5 min coupling step for alkylsilyl protected nucleotides and a 2.5 min coupling step for 2′-O-methylated nucleotides. Table II outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 μmol scale can be done on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle. A 33-fold excess (60 μL of 0.11 M=6.6 mol) of 2′-O-methyl phosphoramidite and a 75-fold excess of S-ethyl tetrazole (60 μL of 0.25 M=15 μmol) can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl. A 66-fold excess (120 μL of 0.11 M=13.2 μmol) of alkylsilyl (ribo) protected phosphoramidite and a 150-fold excess of S-ethyl tetrazole (120 μL of 0.25 M=30 μmol) can be used in each coupling cycle of ribo residues relative to polymer-bound 5′-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide 0.05 M in acetonitrile) is used.


[0147] Deprotection of the RNA is performed using either a two-pot or one-pot protocol. For the two-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65° C. for 10 min. After cooling to −20° C., the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder. The base deprotected oligoribonucleotide is resuspended in anhydrous TEA/HF/NMP solution (300 μL of a solution of 1.5 mL N-methylpyrrolidinone, 750 μL TEA and 1 mL TEA-3HF to provide a 1.4 M HF concentration) and heated to 65° C. After 1.5 h, the oligomer is quenched with 1.5 M NH4HCO3.


[0148] Alternatively, for the one-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 33% ethanolic methylamine/DMSO: 1/1 (0.8 mL) at 65° C. for 15 min. The vial is brought to r.t. TEA.3HF (0.1 mL) is added and the vial is heated at 65° C. for 15 min. The sample is cooled at −20° C. and then quenched with 1.5 M NH4HCO3.


[0149] For anion exchange desalting of the deprotected oligomer, the TEAB solution was loaded onto a Qiagen 500® anion exchange cartridge (Qiagen Inc.) that was prewashed with 50 mM TEAB (10 mL). After washing the loaded cartridge with 50 mM TEAB (10 mL), the RNA was eluted with 2 M TEAB (10 mL) and dried down to a white powder.


[0150] For purification of the trityl-on oligomers, the quenched NH4HCO3 solution is loaded onto a C-18 containing cartridge that had been prewashed with acetonitrile followed by 50 mM TEAA. After washing the loaded cartridge with water, the RNA is detritylated with 0.5% TFA for 13 min. The cartridge is then washed again with water, salt exchanged with 1 M NaCl and washed with water again. The oligonucleotide is then eluted with 30% acetonitrile.


[0151] Inactive hammerhead enzymatic nucleic acids were synthesized by substituting switching the order of G5A6 and substituting a U for A14(numbering from Hertel, K. J., et al., 1992, Nucleic Acids Res., 20, 3252). Inactive enzymatic nucleic acids can also be synthesized by substituting a U for G5 and a U for A14. In some cases, the sequence of the substrate binding arms were randomized while the overall base composition was maintained.


[0152] The average stepwise coupling yields are typically >98% (Wincott et al, 1995 Nucleic Acids Res. 23, 2677-2684). Those of ordinary skill in the art will recognize that the scale of synthesis can be adapted to be larger or smaller than the example described above including but not limited to 96 well format, all that is important is the ratio of chemicals used in the reaction.


[0153] Enzymatic nucleic acid molecules can be synthesized in two parts and annealed to reconstruct the active enzymatic nucleic acid molecule (Chowrira and Burke, 1992 Nucleic Acids Res., 20, 2835-2840). Enzymatic nucleic acid molecules can also be synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). DNAzymes can be synthesized chemically or expressed endogenously in vivo, by means of a single stranded DNA vector or equivalent thereof.


[0154] Alternatively, the nucleic acid molecules of the present invention can be synthesized separately and joined together post-synthetically, for example by ligation (Moore et al., 1992, Science 256, 9923; Draper et al., International PCT publication No. WO 93/23569; Shabarova et al., 1991, Nucleic Acids Research 19, 4247; Bellon et al., 1997, Nucleosides & Nucleotides, 16, 951; Bellon et al., 1997, Bioconjugate Chem. 8, 204).


[0155] The nucleic acid molecules of the present invention are modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-flouro, 2′-O-methyl, 2′-H (for a review see Usman and Cedergren, 1992, TIBS 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163). Enzymatic nucleic acids are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Wincott et al., Supra, the totality of which is hereby incorporated herein by reference) and are re-suspended in water.


[0156] The sequences of the nucleic acid molecules that are chemically synthesized, useful in this study, are shown in Tables V-VIII. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the enzymatic nucleic acid (all but the binding arms) is altered to affect activity. The nucleic acid sequences listed in Tables V-VIII can be formed of ribonucleotides or other nucleotides or non-nucleotides. Such nucleic acid molecules with enzymatic activity are equivalent to the enzymatic nucleic acid molecules described specifically in the tables.


[0157] Optimizing Activity of the Nucleic Acid Molecules of the Invention.


[0158] Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) that prevent their degradation by serum ribonucleases can increase their potency (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., 1990 Nature 344, 565; Pieken et al., 1991, Science 253, 314; Usman and Cedergren, 1992, Trends in Biochem. Sci. 17, 334; Usman et al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162; Sproat, U.S. Pat. No. 5,334,711; and Burgin et al., supra; all of these describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules herein). Modifications which enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired. (All these publications are hereby incorporated by reference herein).


[0159] There are several examples in the art describing sugar, base and phosphate modifications that can be introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides are modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-flouro, 2′-O-methyl, 2′-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992, TIBS. 17, 34; Usman et al. 1994, Nucleic Acids Symp. Ser. 31, 163; Burgin et al., 1996, Biochemistry, 35, 14090). Sugar modification of nucleic acid molecules have been extensively described in the art (see Eckstein et al., International Publication PCT No. WO 92/07065; Perrault et al. Nature, 1990, 344, 565-568; Pieken et al. Science, 1991, 253, 314-317; Usman and Cedergren, Trends in Biochem. Sci., 1992, 17, 334-339; Usman et al. International Publication PCT No. WO 93/15187; Sproat, U.S. Pat. No. 5,334,711 and Beigelman et al., 1995, J. Biol. Chem., 270, 25702; Beigelman et al., International PCT publication No. WO 97/26270; Beigelman et al., U.S. Pat. No. 5,716,824; Usman et al., U.S. Pat. No. 5,627,053; Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., U.S. Ser. No. 60/082,404 which was filed on Apr. 20, 1998; Karpeisky et al., 1998, Tetrahedron Lett., 39, 1131; Earnshaw and Gait, 1998, Biopolymers (Nucleic acid Sciences), 48, 39-55; Verma and Eckstein, 1998, Annu. Rev. Biochem., 67, 99-134; and Burlina et al., 1997, Bioorg. Med. Chem., 5, 1999-2010; all of the references are hereby incorporated in their totality by reference herein). Such publications describe general methods and strategies to determine the location of incorporation of sugar, base and/or phosphate modifications and the like into enzymatic nucleic acids without inhibiting catalysis, and are incorporated by reference herein. In view of such teachings, similar modifications can be used as described herein to modify the nucleic acid molecules of the instant invention.


[0160] While chemical modification of oligonucleotide internucleotide linkages with phosphorothioate, phosphorothioate, and/or 5′-methylphosphonate linkages improves stability, too many of these modifications can cause some toxicity. Therefore when designing nucleic acid molecules the amount of these internucleotide linkages should be minimized. The reduction in the concentration of these linkages should lower toxicity resulting in increased efficacy and higher specificity of these molecules.


[0161] Nucleic acid molecules having chemical modifications that maintain or enhance activity are provided. Such nucleic acid is also generally more resistant to nucleases than unmodified nucleic acid. Thus, in a cell and/or in vivo the activity can not be significantly lowered. Therapeutic nucleic acid molecules delivered exogenously should optimally be stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state. Nucleic acid molecules should be resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of RNA and DNA (Wincott et al., 1995 Nucleic Acids Res. 23, 2677; Caruthers et al., 1992, Methods in Enzymology 211,3-19 (incorporated by reference herein) have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.


[0162] Use of the nucleic acid-based molecules of the invention can lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple antisense or enzymatic nucleic acid molecules targeted to different genes, nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of molecules (including different motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules can also include combinations of different types of nucleic acid molecules.


[0163] By “enhanced enzymatic activity” is meant to include activity measured in cells and/or in vivo where the activity is a reflection of both catalytic activity and enzymatic nucleic acid stability. In this invention, the product of these properties is increased or not significantly (less that 10 fold) decreased in vivo compared to an all RNA enzymatic nucleic acid or all DNA enzyme.


[0164] In another embodiment, nucleic acid catalysts having chemical modifications which maintain or enhance enzymatic activity is provided. Such nucleic acid is also generally more resistant to nucleases than unmodified nucleic acid. Thus, in a cell and/or in vivo the activity should not be significantly lowered. As exemplified herein, such enzymatic nucleic acids are useful in a cell and/or in vivo even if activity over all is reduced 10 fold (Burgin et al., 1996, Biochemistry, 35, 14090). Such enzymatic nucleic acids herein are said to “maintain” the enzymatic activity of an all RNA enzymatic nucleic acid.


[0165] In another aspect the nucleic acid molecules comprise a 5′ and/or a 3′-cap structure.


[0166] By “cap structure” is meant chemical modifications, which have been incorporated at either terminus of the oligonucleotide (see for example Wincott et al., WO 97/26270, incorporated by reference herein). These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5′-terminus (5′-cap) or at the 3′-terminus (3′-cap) or can be present on both terminus. In non-limiting examples: the 5′-cap is selected from the group consisting of inverted abasic residue (moiety), 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4′-thio nucleotide, carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3′-3′-inverted nucleotide moiety; 3′-3′-inverted abasic moiety; 3′-2′-inverted nucleotide moiety; 3′-2′-inverted abasic moiety; 1,4-butanediol phosphate; 3′-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3′-phosphate; 3′-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety (for more details see Wincott et al., International PCT publication No. WO 97/26270, incorporated by reference herein). In yet another preferred embodiment the 3′-cap is selected from a group comprising, 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4′-thio nucleotide, carbocyclic nucleotide; 5′-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threopentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5′-5′-inverted nucleotide moiety; 5′-5′-inverted abasic moiety; 5′-phosphoramidate; 5′-phosphorothioate; 1,4-butanediol phosphate; 5′-amino; bridging and/or non-bridging 5′-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5′-mercapto moieties (for more details see Beaucage and Iyer, 1993, Tetrahedron 49, 1925; incorporated by reference herein). By the term “non-nucleotide” is meant any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound is abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine.


[0167] An “alkyl” group refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain, and cyclic alkyl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably it is a lower alkyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkyl group can be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2 or N(CH3)2, amino, or SH. The term also includes alkenyl groups which are unsaturated hydrocarbon groups containing at least one carbon-carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has 1 to 12 carbons. More preferably it is a lower alkenyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkenyl group can be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2, halogen, N(CH3)2, amino, or SH. The term “alkyl” also includes alkynyl groups which have an unsaturated hydrocarbon group containing at least one carbon-carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has 1 to 12 carbons. More preferably it is a lower alkynyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkynyl group can be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2 or N(CH3)2, amino or SH.


[0168] Such alkyl groups can also include amine, aryl, alkylaryl, carbocyclic aryl, heterocyclic aryl, amide and ester groups. An “aryl” group refers to an aromatic group which has at least one ring having a conjugated p electron system and includes carbocyclic aryl, heterocyclic aryl and biaryl groups, all of which can be optionally substituted. The preferred substituent(s) of aryl groups are halogen, trihalomethyl, hydroxyl, SH, OH, cyano, alkoxy, alkyl, alkenyl, alkynyl, and amino groups. An “alkylaryl” group refers to an alkyl group (as described above) covalently joined to an aryl group (as described above). Carbocyclic aryl groups are groups wherein the ring atoms on the aromatic ring are all carbon atoms. The carbon atoms are optionally substituted. Heterocyclic aryl groups are groups having from 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen, and include furanyl, thienyl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl and the like, all optionally substituted. An “amide” refers to an —C(O)—NH—R, where R is either alkyl, aryl, alkylaryl or hydrogen. An “ester” refers to an —C(O)—OR′, where R is either alkyl, aryl, alkylaryl or hydrogen.


[0169] By “nucleotide” as used herein is as recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1′ position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see, for example, Usman and McSwiggen, supra; Eckstein et al, International PCT Publication No. WO 92/07065; Usman et al., International PCT Publication No. WO 93/15187; Ulhlman & Peyman, supra all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach et al, 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of base modifications that can be introduced into nucleic acid molecules include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman & Peyman, supra). By “modified bases” in this aspect is meant nucleotide bases other than adenine, guanine, cytosine and uracil at 1′ position or their equivalents; such bases can be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.


[0170] In one embodiment, the invention features modified nucleic acids with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions. For a review of oligonucleotide backbone modifications see Hunziker and Leumann, 1995, Nucleic Acid Analogues: Synthesis and Properties, in Modern Synthetic Methods, VCH, 331-417, and Mesmaeker et al., 1994, Novel Backbone Replacements for Oligonucleotides, in Carbohydrate Modifications in Antisense Research, ACS, 24-39. These references are hereby incorporated by reference herein.


[0171] By “abasic” or “abasic moiety” is meant sugar moieties lacking a base or having other chemical groups in place of a base at the 1′ position, (see Wincott et al., International PCT publication No. WO 97/26270).


[0172] By “ribofuranose sugar moiety” is meant a naturally occurring or chemically modified component of a ribofuranose sugar.


[0173] By “bridging phosphate moiety” is meant a naturally occurring or chemically modified bridging component of a phosphate group.


[0174] By “non-bridging phosphate moiety” is meant a naturally occurring or chemically modified non-bridging component of a phosphate group.


[0175] By “unmodified nucleoside” is meant one of the bases adenine, cytosine, guanine, thymine, uracil joined to the 1′ carbon of β-D-ribo-furanose.


[0176] By “modified nucleoside” is meant any nucleotide base which contains a modification in the chemical structure of an unmodified nucleotide base, sugar and/or phosphate.


[0177] In connection with 2′-modified nucleotides as described for the present invention, by “amino” is meant 2′-NH2 or 2′-O—NH2, which can be modified or unmodified. Such modified groups are described, for example, in Eckstein et al., U.S. Pat. No. 5,672,695 and Matulic-Adamic et al., WO 98/28317, respectively, which are both incorporated by reference in their entireties.


[0178] Various modifications to nucleic acid (e.g., antisense and enzymatic nucleic acid) structure can be made to enhance the utility of these molecules, including, for example, modifications that enhance shelf-life, half-life in vitro, stability, and ease of introduction of such oligonucleotides to the target site, e.g., to enhance penetration of cellular membranes, and confer the ability to recognize and bind to targeted cells.


[0179] Use of these molecules can lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple enzymatic nucleic acids targeted to different genes, enzymatic nucleic acids coupled with known small molecule inhibitors, or intermittent treatment with combinations of enzymatic nucleic acids (including different enzymatic nucleic acid motifs) and/or other chemical or biological molecules. The treatment of patients with nucleic acid molecules can also include combinations of different types of nucleic acid molecules. Therapies can be devised which include a mixture of enzymatic nucleic acids (including different enzymatic nucleic acid motifs), antisense and/or 2-5A chimera molecules to one or more targets to alleviate symptoms of a disease.


[0180] Administration of Nucleic Acid Molecules


[0181] Sullivan et al., PCT WO 94/02595, describes the general methods for delivery of enzymatic nucleic acid molecules. Nucleic acid molecules can be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, enzymatic nucleic acids can be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump, stent or other delivery devices such as Alzet® pumps, Medipad® devices. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of enzymatic nucleic acid delivery and administration are provided in Sullivan et al., supra and Draper et a., PCT WO93/23569 which have been incorporated by reference herein.


[0182] The molecules of the instant invention can be used as pharmaceutical agents. Pharmaceutical agents prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state in a patient.


[0183] The negatively charged polynucleotides of the invention can be administered (e.g., RNA, DNA or protein) and introduced into a patient by any standard means known in the art, with or without stabilizers, buffers, and the like, to form a pharmaceutical composition. When it is desired to use a lipid or liposome delivery mechanism, standard protocols for formulation can be followed. The compositions of the present invention can also be formulated and used as tablets, capsules or elixirs for oral administration; suppositories for rectal administration; sterile solutions; suspensions for injectable administration; and the like.


[0184] The present invention also includes pharmaceutically acceptable formulations of the compounds described. These formulations include salts of the above compounds, e.g., acid addition salts, for example, salts of hydrochloric, hydrobromic, acetic acid, and benzene sulfonic acid.


[0185] A pharmacological composition or formulation refers to a composition or formulation in a form suitable for administration, e.g., systemic administration, into a cell or patient, preferably a human. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation to reach a target cell (i.e., a cell to which the negatively charged polymer is desired to be delivered to). For example, pharmacological compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the composition or formulation from exerting its effect.


[0186] By “systemic administration” is meant in vivo systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include, without limitations: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular. Each of these administration routes expose the desired negatively charged polymers, e.g., nucleic acids, to an accessible diseased tissue. The rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier comprising the compounds of the instant invention can potentially localize the drug, for example, in certain tissue types, such as the tissues of the reticular endothelial system (RES). A liposome formulation which facilitates the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful. This approach can provide enhanced delivery of the drug to target cells by taking advantage of the specificity of macrophage and lymphocyte immune recognition of abnormal cells, such as HCV infected liver cells.


[0187] In one embodiment, the invention features the use of a composition comprising surface-modified liposomes containing poly (ethylene glycol) lipids (PEG-modified, or long-circulating liposomes or stealth liposomes). These formulations offer a method for increasing the accumulation of drugs in target tissues. This class of drug carriers resists opsonization and elimination by the mononuclear phagocytic system (MPS or RES), thereby enabling longer blood circulation times and enhanced tissue exposure for the encapsulated drug (Lasic et al. Chem. Rev. 1995, 95, 2601-2627; Ishiwata et al., Chem. Pharm. Bull. 1995, 43, 1005-1011). Such liposomes have been shown to accumulate selectively in tumors, presumably by extravasation and capture in the neovascularized target tissues (Lasic et al., Science 1995, 267, 1275-1276; Oku et al., 1995, Biochim. Biophys. Acta, 1238, 86-90). The long-circulating liposomes enhance the pharmacokinetics and pharmacodynamics of DNA and RNA, particularly compared to conventional cationic liposomes which are known to accumulate in tissues of the MPS (Liu et al., J. Biol. Chem. 1995, 42, 24864-24870; Choi et al, International PCT Publication No. WO 96/10391; Ansell et al., International PCT Publication No. WO 96/10390; Holland et al., International PCT Publication No. WO 96/10392; all of the se are incorporated by reference herein). All of these references are incorporated by reference herein.


[0188] In addition, other cationic molecules can also be utilized to deliver the molecules of the present invention. For example, enzymatic nucleic acid molecules can be conjugated to glycosylated poly(L-lysine) which has been shown to enhance localization of antisense oligonucleotides into the liver (Nakazono et al., 1996, Hepatology 23, 1297-1303; Nahato et al., 1997, Biochem Pharm. 53, 887-895). Glycosylated poly(L-lysine) can be covertly attached to the enzymatic nucleic acid or be bound to enzymatic nucleic acid through electrostatic interaction.


[0189] The present invention also includes compositions prepared for storage or administration which include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985) hereby incorporated by reference herein. For example, preservatives, stabilizers, dyes and flavoring agents can be provided. Id. at 1449. These include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. In addition, antioxidants and suspending agents can be used.


[0190] A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors which those skilled in the medical arts will recognize. Generally, an amount between 0.1 mg/kg and 100 mg/kg body weight/day of active ingredients is administered dependent upon potency of the negatively charged polymer.


[0191] The nucleic acid molecules of the present invention can also be administered to a patient in combination with other therapeutic compounds to increase the overall therapeutic effect. The use of multiple compounds to treat an indication can increase the beneficial effects while reducing the presence of side effects.


[0192] Alternatively, the enzymatic nucleic acid molecules of the instant invention can be expressed within cells from eukaryotic promoters (e.g., Izant and Weintraub, 1985 Science 229, 345; McGarry and Lindquist, 1986 Proc. Natl. Acad. Sci. USA 83, 399; Scanlon et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 10591-5; Kashani-Sabet et al., 1992 Antisense Res. Dev., 2, 3-15; Dropulic et al., 1992 J. Virol, 66, 1432-41; Weerasinghe et al., 1991 J. Virol, 65, 5531-4; Ojwang et al., 1992 Proc. Natl. Acad. Sci. USA 89, 10802-6; Chen et al., 1992 Nucleic Acids Res., 20, 4581-9; Sarver et al., 1990 Science 247, 1222-1225; Thompson et al., 1995 Nucleic Acids Res. 23, 2259; Good et al., 1997, Gene Therapy, 4, 45; all of the references are hereby incorporated in their totality by reference herein). Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of such nucleic acids can be augmented by their release from the primary transcript by an enzymatic nucleic acid (Draper et al., PCT WO 93/23569, and Sullivan et al., PCT WO 94/02595; Ohkawa et al., 1992 Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993 Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994 J. Biol. Chem. 269, 25856; all of the references are hereby incorporated in their totality by reference herein).


[0193] In another aspect of the invention, nucleic acid molecules that cleave target molecules are expressed from transcription units (see for example Couture et al., 1996, TIG., 12, 510) inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Nucleic acid molecule expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of nucleic acid molecules. Such vectors can be repeatedly administered as necessary. Once expressed, the nucleic acid molecules cleave the target mRNA. The active nucleic acid molecule can contain an enzymatic center or core equivalent to those in the examples, and binding arms able to bind target nucleic acid molecules such that cleavage at the target site occurs. Other sequences can be present which do not interfere with such cleavage. Delivery of enzymatic nucleic acid molecule expressing vectors could be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review see Couture et al., 1996, TIG., 12, 510).


[0194] In one aspect the invention features an expression vector comprising nucleic acid sequence encoding at least one of the nucleic acid catalyst of the instant invention is disclosed. The nucleic acid sequence encoding the nucleic acid catalyst of the instant invention is operable linked in a manner that allows expression of that nucleic acid molecule.


[0195] In another aspect the invention features an expression vector comprising: a) a transcription initiation region (e.g., eukaryotic pol I, II or III initiation region); b) a transcription termination region (e.g., eukaryotic pol I, II or III termination region); c) a nucleic acid sequence encoding at least one of the nucleic acid catalyst of the instant invention; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. The vector can optionally include an open reading frame (ORF) for a protein operably linked on the 5′ side or the 3′-side of the sequence encoding the nucleic acid catalyst of the invention; and/or an intron (intervening sequences).


[0196] Transcription of the nucleic acid molecule sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters are expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type depends on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990, Proc. Natl. Acad. Sci. U S A, 87, 6743-7; GAO and Huang 1993, Nucleic Acids Res., 21, 2867-72; Lieber et al., 1993, Methods Enzymol., 217, 47-66; Shout et al., 1990, Mol. Cell. Biol., 10, 4529-37). All of these references are incorporated by reference herein. Several investigators have demonstrated that nucleic acid molecules, such as enzymatic nucleic acids expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992, Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992, Proc. Natl. Acad. Sci. U S A, 89, 10802-6; Chen et al., 1992, Nucleic Acids Res., 20, 4581-9; Yu et al., 1993, Proc. Natl. Acad. Sci. USA, 90, 6340-4; L'Huillier et al., 1992, EMBO J, 11, 4411-8; Lisziewicz et al., 1993, Proc. Natl. Acad. Sci. U.S. A, 90, 8000-4; Thompson et al., 1995, Nucleic Acids Res., 23, 2259; Sullenger & Cech, 1993, Science, 262, 1566). More specifically, transcription units such as the ones derived from genes encoding U6 small nuclear (snRNA), transfer RNA (tRNA) and adenovirus VA RNA are useful in generating high concentrations of desired RNA molecules such as enzymatic nucleic acids in cells (Thompson et al., supra; Couture and Stinchcomb, 1996, supra; Noonberg et al., 1994, Nucleic Acid Res., 22, 2830; Noonberg et al., U.S. Pat. No. 5,624,803; Good et al., 1997, Gene Ther., 4, 45; Beigelman et al., International PCT Publication No. WO 96/18736; all of these publications are incorporated by reference herein. The above enzymatic nucleic acid molecule transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors) (for a review see Couture and Stinchcomb, 1996, supra).


[0197] In another aspect the invention features an expression vector comprising nucleic acid sequence encoding at least one of the nucleic acid molecules of the invention, in a manner which allows expression of that nucleic acid molecule. The expression vector comprises in one embodiment; a) a transcription initiation region; b) a transcription termination region; c) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In another preferred embodiment the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an open reading frame; d) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3′-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In yet another embodiment the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region, said intron and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In another embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) an open reading frame; e) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3′-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said intron, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.


[0198] Interferons


[0199] Type I interferons (IFN) are a class of natural cytokines that includes a family of greater than 25 IFN-α (Pesta, 1986, Methods Enzymol. 119, 3-14) as well as IFN-β, and IFN-ω. Although evolutionarily derived from the same gene (Diaz et al., 1994, Genomics 22, 540-552), there are many differences in the primary sequence of these molecules, implying an evolutionary divergence in biologic activity. All type I IFN share a common pattern of biologic effects that begin with binding of the IFN to the cell surface receptor (Pfeffer & Strulovici, 1992, Transmembrane secondary messengers for IFN-α/β. In: Interferon. Principles and Medical Applications., S. Baron, D. H. Coopenhaver, F. Dianzani, W. R. Fleischmann Jr., T. K. Hughes Jr., G. R. Kimpel, D. W. Niesel, G. J. Stanton, and S. K. Tyring, eds. 151-160). Binding is followed by activation of tyrosine kinases, including the Janus tyrosine kinases and the STAT proteins, which leads to the production of several IFN-stimulated gene products (Johnson et al., 1994, Sci. Am. 270, 68-75). The IFN-stimulated gene products are responsible for the pleotropic biologic effects of type I IFN, including antiviral, antiproliferative, and immunomodulatory effects, cytokine induction, and HLA class I and class II regulation (Pestka et al., 1987, Annu. Rev. Biochem 56, 727). Examples of IFN-stimulated gene products include 2-5-oligoadenylate synthetase (2-5 OAS), β2-microglobulin, neopterin, p68 kinases, and the Mx protein (Chebath & Revel, 1992, The 2-5 A system: 2-5 A synthetase, isospecies and functions. In: Interferon. Principles and Medical Applications. S. Baron, D. H. Coopenhaver, F. Dianzani, W. R. Jr. Fleischmann, T. K. Jr Hughes, G. R. Kimpel, D. W. Niesel, G. J. Stanton, and S. K. Tyring, eds., pp. 225-236; Samuel, 1992, The RNA-dependent P1/eIF-2α protein kinase. In: Interferon. Principles and Medical Applications. S. Baron, D. H. Coopenhaver, F. Dianzani, W. R. Fleischmann Jr., T. K. Hughes Jr., G. R. Kimpel, D. W. Niesel, G. H. Stanton, and S. K. Tyring, eds. 237-250; Horisberger, 1992, MX protein: function and Mechanism of Action. In: Interferon. Principles and Medical Applications. S. Baron, D. H. Coopenhaver, F. Dianzani, W. R. Fleischmann Jr., T. K. Hughes Jr., G. R. Kimpel, D. W. Niesel, G. H. Stanton, and S. K. Tyring, eds. 215-224). Although all type I IFN have similar biologic effects, not all the activities are shared by each type I IFN, and, in many cases, the extent of activity varies quite substantially for each IFN subtype (Fish et al, 1989, J. Interferon Res. 9, 97-114; Ozes et al., 1992, J. Interferon Res. 12, 55-59). More specifically, investigations into the properties of different subtypes of IFN-α and molecular hybrids of IFN-α have shown differences in pharmacologic properties (Rubinstein, 1987, J. Interferon Res. 7, 545-551). These pharmacologic differences can arise from as few as three amino acid residue changes (Lee et al., 1982, Cancer Res. 42, 1312-1316).


[0200] Eighty-five to 166 amino acids are conserved in the known IFN-α subtypes. Excluding the IFN-α pseudogenes, there are approximately 25 known distinct IFN-α subtypes. Pairwise comparisons of these nonallelic subtypes show primary sequence differences ranging from 2% to 23%. In addition to the naturally occurring IFNs, a non-natural recombinant type I interferon known as consensus interferon (CIFN) has been synthesized as a therapeutic compound (Tong et al., 1997, Hepatology 26, 747-754).


[0201] Interferon is currently in use for at least 12 different indications including infectious and autoimmune diseases and cancer (Borden, 1992, N. Engl. J. Med. 326, 1491-1492). For autoimmune diseases IFN has been utilized for treatment of rheumatoid arthritis, multiple sclerosis, and Crohn's disease. For treatment of cancer IFN has been used alone or in combination with a number of different compounds. Specific types of cancers for which IFN has been used include squamous cell carcinomas, melanomas, hypernephromas, hemangiomas, hairy cell leukemia, and Kaposi's sarcoma. In the treatment of infectious diseases, IFNs increase the phagocytic activity of macrophages and cytotoxicity of lymphocytes and inhibits the propagation of cellular pathogens. Specific indications for which IFN has been used as treatment include: hepatitis B, human papillomavirus types 6 and 11 (i.e. genital warts) (Leventhal et al., 1991, N Engl J Med 325, 613-617), chronic granulomatous disease, and hepatitis C virus.


[0202] Numerous well controlled clinical trials using IFN-alpha in the treatment of chronic HCV infection have demonstrated that treatment three times a week results in lowering of serum ALT values in approximately 50% (range 40% to 70%) of patients by the end of 6 months of therapy (Davis et al., 1989, The new England Journal of Medicine 321, 1501-1506; Marcellin et al., 1991, Hepatology 13, 393-397; Tong et al., 1997, Hepatology 26, 747-754; Tong et al., Hepatology 26, 1640-1645). However, following cessation of interferon treatment, approximately 50% of the responding patients relapsed, resulting in a “durable” response rate as assessed by normalization of serum ALT concentrations of approximately 20 to 25%. In addition, studies that have examined six months of type 1 interferon therapy using changes in HCV RNA values as a clinical endpoint have demonstrated that up to 35% of patients will have a loss of HCV RNA by the end of therapy (Tong et al., 1997, supra). However, as with the ALT endpoint, about 50% of the patients relapse six months following cessation of therapy resulting in a durable virologic response of only 12% (23). Studies that have examined 48 weeks of therapy have demonstrated that the sustained virological response is up to 25%.


[0203] Pegylated interferons, i.e. interferons conjugated with polyethylene glycol (PEG), have demonstrated improved characteristics over interferon. Advantages incurred by PEG conjugation can include an improved pharmacokinetic profile compared to interferons lacking PEG, thus imparting more convenient dosing regimes, improved tolerance, and improved antiviral efficacy. Such improvements have been demonstrated in clinical studies of both polyethylene glycol interferon alfa-2a (PEGASYS, Roche) and polyethylene glycol interferon alfa-2b (VIRAFERON PEG, PEG-INTRON, Enzon/Schering Plough).


[0204] Enzymatic nucleic acid molecules in combination with interferons and polyethylene glycol interferons have the potential to improve the effectiveness of treatment of HCV or any of the other indications discussed above. Enzymatic nucleic acid molecules targeting RNAs associated with diseases such as infectious diseases, autoimmune diseases, and cancer, can be used individually or in combination with other therapies such as interferons and polyethylene glycol interferons and to achieve enhanced efficacy.



EXAMPLES

[0205] The following are non-limiting examples showing the selection, isolation, synthesis and activity of enzymatic nucleic acids of the instant invention.


[0206] The following examples demonstrate the use of enzymatic nucleic acid molecules that cleave HCV RNA. The methods described herein represent a scheme by which nucleic acid molecules can be derived that cleave other RNA targets required for HCV replication.



Example 1


Identification of Potential Enzymatic Nucleic Acid Molecules Cleavage Sites in HCV RNA

[0207] The sequence of HCV RNA was screened for accessible sites using a computer folding algorithm. Regions of the mRNA that did not form secondary folding structures and contained potential enzymatic nucleic acid cleavage sites were identified. The sequences of these cleavage sites are shown in Tables III, IV, V and VIII.



Example 2


Selection of Enzymatic Nucleic Acid Molecules Cleavage Sites in HCV RNA

[0208] Enzymatic nucleic acid target sites were chosen by analyzing sequences of Human HCV (Genbank accession Nos: D11168, D50483.1, L38318 and S82227) and prioritizing the sites on the basis of folding. Enzymatic nucleic acid molecules are designed that could bind each target and are individually analyzed by computer folding (Christoffersen et al., 1994 J. Mol. Struc. Theochem, 311, 273; Jaeger et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the enzymatic nucleic acid molecules sequences fold into the appropriate secondary structure. Those enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the binding arms and the catalytic core can be eliminated from consideration. As noted below, varying binding arm lengths can be chosen to optimize activity. Generally, at least 4 bases on each arm are able to bind to, or otherwise interact with, the target RNA.



Example 3


Chemical Synthesis and Purification of Enzymatic Nucleic Acids

[0209] Enzymatic nucleic acid molecules are designed to anneal to various sites in the RNA message. The binding arms of the enzymatic nucleic acid molecules are complementary to the target site sequences described above. The enzymatic nucleic acid molecules can be chemically synthesized using, for example, RNA syntheses such as those described above and those described in Usman et al., (1987 J. Am. Chem. Soc., 109, 7845), Scaringe et al., (1990 Nucleic Acids Res., 18, 5433) and Wincott et al., supra. Such methods make use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. The average stepwise coupling yields are typically >98%. Enzymatic nucleic acid molecules can be modified to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-flouro, 2′-O-methyl, 2′-H (for a review see Usman and Cedergren, 1992 TIBS 17, 34).


[0210] Enzymatic nucleic acid molecules can also be synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). Enzymatic nucleic acid molecules can be purified by gel electrophoresis using known methods, or can be purified by high pressure liquid chromatography (HPLC; See Wincott et al., supra; the totality of which is hereby incorporated herein by reference), and are resuspended in water. The sequences of chemically synthesized enzymatic nucleic acid constructs are shown below in Tables V and VI. The antisense nucleic acid molecules shown in Table VII were chemically synthesized.


[0211] Inactive enzymatic nucleic acid molecules, for example inactive hammerhead enzymatic nucleic acids, can be synthesized by substituting the order of G5A6 and substituting a U for A14 (numbering from Hertel et al., 1992 Nucleic Acids Res., 20, 3252).



Example 4


Enzymatic Nucleic Acid Cleavage of HCV RNA Target in vitro

[0212] Enzymatic nucleic acid molecules targeted to the HCV are designed and synthesized as described above. These enzymatic nucleic acid molecules can be tested for cleavage activity in vitro, for example, using the following procedure. The target sequences and the nucleotide location within the HCV are given in Tables V and VIII.


[0213] Cleavage Reactions:


[0214] Full-length or partially full-length, internally-labeled target RNA for enzymatic nucleic acid molecule cleavage assay is prepared by in vitro transcription in the presence of [α-32p] CTP, passed over a G 50 Sephadex column by spin chromatography and used as substrate RNA without further purification. Alternately, substrates are 5′-32P-end labeled using T4 polynucleotide kinase enzyme. Assays are performed by pre-wanning a 2× concentration of purified enzymatic nucleic acid molecule in enzymatic nucleic acid molecule cleavage buffer (50 mM Tris-HCl, pH 7.5 at 37° C., 10 mM MgCl2) and the cleavage reaction was initiated by adding the 2× enzymatic nucleic acid molecule mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer. As an initial screen, assays are carried out for 1 hour at 37° C. using a final concentration of either 40 nM or 1 mM enzymatic nucleic acid molecule, i.e., enzymatic nucleic acid molecule excess. The reaction is quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample is heated to 95° C. for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel. Substrate RNA and the specific RNA cleavage products generated by enzymatic nucleic acid molecule cleavage are visualized on an autoradiograph of the gel. The percentage of cleavage is determined by Phosphor Imager® quantitation of bands representing the intact substrate and the cleavage products.


[0215] Alternatively, enzymatic nucleic acid molecules and substrates were synthesized in 96-well format using 0.2 μmol scale. Substrates were 5′-32p labeled and gel purified using 7.5% polyacrylamide gels, and eluting into water. Assays were done by combining trace substrate with 500 nM enzymatic nucleic acid or greater, and initiated by adding final concentrations of 40 mM Mg+2, and 50 mM Tris-Cl pH 8.0. For each enzymatic nucleic acid/substrate combination a control reaction was done to ensure cleavage was not the result of non-specific substrate degradation. A single three hour time point was taken and run on a 15% polyacrylamide gel to asses cleavage activity. Gels were dried and scanned using a Molecular Dynamics Phosphorimager and quantified using Molecular Dynamics ImageQuant software. Percent cleaved was determined by dividing values for cleaved substrate bands by full-length (uncleaved) values plus cleaved values and multiplying by 100 (%cleaved=[C/(U+C)]*100). In vitro cleavage data of enzymatic nucleic acid molecules targeting plus and minus strand HCV RNA is shown in Table VIII.



Example 5


Inhibition of Luciferase Activity Using HCV Targeting Enzymatic Nucleic Acids in OST7 Cells

[0216] The capability of enzymatic nucleic acids to inhibit HCV RNA intracellularly was tested using a dual reporter system that utilizes both firefly and Renilla luciferase (FIG. 6). The enzymatic nucleic acids targeted to the 5′ HCV UTR region, which when cleaved, prevents the translation of the transcript into luciferase.


[0217] Synthesis of Stabilized Enzymatic Nucleic Acids


[0218] Enzymatic nucleic acids were designed to target 15 sites within the 5′UTR of the HCV RNA (FIG. 7) and synthesized as previously described, except that all enzymatic nucleic acids contain two 2′-amino uridines. Enzymatic nucleic acid and paired control sequences for targeted sites used in various examples herein are shown in Table VI.


[0219] Reporter Plasmids


[0220] The T7/HCV/firefly luciferase plasmid (HCVT7C1-341, genotype 1a) was graciously provided by Aleem Siddiqui (University of Colorado Health Sciences Center, Denver, Colo.). The T7/HCV/firefly luciferase plasmid contains a T7 bacteriophage promoter upstream of the HCV 5′UTR (nucleotides 1-341)/firefly luciferase fusion DNA. The Renilla luciferase control plasmid (pRLSV40) was purchased from PROMEGA.


[0221] Luciferase Assay


[0222] Dual luciferase assays were carried out according to the manufacturer's instructions (PROMEGA) at 4 hours after co-transfection of reporter plasmids and enzymatic nucleic acids. All data is shown as the average ratio of HCV/firefly luciferase luminescence over Renilla luciferase luminescence as determined by triplicate samples ±SD.


[0223] Cell Culture and Transfections


[0224] OST7 cells were maintained in Dulbecco's modified Eagle's medium (GIBCO BRL) supplemented with 10% fetal calf serum, L-glutamine (2 mM) and penicillin/streptomycin. For transfections, OST7 cells were seeded in black-walled 96-well plates (Packard) at a density of 12,500 cells/well and incubated at 37° C. under 5% CO2 for 24 hours. Co-transfection of target reporter HCVT7C (0.8 μg/mL), control reporter pRLSV40, (1.2μg/mL) and enzymatic nucleic acid, (50-200 nM) was achieved by the following method: a 5× mixture of HCVT7C (4 μg/mL), pRLSV40 (6 μg/mL) enzymatic nucleic acid (250-1000 nM) and cationic lipid (28.5 μg/mL) was made in 150 μL of OPTI-MEM (GIBCO BRL) minus serum. Reporter/enzymatic nucleic acid/lipid complexes were allowed to form for 20 min at 37° C. under 5% CO2. Medium was aspirated from OST7 cells and replaced with 120 μL of OPTI-MEM (GIBCO BRL) minus serum, immediately followed by the addition of 30 μL of 5× reporter/enzymatic nucleic acid/lipid complexes. Cells were incubated with complexes for 4 hours at 37° C. under 5% CO2.


[0225] IC50 Determinations for Dose Response Curves


[0226] Apparent IC50 values were calculated by linear interpolation. The apparent IC50 is {fraction (1/2)} the maximal response between the two consecutive points in which approximately 50% inhibition of HCV/luciferase expression is observed on the dose curve.


[0227] Quantitation of RNA Samples


[0228] Total RNA from transfected cells was purified using the Qiagen RNeasy 96 procedure including a DNase I treatment according to the manufacturer's instructions. Real time RT-PCR (Taqman assay) was performed on purified RNA samples using separate primer/probe sets specific for either firefly or Renilla luciferase RNA. Firefly luciferase primers and probe were upper (5′-CGGTCGGTAAAGTTGTTCCATT-3′) (SEQ ID NO. 9690), lower (5′-CCTCTGACACATAATTCGCCTCT-3′) (SEQ ID NO. 9691), and probe (5′-FAM-TGAAGCGAAGGTTGTGGATCTGGATACC-TAMRA-3′) (SEQ ID NO 9692), and Renilla luciferase primers and probe were upper (5′-GTTTATTGAATCGGACCCAGGAT-3′) (SEQ ID NO. 9693), lower (5′-AGGTGCATCTTCTTGCGAAAA-3′) (SEQ ID NO. 9694), and probe (5′-FAM-CTTTTCCAATGCTATTGTTGAAGGTGCCAA-3′) (SEQ ID NO. 9694)-TAMRA, both sets of primers and probes were purchased from Integrated DNA Technologies. RNA levels were determined from a standard curve of amplified RNA purified from a large-scale transfection. RT minus controls established that RNA signals were generated from RNA and not residual plasmid DNA. RT-PCR conditions were: 30 min at 48° C., 10 min at 95° C., followed by 40 cycles of 15 sec at 95° C. and 1 min at 60° C. Reactions were performed on an ABI Prism 7700 sequence detector. Levels of firefly luciferase RNA were normalized to the level of Renilla luciferase RNA present in the same sample. Results are shown as the average of triplicate treatments ±SD.



Example 6


Inhibition of HCV 5′UTR-luciferase Expression by Synthetic Stabilized Enzymatic Nucleic Acids

[0229] The primary sequence of the HCV 5′UTR and characteristic secondary structure (FIG. 7) is highly conserved across all HCV genotypes, thus making it a very attractive target for enzymatic nucleic acid-mediated cleavage. Enzymatic hammerhead nucleic acids, as a generally shown in FIG. 8 and Table VI (RPI 12249-12254, 12257-12265) were designed and synthesized to target 15 of the most highly conserved sites in the 5′UTR of HCV RNA. These synthetic enzymatic nucleic acids were stabilized against nuclease degradation by the addition of modifications such as 2′-O-methyl nucleotides, 2′-amino-uridines at U4 and U7 core positions, phosphorothioate linkages, and a 3′-inverted abasic cap.


[0230] In order to mimic cytoplasmic transcription of the HCV genome, OST7 cells were transfected with a target reporter plasmid containing a T7 bacteriophage promoter upstream of a HCV 5′UTR/firefly luciferase fusion gene. Cytoplasmic expression of the target reporter is facilitated by high levels of T7 polymerase expressed in the cytoplasm of OST7 cells. Co-transfection of target reporter HCVT7C1-341 (firefly luciferase), control reporter pRLSV40 (Renilla luciferase) and enzymatic nucleic acid was carried out in the presence of cationic lipid. To determine the background level of luciferase activity, applicant used a control enzymatic nucleic acid that targets an irrelevant, non-HCV sequence. Transfection of reporter plasmids in the presence of this irrelevant control enzymatic nucleic acid (ICR) resulted in a slight decrease of reporter expression when compared to transfection of reporter plasmids alone. Therefore, the ICR was used to control for non-specific effects on reporter expression during treatment with HCV specific enzymatic nucleic acids. Renilla luciferase expression from the pRLSV40 reporter was used to normalize for transfection efficiency and sample recovery.


[0231] Of the 15 amino-modified hammerhead enzymatic nucleic acids tested, 12 significantly inhibited HCV/luciferase expression (>45%, P<0.05) as compared to the ICR (FIG. 9A). These data suggest that most of the HCV 5′UTR sites targeted here are accessible to enzymatic nucleic acid binding and subsequent RNA cleavage. To investigate further the enzymatic nucleic acid-dependent inhibition of HCV/luciferase activity, hammerhead enzymatic nucleic acids designed to cleave after sites 79, 81, 142, 192, 195, 282 or 330 of the HCV 5′UTR were selected for continued study because their anti-HCV activity was the most efficacious over several experiments. A corresponding attenuated core (AC) control was synthesized for each of the 7 active enzymatic nucleic acids (Table VI). Each paired AC control contains similar nucleotide composition to that of its corresponding active enzymatic nucleic acid however, due to scrambled binding arms and changes to the catalytic core, lacks the ability to bind or catalyze the cleavage of HCV RNA. Treatment of OST7 cells with enzymatic nucleic acids designed to cleave after sites 79, 81, 142, 195 or 330 resulted in significant inhibition of HCV/luciferase expression (65%, 50%, 50%, 80% and 80%, respectively) when compared to HCV/luciferase expression in cells treated with corresponding ACs, P<0.05 (FIG. 9B). It should be noted that treatment with either the ICR or ACs for sites 79, 81, 142 or 192 caused a greater reduction of HCV/luciferase expression than treatment with ACs for sites 195, 282 or 330. The observed differences in HCV/luciferase expression after treatment with ACs most likely represents the range of activity due to non-specific effects of oligonucleotide treatment and/or differences in base composition. Regardless of differences in HCV/luciferase expression levels observed as a result of treatment with ACs, active enzymatic nucleic acids designed to cleave after sites 79, 81, 142, 195, or 330 demonstrated similar and potent anti-HCV activity (FIG. 9B).



Example 7


Synthetic Stabilized Enzymatic Nucleic Acids Inhibit HCV/Luciferase Expression in a Concentration-Dependent Manner

[0232] In order to characterize enzymatic nucleic acid efficacy in greater detail, these same 5 lead hammerhead enzymatic nucleic acids were tested for their ability to inhibit HCV/luciferase expression over a range of enzymatic nucleic acid concentrations (0 nM-100 nM). For constant transfection conditions, the total concentration of nucleic acid was maintained at 100 nM for all samples by mixing the active enzymatic nucleic acid with its corresponding AC. Moreover, mixing of active enzymatic nucleic acid and AC maintains the lipid to nucleic acid charge ratio. A concentration-dependent inhibition of HCV/luciferase expression was observed after treatment with each of the 5 enzymatic nucleic acids (FIGS. 10A-E). By linear interpolation, the enzymatic nucleic acid concentration resulting in 50% inhibition (apparent IC50) of HCV/luciferase expression ranged from 40-215 nM. The two most efficacious enzymatic nucleic acids were those designed to cleave after sites 195 or 330 with apparent IC50 values of 46 nM and 40 nM, respectively (FIGS. 10D and E).



Example 8


An Enzymatic Nucleic Acid Mechanism is Required for the Observed Inhibition of HCV/Luciferase Expression

[0233] To confirm that an enzymatic nucleic acid mechanism of action was responsible for the observed inhibition of HCV/luciferase expression, paired binding-arm attenuated core (BAC) controls (RPI 15291 and 15294) were synthesized for direct comparison to enzymatic nucleic acids targeting sites 195 (RPI 12252) and 330 (RPI 12254). Paired BACs can specifically bind HCV RNA but are unable to promote RNA cleavage because of changes in the catalytic core and, thus, can be used to assess inhibition due to binding alone. Also included in this comparison were paired SAC controls (RPI 15292 and 15295) that contain scrambled binding arms and attenuated catalytic cores, and so lack the ability to bind the target RNA or to catalyze target RNA cleavage.


[0234] Enzymatic nucleic acid cleavage of target RNA should result in both a lower level of HCV/luciferase RNA and a subsequent decrease in HCV/luciferase expression. In order to analyze target RNA levels, a reverse transcriptase/polymerase chain reaction (RT-PCR) assay was employed to quantify HCV/luciferase RNA levels. Primers were designed to amplify the luciferase coding region of the HCV 5′UTR/luciferase RNA. This region was chosen because HCV-targeted enzymatic nucleic acids that might co-purify with cellular RNA would not interfere with RT-PCR amplification of the luciferase RNA region. Primers were also designed to amplify the Renilla luciferase RNA so that Renilla RNA levels could be used to control for transfection efficiency and sample recovery.


[0235] OST7 cells were treated with active enzymatic nucleic acids designed to cleave after sites 195 or 330, paired SACs, or paired BACs. Treatment with enzymatic nucleic acids targeting site 195 or 330 resulted in a significant reduction of HCV/luciferase RNA when compared to their paired SAC controls (P<0.01). In this experiment the site 195 enzymatic nucleic acid was more efficacious than the site 330 enzymatic nucleic acid (FIG. 11A). Treatment with paired BACs that target site 195 or 330 did not reduce HCV/luciferase RNA when compared to the corresponding SACs, thus confirming that the ability to bind alone does not result in a reduction of HCV/luciferase RNA.


[0236] To confirm that enzymatic nucleic acid-mediated cleavage of target RNA is necessary for inhibition of HCV/luciferase expression, HCV/luciferase activity was determined in the same experiment. As expected, significant inhibition of HCV/luciferase expression was observed after treatment with active enzymatic nucleic acids when compared to paired SACs (FIG. 11B). Importantly, treatment with paired BACs did not inhibit HCV/luciferase expression, thus confirming that the ability to bind alone is also not sufficient to inhibit translation. As observed in the RNA assay, the site 195 enzymatic nucleic acid was more efficacious than the site 330 enzymatic nucleic acid in this experiment. However, a correlation between enzymatic nucleic acid-mediated HCV RNA reduction and inhibition of HCV/luciferase translation was observed for enzymatic nucleic acids to both sites. The reduction in target RNA and the necessity for an active enzymatic nucleic acid catalytic core confirm that a enzymatic nucleic acid mechanism is required for the observed reduction in HCV/luciferase protein activity in cells treated with site 195 or site 330 enzymatic nucleic acids.



Example 9


Zinzyme Inhibition of Chimeric HCV/Poliovirus Replication

[0237] During HCV infection, viral RNA is present as a potential target for enzymatic nucleic acid cleavage at several processes: un-coating, translation, RNA replication and packaging. Target RNA can be more or less accessible to enzymatic nucleic acid cleavage at any one of these steps. Although the association between the HCV initial ribosome entry site (IRES) and the translation apparatus is mimicked in the HCV 5′UTR/luciferase reporter system, these other viral processes are not represented in the OST7 system. The resulting RNA/protein complexes associated with the target viral RNA are also absent. Moreover, these processes can be coupled in an HCV-infected cell which could further impact target RNA accessibility. Therefore, applicant tested whether enzymatic nucleic acids designed to cleave the HCV 5′UTR could effect a replicating viral system.


[0238] Recently, Lu and Wimmer characterized a HCV-poliovirus chimera in which the poliovirus IRES was replaced by the IRES from HCV (Lu & Wimmer, 1996, Proc. Natl. Acad. Sci. USA. 93, 1412-1417). Poliovirus (PV) is a positive strand RNA virus like HCV, but unlike HCV is non-enveloped and replicates efficiently in cell culture. The HCV-PV chimera expresses a stable, small plaque phenotype relative to wild type PV.


[0239] The following enzymatic nucleic acid molecules (zinzymes) were synthesized and tested for replicative inhibition of an HCV/Poliovirus chimera: RPI 18763, RPI 18812, RPI 18749, RPI 18765, RPI 18792, and RPI 18814 (Table V). A scrambled attenuated core enzymatic nucleic acid, RPI 18743, was used as a control.


[0240] HeLa cells were infected with the HCV-PV chimera for 30 minutes and immediately treated with enzymatic nucleic acid. HeLa cells were seeded in U-bottom 96-well plates at a density of 9000-10,000 cells/well and incubated at 37° C. under 5% CO2 for 24 h. Transfection of nucleic acid (200 nM) was achieved by mixing of 10× nucleic acid (2000 nM) and 10× of a cationic lipid (80 μg/ml) in DMEM (Gibco BRL) with 5% fetal bovine serum (FBS). Nucleic acid/lipid complexes were allowed to incubate for 15 minutes at 37° C. under 5% CO2. Medium was aspirated from cells and replaced with 80 μl of DMEM (Gibco BRL) with 5% FBS serum, followed by the addition of 20 μls of 10× complexes. Cells were incubated with complexes for 24 hours at 37° C. under 5% CO2.


[0241] The yield of HCV-PV from treated cells was quantified by plaque assay. The plaque assays were performed by diluting virus samples in serum-free DMEM (Gibco BRL) and applying 100 μl to HeLa cell monolayers (˜80% confluent) in 6-well plates for 30 minutes. Infected monolayers were overlayed with 3 ml 1.2% agar (Sigma) and incubated at 37° C. under 5% CO2. Two or three days later the overlay was removed, monolayers were stained with 1.2% crystal violet, and plaque forming units were counted. The results for the zinzyme inhibition of HCV-PV replication are shown in FIG. 16.



Example 10


Antisense Inhibition of Chimeric HCV/Poliovirus Replication

[0242] Antisense nucleic acid molecules (RPI 17501 and RPI 17498, Table VII) were tested for replicative inhibition of an HCV/Poliovirus chimera compared to scrambled controls. An antisense nucleic acid molecule is a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 Nature 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 Science 261, 1004 and Woolf et al., U.S. Pat. No. 5,849,902). Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both. For a review of current antisense strategies, see Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense N. A. Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad. Pharmacol., 40, 1-49. In addition, antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. The antisense oligonucleotides can comprise one or more RNAse H activating region, which is capable of activating RNAse H cleavage of a target RNA. Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof. Additionally, antisense molecules can be used in combination with the enzymatic nucleic acid molecules of the instant invention.


[0243] A “RNase H activating region” is a region (generally greater than or equal to 4-25 nucleotides in length, preferably from 5-11 nucleotides in length) of a nucleic acid molecule capable of binding to a target RNA to form a non-covalent complex that is recognized by cellular RNase H enzyme (see for example Arrow et al., U.S. Pat. No. 5,849,902; Arrow et al., U.S. Pat. No. 5,989,912). The RNase H enzyme binds to the nucleic acid molecule-target RNA complex and cleaves the target RNA sequence. The RNase H activating region comprises, for example, phosphodiester, phosphorothioate (preferably at least four of the nucleotides are phosphorothiote substitutions; more specifically, 4-11 of the nucleotides are phosphorothiote substitutions); phosphorodithioate, 5′-thiophosphate, or methylphosphonate backbone chemistry or a combination thereof. In addition to one or more backbone chemistries described above, the RNase H activating region can also comprise a variety of sugar chemistries. For example, the RNase H activating region can comprise deoxyribose, arabino, fluoroarabino or a combination thereof, nucleotide sugar chemistry. Those skilled in the art will recognize that the foregoing are non-limiting examples and that any combination of phosphate, sugar and base chemistry of a nucleic acid that supports the activity of RNase H enzyme is within the scope of the definition of the RNase H activating region and the instant invention.


[0244] HeLa cells were infected with the HCV-PV chimera for 30 minutes and immediately treated with antisense nucleic acid. HeLa cells were seeded in U-bottom 96-well plates at a density of 9000-10,000 cells/well and incubated at 37° C. under 5% CO2 for 24 h. Transfection of nucleic acid (200 nM) was achieved by mixing of 10× nucleic acid (2000 nM) and 10× of a cationic lipid (80 μg/ml) in DMEM (Gibco BRL) with 5% fetal bovine serum (FBS). Nucleic acid/lipid complexes were allowed to incubate for 15 minutes at 37° C. under 5% CO2. Medium was aspirated from cells and replaced with 80 μl of DMEM (Gibco BRL) with 5% FBS serum, followed by the addition of 20 μls of 10× complexes. Cells were incubated with complexes for 24 hours at 37° C. under 5% CO2.


[0245] The yield of HCV-PV from treated cells was quantified by plaque assay. The plaque assays were performed by diluting virus samples in serum-free DMEM (Gibco BRL) and applying 100 μl to HeLa cell monolayers (˜80% confluent) in 6-well plates for 30 minutes. Infected monolayers were overlayed with 3 ml 1.2% agar (Sigma) and incubated at 37° C. under 5% CO2. Two or three days later the overlay was removed, monolayers were stained with 1.2% crystal violet, and plaque forming units were counted. The results for the antisense inhibition of HCV-PV are shown in FIG. 17.



Example 11


Nucleic Acid Inhibition of Chimeric HCV/PV in Combination with Interferon

[0246] One of the limiting factors in interferon (IFN) therapy for chronic HCV are the toxic side effects associated with IFN. Applicant has reasoned that lowering the dose of IFN needed can reduce these side effects. Applicant has previously shown that enzymatic nucleic acid molecules targeting HCV RNA have a potent antiviral effect against replication of an HCV-poliovirus (PV) chimera (Macejak et al., 2000, Hepatology, 31, 769-776). In order to determine if the antiviral effect of type 1 IFN could be improved by the addition of anti-HCV enzymatic nucleic acid treatment, a dose response (0 U/ml to 100 U/ml) with IFN alfa 2a or IFN alfa 2b was performed in HeLa cells in combination with 200 nM site 195 anti-HCV enzymatic nucleic acid (RPI 13919) or enzymatic nucleic acid control (SAC) treatment. The SAC control (RPI 17894) is a scrambled binding arm, attenuated core version of the site 195 enzymatic nucleic acid (RPI 13919). IFN dose responses were performed with different pretreatment regimes to find the dynamic range of inhibition in this system. In these studies, HeLa cells were used instead of HepG2 because of more efficient enzymatic nucleic acid delivery (Macejak et al., 2000, Hepatology, 31, 769-776).


[0247] Cells and Virus


[0248] HeLa cells were maintained in DMEM (BioWhittaker, Walkersville, Md.) supplemented with 5% fetal bovine serum. A cloned DNA copy of the HCV-PV chimeric virus was a gift of Dr. Eckard Wimmer (NYU, Stony Brook, N.Y.). An RNA version was generated by in vitro transcription and transfected into HeLa cells to produce infectious virus (Lu and Wimmer, 1996, PNAS USA., 93, 1412-1417).


[0249] Enzymatic Nucleic Acid Synthesis


[0250] Nuclease resistant enzymatic nucleic acids and control oligonucleotides containing 2′-O-methyl-nucleotides, 2′-deoxy-2′-C-allyl uridine, a 3′-inverted abasic cap, and phosphorothioate linkages were chemically synthesized. The anti-HCV enzymatic nucleic acid (RPI 13919) targeting cleavage after nucleotide 195 of the 5′ UTR of HCV is shown in Table V. Attenuated core controls have nucleotide changes in the core sequence that greatly diminished the enzymatic nucleic acid's cleavage activity. The attenuated controls either contain scrambled binding arms (referred to as SAC, RPI 18743) or maintain binding arms (BAC, RPI 17894) capable of binding to the HCV RNA target.


[0251] Enzymatic Nucleic Acid Delivery


[0252] A cationic lipid was used as a cytofectin agent. HeLa cells were seeded in 96-well plates at a density of 9000-10,000 cells/well and incubated at 37° C. under 5% CO2 for 24 h. Transfection of enzymatic nucleic acid or control oligonucleotides (200 nM) was achieved by mixing 10× enzymatic nucleic acid or control oligonucleotides (2000 nM) with 10× RPI.9778 (80 μg/ml) in DMEM containing 5% fetal bovine serum (FBS) in U-bottom 96-well plates to make 5× complexes. Enzymatic nucleic acid/lipid complexes were allowed to incubate for 15 min at 37° C. under 5% CO2. Medium was aspirated from cells and replaced with 80 μl of DMEM (Gibco BRL) containing 5% FBS serum, followed by the addition of 20 μl of 5× complexes. Cells were incubated with complexes for 24 h at 37° C. under 5% CO2.


[0253] Interferon/Enzymatic Nucleic Acid Combination Treatment


[0254] Interferon alfa 2a (Roferon®) was purchased from Roche Bioscience (Palo Alto, Calif.). Interferon alfa 2b (Intron A®) was purchased from Schering-Plough Corporation (Madison, N.J.). Consensus interferon (interferon-alfa-con 1) was a generous gift of Amgen, Inc. (Thousand Oaks, Calif.). For the basis of comparison, the manufacturers' specified units were used in the studies reported here; however, the manufacturers' unit definitions of these three IFN preparations are not necessarily the same. Nevertheless, since clinical dosing is based on the manufacturers' specified units, a direct comparison based on these units has relevance to clinical therapeutic indices. HeLa cells were seeded (10,000 cells per well) and incubated at 37° C. under 5% CO2 for 24 h. Cells were then pre-treated with interferon in complete media (DMEM+5% FBS) for 4 h and then infected with HCV-PV at a multiplicity of infection (MOI)=0.1 for 30 min. The viral inoculum was then removed and enzymatic nucleic acid or attenuated control (SAC or BAC) was delivered with the cytofectin formulation (8 μg/ml) in complete media for 24 h as described above. Where indicated for enzymatic nucleic acid dose response studies, active enzymatic nucleic acid was mixed with SAC to maintain a 200 nM total oligonucleotide concentration and the same lipid charge ratio. After 24 h, cells were lysed to release virus by three cycles of freeze/thaw. Virus was quantified by plaque assay and viral yield is reported as mean plaque forming units per ml (pfu/ml)+SD. All experiments were repeated at least twice and the trends in the results reported were reproducible. Significance levels (P values) were determined by the Student's test.


[0255] Plaque Assay


[0256] Virus samples were diluted in serum-free DMEM and 100 μl applied to Vero cell monolayers (˜80% confluent) in 6-well plates for 30 min. Infected monolayers were overlaid with 3 ml 1.2% agar (Sigma Chemical Company, St. Louis, Mo.) and incubated at 37° C. under 5% CO2. When plaques were visible (after two to three days) the overlay was removed, monolayers were stained with 1.2% crystal violet, and plaque forming units were counted.


[0257] Results


[0258] As shown in FIGS. 12A and 12B, treatment with the site 195 (RPI 13919) anti-HCV hammerhead enzymatic nucleic acid alone (0 U/ml IFN) resulted in viral replication that was dramatically reduced compared to SAC-treated cells (85%, P<0.01). For both IFN alfa 2a (FIG. 12A) or IFN alfa 2b (FIG. 12B), treatment with 25 U/ml resulted in a ˜90% inhibition of HCV-PV replication in SAC-treated cells as compared to cells treated with SAC alone (p<0.0l for both observations). The maximal level of inhibition in SAC-treated cells (94%) was achieved by treatment with ≧50U/ml of either IFN alfa 2a or IFN alfa 2b (p<0.01 for both observations versus SAC alone). Maximal inhibition could however, be achieved by a 5-fold lower dose of IFN alfa 2a (10 U/ml) if enzymatic nucleic acid targeting site 195 in the 5′ UTR of HCV RNA was given in combination (FIG. 12A, p<0.01). While the additional effect of enzymatic nucleic acid treatment on IFN alfa 2b-treated cells at 10 U/ml was very slight, the combined effect with 25 U/ml IFN alfa 2b was greater in magnitude (FIG. 12B). For both interferons tested, pretreatment with 25 U/ml in combination with 200 nM site 195 anti-HCV enzymatic nucleic acid resulted in an even greater level of inhibition of viral replication (>98%) compared to replication in cells treated with 200 nM SAC alone (P<0.01).


[0259] A dose response of the site 195 anti-HCV enzymatic nucleic acid was also performed in HeLa cells, either with or without 12.5 U/ml IFN alfa 2a or IFN alfa 2b pretreatment. As shown in FIG. 13, enzymatic nucleic acid-mediated inhibition was dose-dependent and a significant inhibition of HCV-PV replication (>75% versus 0 nM enzymatic nucleic acid, P<0.01) could be achieved by treatment with ≧150 nM anti-HCV enzymatic nucleic acid alone (no IFN). However, in IFN-pretreated cells, the dose of anti-HCV enzymatic nucleic acid needed to achieve this level of inhibition was decreased 3-fold to 50 nM (P<0.01 versus 0 nM enzymatic nucleic acid). In comparison, treatment with the site 195 anti-HCV enzymatic nucleic acid alone at 50 nM resulted in only ˜40% inhibition of virus replication. Pretreatment with IFN enhanced the antiviral effect of site 195 enzymatic nucleic acid at all enzymatic nucleic acid doses, compared to no IFN pretreatment.


[0260] Interferon-alfacon1, consensus IFN (CIFN), is another type 1 IFN that is used to treat chronic HCV. To determine if a similar enhancement can occur in CIFN-treated cells, a dose response with CIFN was performed in HeLa cells using 0 U/ml to 12.5 U/ml CIFN in combination with 200 nM site 195 anti-HCV enzymatic nucleic acid or SAC treatment (FIG. 14A). Again, in the presence of the site 195 anti-HCV enzymatic nucleic acid alone, viral replication was dramatically reduced compared to SAC-treated cells. As shown in FIG. 14A, treatment with 200 nM anti-HCV enzymatic nucleic acid alone significantly inhibited HCV-PV replication (90% versus SAC treatment, P<0.01). However, pretreatment with concentrations of CIFN from 1 U/ml to 12.5 U/ml in combination with 200 nM anti-HCV enzymatic nucleic acid resulted in even greater inhibition of viral replication (>98%) compared to replication in cells treated with 200 nM SAC alone (P<0.01). It is important to note that pretreatment with 1 U/ml CIFN in SAC-treated cells did not have a significant effect on HCV-poliovirus replication, but in the presence of enzymatic nucleic acid a significant inhibition of replication was observed (>98%, P<0.01). Thus, the dose of CIFN needed to achieve a >98% inhibition could be lowered to 1 U/ml in cells also treated with 200 nM site 195 anti-HCV enzymatic nucleic acid.


[0261] A dose response of site 195 anti-HCV enzymatic nucleic acid was then performed in HeLa cells, either with or without 12.5 U/ml CIFN pretreatment. As shown in FIG. 14B, a significant inhibition of HCV-PV replication (>95% versus 0 nM enzymatic nucleic acid, P<0.01) could be achieved by treatment with ≧150 nM anti-HCV enzymatic nucleic acid alone. However, in CIFN-pretreated cells, the dose of anti-HCV enzymatic nucleic acid needed to achieve this level of inhibition was only 50 nM (P<0.01). In comparison, treatment with the site 195 anti-HCV enzymatic nucleic acid alone at 50 nM resulted in ˜50% inhibition of virus replication. Thus, as was seen with IFN alfa 2a and IFN alfa 2b, the dose of enzymatic nucleic acid could be reduced 3-fold in the presence of CIFN pretreatment to achieve a similar antiviral effect as enzymatic nucleic acid-treatment alone.


[0262] To further explore the combination of lower enzymatic nucleic acid concentration and CIFN, a dose response with 0 U/ml to 12.5 U/ml CIFN was subsequently performed in HeLa cells in combination with 50 nM site 195 anti-HCV enzymatic nucleic acid treatment. In multiple experiments, treatment with 50 nM anti-HCV enzymatic nucleic acid alone inhibited HCV-PV replication 50%-81% compared to viral replication in SAC-treated cells. As for the experiment shown in FIG. 14A, treatment with CIFN alone at 5 U/ml resulted in ˜50% inhibition of viral replication. However, a four hour pretreatment with 5 U/ml CIFN followed by 50 nM anti-HCV enzymatic nucleic acid treatment resulted in 95%-97% inhibition compared to SAC-treated cells (P<0.01).


[0263] To demonstrate that the enhanced antiviral effect of CIFN and enzymatic nucleic acid combination treatment was dependent upon enzymatic nucleic acid cleavage activity, the effect of CIFN in combination with site 195 anti-HCV enzymatic nucleic acid versus the effect of CIFN in combination with a binding competent, attenuated core, control (BAC) was then compared. The BAC can still bind to its specific RNA target, but is greatly diminished in cleavage activity. Pretreatment with 12.5 U/ml CIFN reduced the viral yield ˜90% (7-fold) in cells treated with BAC (compare CIFN versus BAC in FIG. 15). Cells treated with 200 nM site 195 anti-HCV enzymatic nucleic acid alone produced 95% (17-fold) less virus than BAC-treated cells (195 RZ BAC in FIG. 15). The combination of CIFN pretreatment and 200 nM site 195 anti-HCV enzymatic nucleic acid results in an augmented >98% (300-fold) reduction in viral yield (CIFN+RZ versus control in FIG. 15).


[0264] 2′-5′-Oligoadenylate Inhibition of HCV


[0265] Type 1 Interferon is a key constituent of many effective treatment programs for chronic HCV infection. Treatment with type 1 interferon induces a number of genes and results in an antiviral state within the cell. One of the genes induced is 2′, 5′ oligoadenylate synthetase, an enzyme that synthesizes short 2′, 5′ oligoadenylate (2-5A) molecules. Nascent 2-5A subsequently activates a latent RNase, RNase L, which in turn nonspecifically degrades viral RNA. As described herein, ribozymes targeting HCV RNA that inhibit the replication of an HCV-poliovirus (HCV-PV) chimera in cell culture and have shown that this antiviral effect is augmented if ribozyme is given in combination with type 1 interferon. In addtion, the 2-5A component of the interferon response can also inhibit replication of the HCV-PV chimera.


[0266] The antiviral effect of anti-HCV ribozyme treatment is enhanced if type 1 interferon is given in combination. Interferon induces a number of gene products including 2′,5′ oligoadenylate (2-5A) synthetase, double-stranded RNA-activated protein kinase (PKR), and the Mx proteins. Mx proteins appear to interfere with nuclear transport of viral complexes and are not thought to play an inhibitory role in HCV infection. On the other hand, the additional 2-5A-mediated RNA degradation (via RNase L) and/or the inhibition of viral translation by PKR in interferon-treated cells can augment the ribozyme-mediated inhibition of HCV-PV replication.


[0267] To investigate the potential role of the 2-5A/RNase L pathway in this enhancement phenomenon, HCV-PV replication was analyzed in HeLa cells treated exogenously with chemically-synthesized analogs of 2-5A (FIG. 18), alone and in combination with the anti-HCV ribozyme (RPI 13919). These results were compared to replication in cells treated with interferon and/or anti-HCV ribozyme. Anti-HCV ribozyme was transfected into cells with a cationic lipid. To control for nonspecific effects due to lipid-mediated transfection, a scrambled arm, attenuated core, oligonucleotide (SAC) (RPI 17894) was transfected for comparison. The SAC is the same base composition as the ribozyme but is greatly attenuated in catalytic activity due to changes in the core sequence and cannot bind specifically to the HCV sequence.


[0268] As shown in FIG. 19A, HeLa cells pretreated with 10 U/ml consensus interferon for 4 hours prior to HCV-PV infection resulted in ˜70% reduction of viral replication in SAC-treated cells. Similarly, HeLa cells treated with 100 nM anti-HCV ribozyme for 20 hours after infection resulted in an ˜80% reduction in viral yield. This antiviral effect was enhanced to ˜98% inhibition in HeLa cells pretreated with interferon for 4 hours before infection and then treated with anti-HCV ribozyme for 20 hours after infection. In parallel, a 2-5A compound (analog I, FIG. 18) that was protected from nuclease digestion at the 3′-end with an inverted abasic moiety was tested. As shown in FIG. 19B, treatment with 200 nM 2-5A analog I for 4 hours prior to HCV-PV infection only slightly inhibited HCV-PV replication (˜20%) in SAC-treated cells. Moreover, the inhibition due to a 20 hour anti-HCV ribozyme treatment was not augmented with a 4 hour pretreatment of 2-5A in combination (compare third bar to fourth bar in FIG. 19B).


[0269] There are several possible possible explanations why the chemically synthesized 2-5A analog was not able to completely activate RNase L. It is possible that the 2-5A analog was not sufficiently stable or that in this experiment the 4 hour pretreatment period was too short for RNase L activation. To test these possibilities, a 2-5A compound containing a 5′-terminal thiophosphate (P═S) for added nuclease resistance, in addition to the 3′-abasic, was also included (analog II, FIG. 18). In addition, a longer 2-5A treatment was used. In this experiment (FIG. 20), HeLa cells were treated with 2-5A or 2-5A(P═S) for 20 hours after HCV-PV infection. Again, anti-HCV ribozyme treatment resulted in >80% inhibition. In contrast to the 20% inhibition of viral replication seen with a 4 hour 2-5A pretreatment, viral replication in cells treated with 2-5A analog I for 20 hours after HCV-PV infection was inhibited by ˜70%. The P═S version (analog II) inhibited HCV-PV replication by 35%. Thus, both 2-5A analogs used here are able to generate an antiviral effect, presumably through RNase L activation. The P═S version, although more resistant to 5′ dephosphorylation, did not yield as great an anti-viral effect. It is possible that combination of the 5′-terminal thiophosphate together with the presence of a 3′-inverted abasic moiety can interfere with RNase L activation. Nevertheless, these results demonstrate potent anti-HCV activity by a nuclease-stabilized 2-5A analog.


[0270] The level of reduction in HCV-PV replication in cells treated with 2-5A analog I for 20 hours was similar to that in cells pretreated with consensus interferon for 4 hours. To determine if this expanded 2-5A treatment regimen would enhance anti-HCV ribozyme efficacy to the same degree as does the interferon pretreatment, HeLa cells infected with HCV-PV were treated with a combination of 2-5A and anti-HCV ribozyme for 20 hours after infection. In this experiment, a 200 nM treatment with anti-HCV ribozyme or 2-5A treatment alone inhibited viral replication by 88% or ˜60%, respectively, compared to SAC treatment (FIG. 21, left three bars). To maintain consistent transfection conditions but vary the concentration of anti-HCV ribozyme or 2-5A, anti-HCV ribozyme was mixed with the SAC to maintain a total dose of 200 nM. A 50 nM treatment with anti-HCV ribozyme inhibited HCV-PV replication by ˜70% (solid middle bar). However, the amount of HCV-PV replication was not further reduced in cells treated with a combination of 50 nM anti-HCV ribozyme and 150 nM 2-5A (striped middle bar). Likewise, cells treated with 100 nM anti-HCV ribozyme inhibited HCV-PV replication by ˜80% whether they were also treated with 100 nM of 2-5A or SAC (right two bars). In contrast, antiviral activity increased from 80% to 98% when 100 nM anti-HCV ribozyme was given in combination with interferon (FIG. 19A). The reasons for the lack of additive or synergistic effects for the ribozyme/2-5A combination therapy is unclear at this time but can be due to that fact that both compounds have a similar mechanism of action (degradation of RNA). Further study is warranted to examine this possibility.


[0271] As a monotherapy, 2-5A treatment generates a similar inhibitory effect on HCV-poliovirus replication as does interferon treatment. If these results are maintained in HCV patients, treatment with 2-5A can not only be efficacious but can also generate less side effects than those observed with interferon if the plethora of interferon-induced genes were not activated.


[0272] Cell Culture Assays Although there have been reports of replication of HCV in cell culture (see below), these systems are difficult to replicate and have proven unreliable. Therefore, as was the case for development of other anti-HCV therapeutics such as interferon and ribavirin, after demonstration of safety in animal studies applicant can proceed directly into a clinical feasibility study.


[0273] Several recent reports have documented in vitro growth of HCV in human cell lines (Mizutani et al., Biochem Biophys Res Commun 1996 227(3):822-826; Tagawa et al., Journal of Gasteroenterology and Hepatology 1995 10(5):523-527; Cribier et al., Journal of General Virology 76(10):2485-2491; Seipp et al., Journal of General Virology 1997 78(10)2467-2478; Iacovacci et al., Research Virology 1997 148(2):147-151; Iocavacci et al., Hepatology 1997 26(5) 1328-1337; Ito et al., Journal of General Virology 1996 77(5):1043-1054; Nakajima et al., Journal of Virology 1996 70(5):3325-3329; Mizutani et al., Journal of Virology 1996 70(10):7219-7223; Valli et al., Res Virol 1995 146(4): 285-288; Kato et al., Biochem Biophys Res Comm 1995 206(3):863-869). Replication of HCV has been demonstrated in both T and B cell lines as well as cell lines derived from human hepatocytes. Demonstration of replication was documented using either RT-PCR based assays or the b-DNA assay. It is important to note that the most recent publications regarding HCV cell cultures document replication for up to 6-months.


[0274] Additionally, another recent study has identified more robust strains of hepatitis C virus having adaptive mutations that allow the strains to replicate more vigorously in human cell culture, Blight et al., Science, 290: 1972-1974 (2000). The mutations that confer this enhanced ability to replicate are located in a specific region of a protein identified as NS5A. These studies showed that in certain cell culture systems, infection with the robust strains produces a 10,000-fold increase in the number of infected cells. The greatly increased availability of HCV-infected cells in culture can be used to develop high-throughput screening assays, in which a large number of compounds, such as enzymatic nucleic acid molecules, can be tested to determine their effectiveness.


[0275] In addition to cell lines that can be infected with HCV, several groups have reported the successful transformation of cell lines with cDNA clones of full-length or partial HCV genomes (Harada et al., Journal of General Virology 1995 76(5)1215-1221; Haramatsu et al., Journal of Viral Hepatitis 1997 4S(1):61-67; Dash et al., American Journal of Pathology 1997 151(2):363-373; Mizuno et al., Gasteroenterology 1995 109(6):1933-40; Yoo et al., Journal Of Virology 1995 69(1):32-38).


[0276] Animal Models


[0277] The best characterized animal system for HCV infection is the chimpanzee. Moreover, the chronic hepatitis that results from HCV infection in chimpanzees and humans is very similar. Although clinically relevant, the chimpanzee model suffers from several practical impediments that make use of this model difficult. These include; high cost, long incubation requirements and lack of sufficient quantities of animals. Due to these factors, a number of groups have attempted to develop rodent models of chronic hepatitis C infection. While direct infection has not been possible several groups have reported on the stable transfection of either portions or entire HCV genomes into rodents (Yamamoto et al., Hepatology 1995 22(3): 847-855; Galun et al., Journal of Infectious Disease 1995 172(1):25-30; Koike et al., Journal of general Virology 1995 76(12)3031-3038; Pasquinelli et al., Hepatology 1997 25(3): 719-727; Hayashi et al, Princess Takamatsu Symp 1995 25:1430149; Mariya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, Koike K. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. Journal of General Virology 1997 78(7) 1527-1531; Takehara et al., Hepatology 1995 21(3):746-751; Kawamura et al., Hepatology 1997 25(4): 1014-1021). In addition, transplantation of HCV infected human liver into immunocompromised mice results in prolonged detection of HCV RNA in the animal's blood.


[0278] Vierling, International PCT Publication No. WO 99/16307, describes a method for expressing hepatitis C virus in an in vivo animal model. Viable, HCV infected human hepatocytes are transplanted into a liver parenchyma of a scid/scid mouse host. The scid/scid mouse host is then maintained in a viable state, whereby viable, morphologically intact human hepatocytes persist in the donor tissue and hepatitis C virus is replicated in the persisting human hepatocytes. This model provides an effective means for the study of HCV inhibition by enzymatic nucleic acids in vivo.


[0279] Diagnostic Uses


[0280] Enzymatic nucleic acids of this invention can be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of HCV RNA in a cell. The close relationship between enzymatic nucleic acid activity and the structure of the target RNA allows the detection of mutations in any region of the molecule, which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple enzymatic nucleic acids described in this invention, one can map nucleotide changes, which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with enzymatic nucleic acids can be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets can be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple enzymatic nucleic acids targeted to different genes, enzymatic nucleic acids coupled with known small molecule inhibitors, or intermittent treatment with combinations of enzymatic nucleic acids and/or other chemical or biological molecules). Other in vitro uses of enzymatic nucleic acids of this invention are well known in the art, and include detection of the presence of mRNAs associated with HCV related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a enzymatic nucleic acid using standard methodology.


[0281] In a specific example, enzymatic nucleic acids which cleave only wild-type or mutant forms of the target RNA are used for the assay. The first enzymatic nucleic acid is used to identify wild-type RNA present in the sample and the second enzymatic nucleic acid is used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA are cleaved by both enzymatic nucleic acids to demonstrate the relative enzymatic nucleic acid efficiencies in the reactions and the absence of cleavage of the “non-targeted” RNA species. The cleavage products from the synthetic substrates also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis requires two enzymatic nucleic acids, two substrates and one unknown sample which are combined into six reactions. The presence of cleavage products is determined using an RNase protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., HCV) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels is adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.


[0282] Additional Uses


[0283] Potential usefulness of sequence-specific enzymatic nucleic acid molecules of the instant invention have many of the same applications for the study of RNA that DNA restriction endonucleases have for the study of DNA (Nathans et al., 1975 Ann. Rev. Biochem. 44:273). For example, the pattern of restriction fragments can be used to establish sequence relationships between two related RNAs, and large RNAs can be specifically cleaved to fragments of a size more useful for study. The ability to engineer sequence specificity of the enzymatic nucleic acid molecule is ideal for cleavage of RNAs of unknown sequence. Applicant describes the use of nucleic acid molecules to down-regulate gene expression of target genes in bacterial, microbial, fungal, viral, and eukaryotic systems including plant, or mammalian cells.



TABLE 1

[0284] Characteristics of Naturally Occurring Ribozymes


[0285] Group I Introns


[0286] Size: ˜150 to >1000 nucleotides.


[0287] Requires a U in the target sequence immediately 5′ of the cleavage site.


[0288] Binds 4-6 nucleotides at the 5′-side of the cleavage site.


[0289] Reaction mechanism: attack by the 3′-OH of guanosine to generate cleavage products with 3′-OH and 5′-guanosine.


[0290] Additional protein cofactors required in some cases to help folding and maintenance of the active structure. [1]


[0291] Over 300 known members of this class. Found as an intervening sequence in Tetrahymena thermophila rRNA, fungal mitochondria, chloroplasts, phage T4, blue-green algae, and others.


[0292] Major structural features largely established through phylogenetic comparisons, mutagenesis, and biochemical studies [1,2].


[0293] Complete kinetic framework established for one ribozyme [3,4,5,6].


[0294] Studies of ribozyme folding and substrate docking underway [7,8,9].


[0295] Chemical modification investigation of important residues well established [10,11].


[0296] The small (4-6 nt) binding site may make this ribozyme too non-specific for targeted RNA cleavage, however, the Tetrahymena group I intron has been used to repair a “defective” β-galactosidase message by the ligation of new β-galactosidase sequences onto the defective message [12].


[0297] RNAse P RNA (M1 RNA)


[0298] Size: ˜290 to 400 nucleotides.


[0299] RNA portion of a ubiquitous ribonucleoprotein enzyme.


[0300] Cleaves tRNA precursors to form mature tRNA [13].


[0301] Reaction mechanism: possible attack by M2+-OH to generate cleavage products with 3′-OH and 5′-phosphate.


[0302] RNAse P is found throughout the prokaryotes and eukaryotes. The RNA subunit has been sequenced from bacteria, yeast, rodents, and primates.


[0303] Recruitment of endogenous RNAse P for therapeutic applications is possible through hybridization of an External Guide Sequence (EGS) to the target RNA [14,15]


[0304] Important phosphate and 2′ OH contacts recently identified [16,17]


[0305] Group II Introns


[0306] Size: >1000 nucleotides.


[0307] Trans cleavage of target RNAs recently demonstrated [18,19].


[0308] Sequence requirements not fully determined.


[0309] Reaction mechanism: 2′-OH of an internal adenosine generates cleavage products with 3′-OH and a “lariat” RNA containing a 3′-5′ and a 2′-5′ branch point.


[0310] Only natural ribozyme with demonstrated participation in DNA cleavage [20,21] in addition to RNA cleavage and ligation.


[0311] Major structural features largely established through phylogenetic comparisons [22].


[0312] Important 2′ OH contacts beginning to be identified [23]


[0313] Kinetic framework under development [24]


[0314] Neurospora VS RNA


[0315] Size: ˜144 nucleotides.


[0316] Trans cleavage of hairpin target RNAs recently demonstrated [25].


[0317] Sequence requirements not fully determined.


[0318] Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.


[0319] Binding sites and structural requirements not fully determined.


[0320] Only 1 known member of this class. Found in Neurospora VS RNA.


[0321] Hammerhead Ribozyme


[0322] (see text for references)


[0323] Size: ˜13 to 40 nucleotides.


[0324] Requires the target sequence UH immediately 5′ of the cleavage site.


[0325] Binds a variable number nucleotides on both sides of the cleavage site.


[0326] Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.


[0327] 14 known members of this class. Found in a number of plant pathogens (virusoids) that use RNA as the infectious agent.


[0328] Essential structural features largely defined, including 2 crystal structures [26, 27]


[0329] Minimal ligation activity demonstrated (for engineering through in vitro selection) [28]


[0330] Complete kinetic framework established for two or more ribozymes [29]. Chemical modification investigation of important residues well established [30].


[0331] Hairpin Ribozyme


[0332] Size: ˜50 nucleotides.


[0333] Requires the target sequence GUC immediately 3! of the cleavage site.


[0334] Binds 4-6 nucleotides at the 5′-side of the cleavage site and a variable number to the 3′-side of the cleavage site.


[0335] Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.


[0336] 3 known members of this class. Found in three plant pathogen (satellite RNAs of the tobacco ringspot virus, arabis mosaic virus and chicory yellow mottle virus) which uses RNA as the infectious agent.


[0337] Essential structural features largely defined [31, 32, 33, 34]


[0338] Ligation activity (in addition to cleavage activity) makes ribozyme amenable to engineering through in vitro selection [35]


[0339] Complete kinetic framework established for one ribozyme [36].


[0340] Chemical modification investigation of important residues begun [37, 38].


[0341] Hepatitis Delta Virus (HDV) Ribozyme


[0342] Size: ˜60 nucleotides.


[0343] Trans cleavage of target RNAs demonstrated [39].


[0344] Binding sites and structural requirements not fully determined, although no sequences 5′ of cleavage site are required. Folded ribozyme contains a pseudoknot structure [40].


[0345] Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.


[0346] Only 2 known members of this class. Found in human HDV.


[0347] Circular form of HDV is active and shows increased nuclease stability [41]


[0348] 1. Michel, Francois; Westhof, Eric. Slippery substrates. Nat. Struct. Biol. (1994), 1(1), 5-7.


[0349] 2. Lisacek, Frederique; Diaz, Yolande; Michel, Francois. Automatic identification of group I intron cores in genomic DNA sequences. J. Mol. Biol. (1994), 235(4), 1206-17.


[0350] 3. Herschlag, Daniel; Cech, Thomas R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry (1990), 29(44), 10159-71.


[0351] 4. Herschlag, Daniel; Cech, Thomas R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry (1990), 29(44), 10172-80.


[0352] 5. Knitt, Deborah S.; Herschlag, Daniel. pH Dependencies of the Tetrahymena Ribozyme Reveal an Unconventional Origin of an Apparent pKa. Biochemistry (1996), 35(5), 1560-70.


[0353] 6. Bevilacqua, Philip C.; Sugimoto, Naoki; Turner, Douglas H. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Biochemistry (1996), 35(2), 648-58.


[0354] 7. Li, Yi; Bevilacqua, Philip C.; Mathews, David; Turner, Douglas H. Thermodynamic and activation parameters for binding of a pyrene-labeled substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. Biochemistry (1995), 34(44), 14394-9.


[0355] 8. Banerjee, Aloke Raj; Turner, Douglas H. The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. Biochemistry (1995), 34(19), 6504-12.


[0356] 9. Zarrinkar, Patrick P.; Williamson, James R. The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme. Nucleic Acids Res. (1996), 24(5), 854-8.


[0357] 10. Strobel, Scott A.; Cech, Thomas R. Minor groove recognition of the conserved G.cntdot.U pair at the Tetrahymena ribozyme reaction site. Science (Washington, D. C.) (1995), 267(5198), 675-9.


[0358] 11. Strobel, Scott A.; Cech, Thomas R. Exocyclic Amine of the Conserved G.cntdot.U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5′-Splice Site Selection and Transition State Stabilization. Biochemistry (1996), 35(4), 1201-11.


[0359] 12. Sullenger, Bruce A.; Cech, Thomas R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature (London) (1994), 371(6498), 619-22.


[0360] 13. Robertson, H. D.; Altman, S.; Smith, J. D. J. Biol. Chem., 247, 5243-5251 (1972).


[0361] 14. Forster, Anthony C.; Altman, Sidney. External guide sequences for an RNA enzyme. Science (Washington, D.C., 1883-) (1990), 249(4970), 783-6.


[0362] 15. Yuan, Y.; Hwang, E. S.; Altman, S. Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. USA (1992) 89, 8006-10.


[0363] 16. Harris, Michael E.; Pace, Norman R. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA (1995), 1(2), 210-18.


[0364] 17. Pan, Tao; Loria, Andrew; Zhong, Kun. Probing of tertiary interactions in RNA: 2′-hydroxyl-base contacts between the RNase P RNA and pre-tRNA. Proc. Natl. Acad. Sci. U.S. A. (1995), 92(26), 12510-14.


[0365] 18. Pyle, Anna Marie; Green, Justin B. Building a Kinetic Framework for Group II Intron Ribozyme Activity: Quantitation of Interdomain Binding and Reaction Rate. Biochemistry (1994), 33(9), 2716-25.


[0366] 19. Michels, William J. Jr.; Pyle, Anna Marie. Conversion of a Group II Intron into a New Multiple-Turnover Ribozyme that Selectively Cleaves Oligonucleotides: Elucidation of Reaction Mechanism and Structure/Function Relationships. Biochemistry (1995), 34(9), 2965-77.


[0367] 20. Zimmerly, Steven; Guo, Huatao; Eskes, Robert; Yang, Jian; Perlman, Philip S.; Lambowitz, Alan M. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell (Cambridge, Mass.) (1995), 83(4), 529-38.


[0368] 21. Griffin, Edmund A., Jr.; Qin, Zhifeng; Michels, Williams J., Jr.; Pyle, Anna Marie. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2′-hydroxyl groups. Chem. Biol. (1995), 2(11), 761-70.


[0369] 22. Michel, Francois; Ferat, Jean Luc. Structure and activities of group II introns. Annu. Rev. Biochem. (1995), 64, 435-61.


[0370] 23. Abramovitz, Dana L.; Friedman, Richard A.; Pyle, Anna Marie. Catalytic role of 2′-hydroxyl groups within a group II intron active site. Science (Washington, D.C.) (1996), 271(5254), 1410-13.


[0371] 24. Daniels, Danette L.; Michels, William J., Jr.; Pyle, Anna Marie. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. (1996), 256(1), 31-49.


[0372] 25. Guo, Hans C. T.; Collins, Richard A. Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from Neurospora VS RNA. EMBO J. (1995), 14(2), 368-76.


[0373] 26. Scott, W. G., Finch, J. T., Aaron, K. The crystal structure of an all RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleravage. Cell, (1995), 81, 991-1002.


[0374] 27. McKay, Structure and Function of the Hammerhead ribozyme: an unfinished story. RNA, (1996), 2, 395-403.


[0375] 28. Long, D., Uhlenbeck, O., Hertel, K. Ligation with hammerhead ribozymes. U.S. Pat. No. 5,633,133.


[0376] 29. Hertel, K. J., Herschlag, D., Uhlenbach, O. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry, (1994), 33, 3374-3385. Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. J. Biol. Che., (1995) 270, 25702-25708.


[0377] 30. Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. J. Biol. Che., (1995) 270, 25702-25708.


[0378] 31. Hampel, Arnold; Tritz, Richard; Hicks, Margaret; Cruz, Phillip. ‘Hairpin’ catalytic RNA model: evidence for helixes and sequence requirement for substrate RNA. Nucleic Acids Res. (1990), 18(2), 299-304.


[0379] 32. Chowrira, Bharat M.; Berzal-Herranz, Alfredo; Burke, John M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature (London) (1991), 354(6351), 320-2.


[0380] 33. Berzal-Herranz, Alfredo; Joseph, Simpson; Chowrira, Bharat M.; Butcher, Samuel E.; Burke, John M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. (1993), 12(6), 2567-73.


[0381] 34. Joseph, Simpson; Berzal-Herranz, Alfredo; Chowrira, Bharat M.; Butcher, Samuel E. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev. (1993), 7(1), 130-8.


[0382] 35. Berzal-Herranz, Alfredo; Joseph, Simpson; Burke, John M. In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev. (1992), 6(1), 129-34.


[0383] 36. Hegg, Lisa A.; Fedor, Martha J. Kinetics and Thermodynamics of Intermolecular Catalysis by Hairpin Ribozymes. Biochemistry (1995), 34(48), 15813-28.


[0384] 37. Grasby, Jane A.; Mersmann, Karin; Singh, Mohinder; Gait, Michael J. Purine Functional Groups in Essential Residues of the Hairpin Ribozyme Required for Catalytic Cleavage of RNA. Biochemistry (1995), 34(12), 4068-76.


[0385] 38. Schmidt, Sabine; Beigelman, Leonid; Karpeisky, Alexander; Usman, Nassim; Sorensen, Ulrik S.; Gait, Michael J. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. (1996), 24(4), 573-81.


[0386] 39. Perrotta, Anne T.; Been, Michael D. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta. virus RNA sequence. Biochemistry (1992), 31(1), 16-21.


[0387] 40. Perrotta, Anne T.; Been, Michael D. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature (London) (1991), 350(6317), 434-6.


[0388] 41. Puttaraju, M.; Perrotta, Anne T.; Been, Michael D. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res. (1993), 21(18), 4253-8.
1TABLE IIA. 2.5 μmol Synthesis Cycle ABI 394 InstrumentWait TimeWait Time*Wait TimeReagentEquivalentsAmount*DNA2′-O-methyl*RNAPhosphoramidites 6.5163 μL 45 sec2.5 min7.5 minS-Ethyl Tetrazole 23.8238 μL 45 sec2.5 min7.5 minAcetic Anhydride100233 μL 5 sec 5 sec 5 secN-Methyl Imidazole186233 μL 5 sec 5 sec 5 secTCA1762.3 mL 21 sec 21 sec 21 secIodine 11.21.7 mL 45 sec 45 sec 45 secBeaucage 12.9645 μL100 sec300 sec300 secAcetonitrileNA6.67 MINANANAB. 0.2 μmol Synthesis Cycle ABI 394 InstrumentWait TimeWait TimeWait TimeReagentEquivalentsAmount*DNA2′-O-methylRNAPhosphoramidites15 31 μL 45 sec233 sec465 secS-Ethyl Tetrazole38.7 31 μL 45 sec233 min465 secAcetic Anhydride655124 μL 5 sec 5 sec 5 secN-Methyl Imidazole1245124 μL 5 sec 5 sec 5 secTCA700732 μL 10 sec 10 sec 10 secIodine20.6244 μL 15 sec 15 sec 15 secBeaucage7.7232 μL100 sec100 sec100 secAcetonitrileNA2.64 mLNANANAC. 0.2 μmol Synthesis Cycle 96 well InstrumentEquivalentsAmountWait TimeWait TimeWait TimeReagentDNA/2′-O-methyl/RiboDNA/2′-O-methyl/Ribo* DNA* 2′-O-methyl*RiboPhosphoramidites22/33/6640/60/120 μL 60 sec180 sec360 secS-Ethyl Tetrazole70/105/21040/60/120 μL 60 sec180 sec360 secAcetic An hydride265/265/26550/50/50 μL 10 sec 10 sec 10 secN-Methyl Imidazole502/502/50250/50/50 μL 10 sec 10 sec 10 secTCA238/475/475250/500/500 μL 15 sec 15 sec 15 secIodine6.8/6.8/6.880/80/80 μL 30 sec 30 sec 30 secBeaucage34/51/5180/120/120 μL100 sec200 sec200 secAcetonitrileNA1150/1150/1150 μLNANANA* Wait time does not include contact time during delivery.


[0389]

2





TABLE III










HCV DNAzyme and Substrate Sequence











Pos
Substrate
Seq ID
DNAzyme
Seq ID















10
UGGGGGCG A CACUCCAC
1
GTGGAGTG GGCTAGCTACAACGA CGCCCCCA
4798






12
GGGGCGAC A CUCCACCA
2
TGGTGGAG GGCTAGCTACAACGA GTCGCCCC
4799





27
GACACUCC A CCAUAGAU
3
ATCTATGG GGCTAGCTACAACGA CGAGTGTC
4800





20
ACUCCACC A UAGAUCAC
4
GTGATCTA GGCTAGCTACAACGA GGTGGAGT
4801





24
CACCAUAG A UCACUCCC
5
GGGAGTGA GGCTAGCTACAACGA CTATGGTG
4802





27
CAUAGAUC A CUCCCCUG
6
CAGGGGAG GGCTAGCTACAACGA GATCTATG
4802





35
ACUCCCCU G UGAGGAAC
7
GTTCCTCA GGCTAGCTACAACGA AGGGGAGT
4804





42
UGUGAGGA A CUACUGUC
8
GACAGTAG GGCTAGCTACAACGA TCCTCACA
4805





45
GACGAACU A CUGUCUUC
9
GAAGACAG GGCTAGCTACAACGA AGTTCCTC
4806





48
GAACUACU G UCUUCACG
10
CGTGAAGA GGCTAGCTACAACGA AGTAGTTC
4807





54
CUGUCUUC A CGCAGAAA
11
TTTCTGCG GGCTAGCTACAACGA GAAGACAG
4808





56
GUCUUCAC G CAGAAAGC
12
GCTTTCTG GGCTAGCTACAACGA GTGAAGAC
4809





63
CGCAGAAA G CGUCUAGG
13
GCTAGACG GGCTAGCTACAACGA TTTCTGCG
4810





65
CAGAAAGC G UCUAGCCA
14
TGGCTAGA GGCTAGCTACAACGA GCTTTCTG
4811





70
AGCGUCUA G CCAUGGCG
15
CGCCATGG GGCTAGCTACAACGA TAGACGCT
4812





73
GUCUAGCC A UGGCGUUA
16
TAACGCGA GGCTAGCTACAACGA GGCTAGAC
4813





76
UAGCCAUG G CGUUAGUA
17
TACTAACG GGCTAGCTACAACGA CATGGCTA
4814





78
GCCAUGGC G UUAGUAUG
18
CATACTAA GGCTAGCTACAACGA GCCATGGC
4815





82
UGGCGUUA G UAUGAGUG
19
CACTCATA GGCTAGCTACAACGA TAACGCCA
4816





84
GCGUUAGU A UGAGUGUC
20
GACACTCA GGCTAGCTACAACGA ACTAACGC
4817





88
UAGUAUGA G UGUCGUGC
21
GCACGACA GGCTAGCTACAACGA TCATACTA
4818





90
GUAUGAGU G UCGUGCAC
22
CTGCACGA GGCTAGCTACAACGA ACTCATAC
4819





93
UCAGUGUC G UGCAGCCU
23
AGGCTGCA GGCTAGCTACAACGA CACACTCA
4820





95
ACUCUCCU G CAGCCUCC
24
CCACCCTC GGCTAGCTACAACGA ACGACACT
4821





98
GUCGUGCA G CCUCCAGC
25
CCTCGAGG GGCTAGCTACAACGA TGCACGAC
4822





107
CCUCCACC A CCCCCCCU
26
ACCCCCCC GGCTAGCTACAACGA CCTGGAGC
4823





125
CCGGGAGA G CCAUAGUG
27
CACTATGG GGCTAGCTACAACGA TCTCCCGG
4824





128
GGAGAGCC A UAGUGGUC
28
GACCACTA GGCTAGCTACAACGA GGCTCTCC
4825





131
GAGCCAUA G UGGUCUGC
29
GCAGACGA GGCTAGCTACAACGA TATGGCTC
4826





134
CCAUACUC G UCUGCGGA
30
TCCCCAGA GCCTAGCTACAACGA CACTATGG
4827





138
AGUGGUCU G CGGAACCG
31
CGGTTCCG GGCTAGCTACAACGA AGACCACT
4828





143
UCUGCGGA A CCGGUGAG
32
CTCACCGG GGCTAGCTACAACGA TCCGCAGA
4829





147
CGGAACCG G UGAGUACA
33
TGTACTCA GGCTAGCTACAACGA CGGTTCCG
4830





151
ACCGGUGA G UACACCGG
34
CCGGTGTA GGCTAGCTACAACGA TCACCGGT
4831





153
CGCUGAGU A CACCGGAA
35
TTCCGGTG GGCTAGCTACAACGA ACTCACCG
4832





155
GUGAGUAC A CCCGAAUU
36
AATTCCGG GGCTAGCTACAACGA GTACTCAC
4833





161
ACACCGGA A UUGCCAGG
37
CCTGGCAA GGCTAGCTACAACGA TCCGGTGT
4834





164
CCGGAAUU G CCAGGACG
38
CGTCCTGG GGCTAGCTACAACGA AATTCCGG
4835





170
UUCCCAGG A CGACCGGG
39
CCCGGTCG GGCTAGCTACAACGA CCTCGCAA
4836





173
CCAGGACG A CCGGGUCC
40
GGACCCGG GGCTAGCTACAACGA CGTCCTGG
4837





178
ACGACCGG G UCCUUUCU
41
AGAAAGGA GGCTAGCTACAACGA CCGGTCGT
4838





190
UUUCUUGC A UCAACCCC
42
CGGCTTGA GGCTAGCTACAACGA CCAAGAAA
4839





194
UUGGAUCA A CCCGCUCA
43
TGACCGGG GGCTAGCTACAACGA TGATCCAA
4840





198
AUCAACCC G CUCAAUCC
44
CCATTCAG GGCTAGCTACAACGA GGCTTGAT
4841





203
CCCGCUCA A UCCCUCCA
45
TCCAGGCA GGCTAGCTACAACGA TGAGCCCG
4842





205
CGCUCAAU G CCUCCAGA
46
TCTCCACG GGCTAGCTACAACGA ATTCAGCG
4843





213
GCCUGGAG A UUUGCGCG
47
CGCCCAAA GGCTAGCTACAACGA CTCCAGGC
4844





219
AGAUUUGG G CGUGCCCC
48
GGGGCACC GGCTAGCTACAACGA CCAAATCT
4845





221
AUUUGGGC G UGCCCCCG
49
CGGGGCGA GGCTAGCTACAACGA GCCCAAAT
4846





223
UUGGGCCU G CCCCCGCG
50
CGCCCCCC GGCTAGCTACAACGA ACCCCCAA
4847





229
GUGCCCCC G CCACACUC
51
CAGTCTCC GGCTAGCTACAACGA GCCCCCAC
4848





234
CCCGCGAG A CUGCUAGC
52
GCTAGCAG GGCTAGCTACAACGA CTCGCGGC
4849





237
GCCACACU G CUAGCCGA
53
TCGGCTAG GGCTAGCTACAACGA AGTCTCGC
4850





241
GACUGCUA G CCGAGUAG
54
CTACTCGG GGCTAGCTACAACGA TAGCAGTC
4851





246
CUAGCCGA G UAGUGUUG
55
CAACACTA GGCTAGCTACAACGA TCGGCTAG
4852





249
GCCGAGUA G UGUUGGGU
56
ACCCAACA GGCTAGCTACAACGA TACTCGGC
4853





251
CGAGUAGU G UUGGGUCG
57
CGACCCAA GGCTAGCTACAACGA ACTACTCG
4854





256
AGUGUUGG G UCGCGAAA
58
TTTCGCGA GGCTAGCTACAACGA CCAAACACT
4855





259
GUUGGGUC G CGAAAGGC
59
GCCTTTCG GGCTAGCTACAACGA GACCCAAC
4856





266
CGCGAAAG G CCUUGUGG
60
CCACAAGG GGCTAGCTACAACGA CTTTCGCG
4857





271
AAGGCCUU G UGGUACUG
61
CAGTACGA GGCTAGCTACAACGA AAGGCCTT
4858





274
GCCUUGUG G UACUGCCU
62
AGGCAGTA GGCTAGCTACAACGA CACAAGGC
4859





276
CUUGUGGU A CCUCCUGA
63
TCAGGCAG GGCTAGCTACAACGA ACCACAAG
4860





279
GUGGUACU G CCUGAUAG
64
CTATCAGG GGCTAGCTACAACGA AUTACCAC
4861





284
ACUGCCUG A UAGGGUGC
65
GCACCCTA GGCTAGCTACAACGA CAGGCAGT
4862





289
CUGAUAGG G UGCUUGCG
66
CGCAAGCA GGCTAGCTACAACGA CCTATCAG
4863





291
GAUAGGGU G CUUGCGAG
67
CTCGCAAG GGCTAGCTACAACGA ACCCTATC
4864





295
GGGUGCUU G CGAGUGCC
68
GGCACTCG GGCTAGCTACAACGA AAGCACCC
4865





299
GCUUGCGA G UGCCCCGG
69
CCGGGGCA GGCTAGCTACAACGA TCGCAAGC
4866





301
UUGCGAGU G CCCCGGGA
70
TCCCGGGG GGCTAGCTACAACGA ACTCGCAA
4867





311
CCCGGGAG G UCUCGUAG
71
CTACGAGA GGCTAGCTACAACGA CTCCCCGG
4868





316
GAGGUCUC G UAGACCGU
72
ACGGTCTA GGCTAGCTACAACGA GAGACCTC
4869





320
UCUCGUAG A CCGUGCAC
73
GTGCACGG GGCTAGCTACAACGA CTACGAGA
4870





323
CGUAGACC G UGCACCAU
74
ATGGTGCA GGCTAGCTACAACGA GGTCTACG
4871





325
UAGACCGU G CACCAUGA
75
TCATGGTG GGCTAGCTACAACGA ACGGTCTA
4872





327
GACCGUGC A CCAUCACC
76
GCTCATGG GGCTAGCTACAACGA GCACGGTC
4873





330
CGUGCACC A UGAGCACG
77
CGTGCTCA GGCTAGCTACAACGA GGTGCACG
4874





334
CACCAUGA G CACGAAUC
78
GATTCGTG GGCTAGCTACAACGA TCATGGTG
4875





336
CCAUGAGC A CGAAUCCU
79
AGGATTCG GGCTAGCTACAACGA GCTCATGG
4876





340
GAGCACCA A UCCUAAAC
80
GTTTAGGA GGCTAGCTACAACGA TCGTGCTC
4877





347
AAUCCUAA A CCUCAAAG
81
CTTTGAGC GGCTAGCTACAACGA TTAGGATT
4878





360
AAAGAAAA A CCAAACGU
82
ACGTTTGG GGCTAGCTACAACGA TTTTCTTT
4879





365
AAAACCAA A CGUAACAC
83
GTGTTACG GGCTAGCTACAACGA TTGGTTTT
4880





367
AACCAAAC G UAACACCA
84
TGGTGTTA GGCTAGCTACAACGA GTTTGGTT
4881





370
CAAACGUA A CACCAACC
85
GCTTGCTC GGCTAGCTACAACGA TACGTTTG
4882





372
AACGUAAC A CCAACCGC
86
GCGGTTGG GGCTAGCTACAACGA GTTACCTT
4883





376
UAACACCA A CCGCCGCC
87
GGCGGCGG GGCTAGCTACAACGA TGGTGTTA
4884





379
CACCAACC G CCGCCCAC
88
GTGCGCGC GGCTAGCTACAACGA CCTTCCTC
4885





382
CAACCGCC G CCCACACG
89
CCTCTCGG GGCTAGCTACAACGA GGCGGTTG
4886





386
CGCCGCCC A CACGACGU
90
ACCTCCTG GGCTAGCTACAACGA GGGCGGCC
4887





391
CCCACAGG A CGUCAAGU
91
ACTTGACC GGCTAGCTACAACGA CCTGTGGC
4888





393
CACAGGAC G UCAAGUUC
92
CAACTTGA GGCTAGCTACAACGA GTCCTGTG
4889





398
CACGUCAA G UUCCCGCG
93
CCCCGCAA GGCTAGCTACAACGA TTGACCTC
4890





406
GUUCCCGG G CCCUCCUC
94
CACCACCC GGCTAGCTACAACGA CCCCCAAC
4891





409
CCCGGGCC G UCCUCACA
95
TCTGACGA GGCTAGCTACAACGA CCCCCGCG
4892





412
GGGCGGUG G UCAGAUCG
96
CGATCTGA GGCTAGCTACAACGA CACCGCCC
4893





417
GUGGUCAG A UCCUUGCU
97
ACCAACGA GGCTAGCTACAACGA CTGACCAC
4894





420
CUCAGAUC G UUCGUGGA
98
TCCACCAA GGCTAGCTACAACGA GATCTGAC
4895





424
CAUCGUUG G UGGAGUUU
99
AAACTCGA GGCTAGCTACAACGA CAACGATC
4896





429
UUGGUCGA G UUUACCUC
100
CACCTAAA GGCTAGCTACAACGA TCCACCAA
4897





433
UGGAGUUU A CCUGUUGC
101
CCAACAGC GGCTAGCTACAACGA AAACTCCA
4898





437
GUUUACCU G UUCCCGCG
102
CGCGGCAA GGCTAGCTACAACGA ACGTAAAC
4899





440
UACCUCUU G CCCCGCAG
103
CTCCCCCG GGCTAGCTACAACGA AACACCTA
4900





443
CUCUUCCC G CCCACCCC
104
CCCCTGCG GGCTAGCTACAACGA CCCAACAG
4901





445
GUUCCCGC G CAGGGGCC
105
GGCCCCTG GGCTAGCTACAACGA GCGGCAAC
4902





451
GCGCACCG G CCCCACGU
106
ACCTCGCG GGCTAGCTACAACGA CCCTCCCC
4903





458
CCCCCCAG G UUGGGUGU
107
ACACCCAA GGCTAGCTACAACGA CTCGCCCC
4904





463
CACCUUCG G UGUCCGCG
108
CGCGCACA GGCTAGCTACAACGA CCAACCTG
4905





465
GCUUGCCU G UCCCCCCC
109
CGCGCCGA GGCTAGCTACAACGA ACCCAACC
4906





467
UUGCGUCU G CCCCCCAC
110
CTCGCGCG GGCTAGCTACAACGA ACACCCAA
4907





469
GGGUGUGC G CGCGACUA
111
TAGTCGCG GGCTAGCTACAACGA GCACACCC
4908





471
GUGUGCGC G CGACUAGG
112
CCTAGTCG GGCTAGCTACAACGA GCGCACAC
4909





474
UGCGCGCG A CUAGGAAG
113
CTTCCTAG GGCTAGCTACAACGA CGCGCGCA
4910





483
CUAGGAAG A CUUCCGAG
114
CTCGGAAG GGCTAGCTACAACGA CTTCCTAG
4911





491
ACUUCCGA G CGGUCGCA
115
TGCGACCG GGCTAGCTACAACGA TCGGAAGT
4912





494
UCCGAGCG G UCGCAACC
116
GGTTGCGA GGCTAGCTACAACGA CGCTCGGA
4913





497
GAGCGGUC G CAACCUCG
117
CGAGGTTG GGCTAGCTACAACGA GACCGCTC
4914





500
CGGUCGCA A CCUCGUGG
118
CCACGAGG GGCTAGCTACAACGA TGCGACCG
4915





505
GCAACCUC G UGGAAGGC
119
GCCTTCGA GGCTAGCTACAACGA GAGGTTGC
4916





512
CGUGGAAG G CGACAACC
120
GGTTGTCG GGCTAGCTACAACGA CTTCCACG
4917





515
GGAAGGCG A CAACCUAU
121
ATAGGTTG GGCTAGCTACAACGA CGCCTTCC
4918





518
AGGCGACA A CCUAUCCC
122
GGGATAGG GGCTAGCTACAACGA TGTCGCCT
4919





522
GACAACCU A UCCCCAAG
123
CTTGGGGA GGCTAGCTACAACGA AGGTTGTC
4920





531
UCCCCA~G G CUCGCCGG
124
CCGGCGAG GGCTAGCTACAACGA CTTGGGGA
4921





535
CAAGGCUC G CCGGCCCG
125
CGGGCCGG GGCTAGCTACAACGA GAGCCTT3
4922





539
GCUCGCCG G CCCGAGGG
126
CCCTCGGG GGCTAGCTACAACGA CGGCGAGC
4923





547
GCCCGAGG G CAGGGCCU
127
AGGCCCTG GGCTAGCTACAACGA CCTCGGGC
4924





552
AGGGCACG G CCUGGCCU
128
AGCCCAGG GGCTAGCTACAACGA CCTGCCCT
4925





558
CGGCCUGG G CUCAGCCC
129
GGGCTCAG GGCTAGCTACAACGA CCAGGCCC
4926





563
UGGGCUCA G CCCGCGUA
130
TACCCGGG GGCTAGCTACAACGA TGAGCCCA
4927





569
CAGCCCGG G UACCCUUG
131
CAAGGGTA GGCTAGCTACAACGA CCGCGCTG
4928





571
GCCCGGGU A CCCUUCGC
132
GCCAAGGG GGCTAGCTACAACGA ACCCGGGC
4929





578
UACCCUUG G CCCCUCUA
133
TAGAGCCC GGCTAGCTACAACGA CAAGGGTA
4930





586
CCCCCUCU A UGGCAAUG
134
CATTGCCA GGCTAGCTACAACGA ACAGCGGC
4931





589
CCUCUAUG G CAAUGACG
135
CCTCATTG GGCTAGCTACAACGA CATAGAGG
4932





592
CUAUCCCA A UGAGGGCU
136
AGCCCTCA GGCTAGCTACAACGA TGCCATAG
4933





598
CAAUGAGC G CUUAGGGU
137
ACCCTAAC GGCTAGCTACAACGA CCTCATTG
4934





605
GGCUUAGG G UGCGCACG
138
CCTGCCGA GGCTAGCTACAACGA CCTAACCC
4935





609
UAGCCUCG G CACGAUGG
139
CCATCCTG GGCTAGCTACAACGA CCACCCTA
4936





614
UCCCCAGC A UCGCUCCU
140
ACCAGCGA GGCTAGCTACAACGA CCTGCCCA
4937





617
CCAGGAUG G CUCCUCUC
141
GACAGGAC GGCTAGCTACAACGA CATCCTCC
4938





623
UCCCUCCU G UCACCCCC
142
CGGGCTGA GGCTAGCTACAACGA AGGACCCA
4939





626
CUCCUGUC A CCCCGCCG
143
CCGCCGCC GGCTAGCTACAACGA GACAGGAG
4940





631
GUCACCCC G CCGCUCCC
144
GGGACCCG GGCTAGCTACAACGA CGGCTCAC
4941





634
ACCCCGCG G CUCCCCCC
145
GCCGCGAG GGCTAGCTACAACGA CGCGGGGT
4942





641
CGCUCCCC G CCUACUUC
146
CAACTACC GGCTAGCTACAACGA CGCCACCC
4943





646
CCGCCCUA G UUCGCGCC
147
GGCCCCAA GGCTAGCTACAACGA TAGCCCGG
4944





652
UACUUGGG G CCCCACGC
148
CCGTCGGG GGCTAGCTACAACGA CCCAACTA
4945





657
GCGGCCCC A CGCACCCC
149
GGGGTCCC GGCTAGCTACAACGA GCGGCCCC
4946





661
CCCCACGG A CCCCCCGC
150
GCCCCCGG GGCTAGCTACAACGA CCGTGCGG
4947





668
GACCCCCG G CGUAGGUC
151
CACCTACG GGCTAGCTACAACGA CCGGGCTC
4948





670
CCCCCGGC G UACGUCGC
152
CCGACCTA GGCTAGCTACAACGA GCCGGGGC
4949





674
CGCCCUAG G UCGCCUAA
153
TTACCCGA GGCTAGCTACAACGA CTACGCCC
4950





677
CGUAGCUC G CGUAACUU
154
AAGTTACG GGCTAGCTACAACGA GACCTACG
4951





679
UACCUCCC G UAACUUCC
155
CCAAGTTA GGCTAGCTACAACGA GCGACCTA
4952





682
GUCCCCUA A CUUGCGUA
156
TACCCAAC GGCTAGCTACAACGA TACCCCAC
4953





688
UAACUUGG G UAAGGUCA
157
TCACCTTA GGCTAGCTACAACGA CCAAGTTA
4954





693
UCGCUAAC G UCAUCCAU
158
ATCCATGA GGCTAGCTACAACGA CTTACCCA
4955





696
CUAACCUC A UCCAUACC
159
CCTATCGA GGCTAGCTACAACGA CACCTTAC
4956





700
CGUCAUCC A UACCCUCA
160
TCACGGTA GGCTAGCTACAACGA CGATGACC
4957





702
UCAUCCAU A CCCUCACA
161
TCTCACCC GGCTAGCTACAACGA ATCCATCA
4958





708
AUACCCUC A CAUCCCCC
162
CCCCCATC GGCTAGCTACAACGA CACCCTAT
4959





710
ACCCUCAC A UCCCGCUU
163
AACCCGCA GGCTAGCTACAACGA GTCACCCT
4960





712
CCUCACAU G CGCCUUCC
164
CCAACCCC GGCTAGCTACAACGA ATCTCACC
4961





715
CACAUCCC G CUUCCCCC
165
CCCCCAAC GGCTAGCTACAACGA CCCATCTC
4962





720
CCCCCUUC G CCGACCUC
166
CACGTCCC GGCTAGCTACAACGA CAACCCCC
4963





724
CUUCCCCC A CCUCAUCC
167
CCATCACC GGCTAGCTACAACGA CCCCCAAC
4964





729
CCGACCUC A UGGGGUAC
168
GTACCCGA GGCTAGCTACAACGA GAGGTCGG
4965





734
CUCAUGGG G UACAUUCC
169
GGAATGTA GGCTAGCTACAACGA CCCATGAG
4966





736
CAUGGGGU A CAUUCCGC
170
GCGGAATG GGCTAGCTACAACGA ACCCCATG
4967





738
UGGGGUAC A UUCCGCUC
171
GAGCGGAA GGCTAGCTACAACGA GTACCCCA
4968





743
UACAUUCC G CUCGUCGG
172
CCGACGAG GGCTAGCTACAAACGA GGAATGTA
4969





747
UUCCGCUC G UCGGCGCC
173
GGCGCCGA GGCTAGCTACAACGA GAGCGGAA
4970





751
GCUCGUCG G CGCCCCCU
174
AGGGGGCG GGCTAGCTACAACGA CGACGAGC
4971





753
UCGUCGGC G CCCCCUUG
175
CAAGGGGC3 GGCTAGCTACAACGA GCCGACGA
4972





766
CUUGGGAG G CACTTGCGA
176
TGGCAGTG GGCTAGCTACAACGA CTCCCAAG
4973





768
UGGGAGGC A CUGCCAGG
177
CCTGGCAG GGCTAGCTACAACGA GCCTCCCA
4974





771
GAGGCACU G CCAGGGCC
178
GGCCCTGG GGCTAGCTACAAACGA AGTGCCTC
4975





777
CUGCCAGG G CCCUGGCG
179
CGCCAGGG GGCTAGCTACAACGA CCTCGCAC
4976





783
GGCCCCUG G CGCAUGGC
180
GCCATGCG GGCTAGCTACAACGA CAGGGCCC
4977





785
GCCCUGGC G CAUGCCGU
181
ACGCCATG GGCTAGCTACAACGA GCCAGGGC
4978





787
CCUCGCGC A UGCCGUCC
182
GGACGCGA GGCTAGCTACAACGA GCGCCAGG
4979





790
CGCCCAUG G CGUCCCGG
183
CCCGGACG GGCTAGCTACAACGA CATGCGCC
4980





792
CGCAUGGC G UCCGGCUU
184
AACCCCGA GGCTAGCTACAACGA CCCATGCG
4981





798
CCGUCCGG G UUCUGCAA
185
TTCCACAA GGCTAGCTACAACGA CCGGACCC
4982





808
UCUGGAAG A CCGCGUGA
186
TCACGCCG GGCTAGCTACAACGA CTTCCAGA
4983





811
GGAAGACG G CGUCAACU
187
AGTTCACC GGCTAGCTACAACGA CCTCTTCC
4984





813
AACACGCC G UGAACUAU
188
ATAGTTCA GGCTAGCTACAACGA GCCGTCTT
4985





817
CCCCCUCA A CUAUGCAA
189
TTCCATAC GGCTAGCTACAACGA TCACGCCC
4986





820
CGUGAACU A UGCAACAG
190
CTGTTCGA GGCTAGCTACAACGA ACTTCACG
4987





822
UGAACUAU G CAACAGCG
191
CCCTGTTC GGCTAGCTACAACGA ATACTTCA
4988





825
ACUAUGCA A CAGGGAAU
192
ATTCCCTC GGCTAGCTACAACGA TCCATAGT
4989





832
AACAGCCA A UCUCCCCG
193
CCCGCAGA GGCTAGCTACAACGA TCCCTGTT
4990





836
CCCAAUCU G CCCCGUUC
194
CAACCGCG GGCTAGCTACAACGA AGATTCCC
4991





841
UCUCCCCG G UUGCUCUU
195
AACACCAA GGCTAGCTACAACGA CGCGCAGA
4992





844
GCCCGGUU G CUCUUUCU
196
ACAAAGAG GGCTAGCTACAACGA AACCCCGC
4993





855
CUUUCUCU A UCUUCCUC
197
GACGAAGA GGCTAGCTACAACGA AGAGAAAG
4994





867
UCCUCUUC G CUCUGCUC
198
CAGCACAG GGCTAGCTACAACGA CAAGAGGA
4995





872
UUCCCUCU G CUCCCCUC
199
CACGGCAG GGCTAGCTACAACGA ACAGCCAA
4996





875
CCUCUGCU G CCCUCUCU
200
AGACACGC GGCTAGCTACAACGA AGCAGACC
4997





880
GCUGCCCU G UCUGACCA
201
TGGTCACA GGCTAGCTACAACGA AGGGCAGC
4998





885
CCUGUCUC A CCAUCCGA
202
TGGGATGC GGCTAGCTACAACGA CACACAGG
4999





888
GUCUGACC A UCCCAGCC
203
GGCTGGGA GGCTAGCTACAACGA GGTCAGAC
5000





894
CCAUCCGA G CCUCCGCU
204
AGCGGACG GGCTAGCTACAACGA TCGGATGG
5001





900
CAGCCUCC G CUUAUGAC
205
CTCATAAG GGCTAGCTACAACGA GGAGGCTG
5002





904
CUCCCCUU A UGACGUCU
206
ACACCTCA GGCTAGCTACAACGA AACCCGAG
5003





909
CUUAUGAC G UGUCCAAC
207
GTTGCACA GGCTAGCTACAACGA CTCATAAG
5004





911
UAUCAGGU G UCCAACCC
208
CCCTTGCA GGCTAGCTACAACGA ACCTCATA
5005





913
UCACCUGU G CAACGCCU
209
ACCCCTTC GGCTAGCTACAACGA ACACCTCA
5006





916
CCUCUCCA A CCCCUCCC
210
CCCACCCG GGCTAGCTACAACGA TGCACACC
5007





918
UCUCCAAC G CCUCCCCC
211
CCCCCACC GGCTAGCTACAACGA CTTCCACA
5008





920
UGCAACCC G UCCCCCCU
212
ACCCCCGA GGCTAGCTACAACGA CCCTTCCA
5009





926
CCGUCCCC G CUGUACCA
213
TGGTACAC GGCTAGCTACAACGA CCCCACCC
5010





929
UCCCCCCU G UACCAUCU
214
ACATCCTA GGCTAGCTACAACGA ACCCCCCA
5011





931
CGCCCUCU A CCAUCUCA
215
TGACATCC GGCTAGCTACAACGA ACAGCCCC
5012





934
CCUCUACC A UCUCACCA
216
TCCTCACA GGCTAGCTACAACGA GCTACACC
5013





936
UCUACCAU G UCACCAAC
217
CTTCCTCA GGCTAGCTACAACGA ATCCTACA
5014





939
ACCAUCUC A CCAACCAU
218
ATCCTTCG GGCTAGCTACAACGA CACATCCT
5015





943
UCUCACCA A CGAUUCCU
219A
CCAATCC GGCTAGCTACAACGA TCCTCACA
5016





946
CACGAACC A UUGCUCGA
220
TGCAGCAA GGCTAGCTACAACGA CGTTCCTC
5017





949
CAACCAUU G CUCCAACU
221
ACTTCCAC GGCTAGCTACAACGA AATCGTTC
5018





955
UUCCUCCA A CUCAACCA
222
TCCTTCAC GGCTAGCTACAACGA TGCACCAA
5019





961
CAACUCAA G CAUUCUCU
223
ACACAATC GGCTAGCTACAACGA TTGAGTTC
5020





963
ACUCAACC A UUGUGUAU
224
ATACACAA GGCTAGCTACAACGA CCTTGAGT
5021





966
CAAGCAUU G UGUAUGAG
225
CTCATACA GGCTAGCTACAACGA AATGCTTG
5022





968
AGCAUUGU G UAUGAGGC
226
GCCTCATA GGCTAGCTACAACGA ACAATGCT
5023





970
CAUUGUGU A UGAGGCAG
227
CTGCCTCA GGCTAGCTACAACGA ACACAATG
5024





975
UGUAUGAG G CACAGGAC
228
GTCCTCTG GGCTAGCTACAACGA CTCATACA
5025





982
GGCAGAGG A CAUGAUCA
229
TGATCATG GGCTAGCTACAACGA CCTCTGCC
5026





984
CAGAGGAC A UGAUCAUG
230
CATGATCA GGCTAGCTACAACGA GTCCTCTG
5027





987
AGGACAUG A UCAUGCAC
231
GTGCATGA GGCTAGCTACAACGA CATGTCCT
5028





990
ACAUGAUC A UGCACACC
232
GGTGTGCA GGCTAGCTACAACGA GATCATGT
5029





992
AUGAUCAU G CACACCCC
233
GGGGTGTG GGCTAGCTACAACGA ATGATCAT
5030





994
GAUCAUGC A CACCCCGG
234
CCGGGGTG GGCTAGCTACAACGA GCATGATC
5031





996
UCAUGCAC A CCCCGGGG
235
CCCCGGGG GGCTAGCTACAACGA GTGCATGA
5032





1004
ACCCCGGG G UGCGUGCC
236
GGCACGCA GGCTAGCTACAACGA CCCGGGGT
5033





1006
CCCGGGGU G CGUGCCCU
237
AGGGCACG GGCTAGCTACAACGA ACCCCGGG
5034





1008
CGGGGUGC G UGCCCUGC
238
GCAGGGCA GGCTAGCTACAACGA GCACCCCG
5035





1010
GGGUCCCU G CCCUCCGU
239
ACCCACCC GGCTAGCTACAACGA ACCCACCC
5036





1015
CCUGCCCU G CCUUCGCG
240
CCCGAACG GGCTAGCTACAACGA ACGGCACG
5037





1017
UGCCCUGC G UUCGGGAC
241
CTCCCCAA GGCTAGCTACAACGA GCAGGGCA
5038





1027
UCGGGAGA A CAACUCCU
242
AGGAGTTG GGCTAGCTACAACGA TCTCCCGA
5039





1030
GGAGAACA A CUCCUCCC
243
GGGAGGAG GGCTAGCTACAACGA TGTTCTCC
5040





1039
CUCCUCCC G CUGCUGGG
244
CCCAGCAG GGCTAGCTACAACGA GGGAGGAG
5041





1042
CUCCCGCU G CUGGGUAG
245
CTACCCAG GGCTAGCTACAACGA AGCGGGAG
5042





1047
GCUGCUGG G UAGCGCUC
246
GAGCGCTA GGCTAGCTACAACGA CCAGCAGC
5043





1050
GCUGGGUA G CGCUCACU
247
AGTGAGCG GGCTAGCTACAACGA TACCCAGC
5044





1052
UGGGUAGC G CUCACUCC
248
GGAGTGAG GGCTAGCTACAACGA GCTACCCA
5045





1056
UAGCGCUC A CUCCCACG
249
CGTGGGAG GGCTAGCTACAACGA GAGCGCTA
5046





1062
UCACUCCC A CGCUCGCG
250
CGCGAGCG GGCTAGCTACAACGA GGGAGTGA
5047





1064
ACUCCCAC G CUCGCGGC
251
GCCGCGAG GGCTAGCTACAACGA GTGGGAGT
5048





1068
CCACGCUC G CGGCCAGG
252
CCTGGCCG GGCTAGCTACAACGA GAGCGTGG
5049





1071
CGCUCGCG G CCAGGAAU
253
ATTCCTGG GGCTAGCTACAACGA CGCGAGCG
5050





1078
GGCCAGGA A UGCCAGCA
254
TGCTGGCA GGCTAGCTACAACGA TCCTGGCC
5051





1080
CCAGGAAU G CCAGCAUC
255
GATGCTGG GGCTAGCTACAACGA ATTCCTGG
5052





1084
GAAUGCGA G CAUCCCGA
256
TGGGGATG GGCTAGCTACAACGA TGGCATTC
5053





1086
AUGCCAGC A UCCCCACU
257
AGTGGGGA GGCTAGCTACAACGA GCTGGCAT
5054





1092
GCAUCCCC A CUACGACG
258
CGTCGTAG GGCTAGCTACAACGA GGGGATGC
5055





1095
UCCCCACU A CGACGAUA
259
TATCGTCG GGCTAGCTACAACGA AGTGGGGA
5056





1098
CCACUACG A CGAUACGG
260
CCGTATCG GGCTAGCTACAACGA CGTAGTGG
5057





1101
CUACGACG A UACGGCGU
261
ACGCCGTA GGCTAGCTACAACGA CGTCGTAG
5058





1103
ACGACGAU A CGGCGUCA
262
TGACGCCG GGCTAGCTACAACGA ATCGTCGT
5059





1106
ACGAUACG G CGUCACGU
263
ACGTGACG GGCTAGCTACAACGA CGTATCGT
5060





1108
GAUACGGC G UCACGUCG
264
CGACGTGA GGCTAGCTACAACGA GCCGTATC
5061





1111
ACGGCGUC A CGUCGAUU
265
AATCGACG GGCTAGCTACAACGA GACGCCGT
5062





1113
GGCGUCAC G UCGAUUUG
266
CAAATCGA GGCTAGCTACAACGA GTGACGCC
5063





1117
UCACGUCG A UUUGCUCG
267
CGAGCAAA GGCTAGCTACAACGA CGACGTGA
5064





1121
GUCGAUUU G CUCGUUGG
268
CCAACGAG GGCTAGCTACAACGA AAATCGAC
5065





1125
AUUUGCUC G UUGGGGCG
269
CGCCCCAA GGCTAGCTACAACGA GACCAAAT
5066





1131
UCGUUCCG G CGGCUGCU
270
ACCACCCG GGCTAGCTACAACGA CCCAACGA
5067





1134
UUGCGGCG G CUGCUUUC
271
CAAACCAG GGCTAGCTACAACGA CCCCCCAA
5068





1137
GGGCGGCU G CUUUCUGC
272
GCACAAAC GGCTAGCTACAACGA AGCCGCCC
5069





1144
UCCUUUCU G CUCUGCUA
273
TACCACAC GGCTAGCTACAACGA ACAAACCA
5070





1149
UCUCCUCU G CUAUCUAC
274
CTACATAC GGCTAGCTACAACGA ACACCACA
5071





1152
CCUCUCCU A UCUACCUC
275
CACCTACA GGCTAGCTACAACGA ACCACACC
5072





1154
UCUCCUAU G UACCUGCG
276
CCCACCTA GGCTAGCTACAACGA ATACCACA
5073





1156
UCCUAUCU A CGUGGGGG
277
CCCCCACG GGCTAGCTACAACGA ACATACCA
5074





1158
CUAUCUAC G UGCGCGAU
278
ATCCCCGA GGCTAGCTACAACGA CTACATAC
5075





1165
CCUCCCCC A UCUCUGCG
279
CCCACACA GGCTAGCTACAACGA CCCCCACC
5076





1171
GGAUCUCU G CGGAUCUG
280
CAGATCCG GGCTAGCTACAACGA ACACATCC
5077





1175
CUCUGCGG A UCUGUCUU
281
AAGACAGA GGCTAGCTACAACGA CCCCACAG
5078





1179
GCGGAUCU G UCUUCCUC
282
GAGGAAGA GGCTAGCTACAACGA AGATCCGC
5079





1188
UCUUCCUC G UCUCUCAG
283
CTGAGAGA GGCTAGCTACAACGA GAGGAAGA
5080





1196
GUCUCUCA G CUGUUCAC
284
GTGAACAG GGCTAGCTACAACGA TGAGAGAC
5081





1199
UCUCAGCU G UUCACCUU
285
AAGGTGAA GGCTAGCTACAACGA AGCTGAGA
5082





1203
AGCUGUUC A CCUUCUCG
286
CGAGAAGG GGCTAGCTACAACGA GAACAGCT
5083





1211
ACCUUCUC G CCUCGCCG
287
CGGCGAGG GGCTAGCTACAACGA GAGAAGCT
5084





1216
CUCGCCUC G CCGGUAUG
288
CATACCGG GGCTAGCTACAACGA GAGGCGAG
5085





1220
CCUCGCCG G UAUGAGAC
289
GTCTCATA GGCTAGCTACAACGA CGGCGAGG
5086





1222
UCGCCGGU A UGAGACAG
290
CTGTCTCA GGCTAGCTACAACGA ACCGGCGA
5087





1227
GGUAUGAG A CAGUACAG
291
CTGTACTG GGCTAGCTACAACGA CTCATACC
5088





1230
AUGAGACA G UACAGGAC
292
GTCCTGTA GGCTAGCTACAACGA TGTCTCAT
5089





1232
GAGACAGU A CAGGACUG
293
CAGTCCTG GGCTAGCTACAACGA ACTGTCTC
5090





1237
AGUACAGG A CUGUAAUU
294
AATTACAG GGCTAGCTACAACGA CCTGTACT
5091





1240
ACAGGACU G UAAUUGCU
295
AGCAATTA GGCTAGCTACAACGA AGTCCTGT
5092





1243
GGACUGUA A UUGCUCGA
296
TCGAGCAA GGCTAGCTACAACGA TACAGTCC
5093





1246
CUGUAAUU G CUCGAUCU
297
AGATCGAG GGCTAGCTACAACGA AATTACAG
5094





1251
AUUGCUCG A UCUAUCCC
298
GGGATAGA GGCTAGCTACAACGA CGAGCAAT
5095





1255
CUCGAUCU A UCCCGGCC
299
GGCCGGGA GGCTAGCTACAACGA AGATCGAG
5096





1261
CUAUCCCG G CCACGUAU
300
ATACGTGG GGCTAGCTACAACGA CGGGATAG
5097





1264
UCCCGGCC A CGUAUCAG
301
CTGATACG GGCTAGCTACAACGA GGCCGGGA
5098





1266
CCGGCCAC G UAUCAGGC
302
GCCTGATA GGCTAGCTACAACGA GTGGCCGG
5099





1268
GGCCACGU A UCAGGCGA
303
TGGCCTGA GGCTAGCTACAACGA ACGTGGCC
5100





1273
CGUAUCAG G CCAUCGCA
304
TGCGATGG GGCTAGCTACAACGA CTGATACG
5101





1276
AUCAGGCC A UCGCAUGG
305
CCATGCGA GGCTAGCTACAACGA GGCCTGAT
5102





1279
AGGCCAUC G CAUGGCUU
306
AAGCCATG GGCTAGCTACAACGA GATGGCCT
5103





1281
GCCAUCGC A UGGCUUGG
307
CCAAGCGA GGCTAGCTACAACGA GCGATGGC
5104





1284
AUCGCAUG G CUUGGGAU
308
ATCCCAAG GGCTAGCTACAACGA CATGCGAT
5105





1291
GGCUUGGG A UAUGAUGA
309
TCATCATA GGCTAGCTACAACGA CCCAAGCC
5106





1293
CUUGGGAU A UGAUGAUG
310
CATCATCA GGCTAGCTACAACGA ATCCCAAG
5107





1296
GGGAUAUG A UGAUGAAU
311
ATTCATCA GGCTAGCTACAACGA CATATCCC
5108





1299
AUAUGAUG A UGAAUUGG
312
CCAATTCA GGCTAGCTACAACGA CATCATAT
5109





1303
GAUGAUGA A UUGGUCAC
313
GTGACCAA GGCTAGCTACAACGA TCATCATC
5110





1307
AUGAAUUG G UCACCUAC
314
GTAGGTGA GGCTAGCTACAACGA CAATTCAT
5111





1310
AAUUGGUC A CCUACAAC
315
GTTGTAGG GGCTAGCTACAACGA GACCAATT
5112





1314
GGUCACCU A CAACAGCC
316
GGCTGTTG GGCTAGCTACAACGA AGGTGACC
5113





1317
CACCUACA A CAGCCCUA
317
TAGGGCTG GGCTAGCTACAACGA TGTAGGTG
5114





1320
CUACAACA G CCCUAGUG
318
CACTAGGG GGCTAGCTACAACGA TGTTGTAG
5115





1326
CAGCCCUA G UGGUAUCG
319
CGATACGA GGCTAGCTACAACGA TAGGGCTG
5116





1329
CCCUAGUG G UAUCGCAG
320
CTGCGATA GGCTAGCTACAACGA CACTAGGG
5117





1331
CUAGUGGU A UCGCAGUU
321
AACTGCGA GGCTAGCTACAACGA ACCACTAG
5118





1334
GUGGUAUC G CAGUUGCU
322
AGCAACTG GGCTAGCTACAACGA GATACCAC
5119





1337
GUAUCGCA G UUGCUCCG
323
CGGAGCAA GGCTAGCTACAACGA TGCGATAC
5120





1340
UCGCAGUU G CUCCGGAU
324
ATCCGGAG GGCTAGCTACAACGA AACTGCGA
5121





1347
UGCUCCGG A UCCCACAA
325
TTGTGGGA GGCTAGCTACAACGA CCGGAGCA
5122





1352
CGGAUCCC A CAAGCCGU
326
ACGGCTTG GGCTAGCTACAACGA GGGATCCG
5123





1356
UCCCACAA G CCGUCGUG
327
CACGACGG GGCTAGCTACAACGA TTGTGGGA
5124





1359
CACAAGCC G UCGUGGAC
328
GTCCACGA GGCTAGCTACAACGA GGCTTGTG
5125





1362
AAGCCGUC G UGGACAUG
329
CATGTCGA GGCTAGCTACAACGA GACGGCTT
5126





1366
CGUCGUGG A CAUGGUGG
330
CCACCATG GGCTAGCTACAACGA CCACGACG
5127





1368
UCCUGGAC A UGGUGGCG
331
CGCCACGA GGCTAGCTACAACGA GTCCACGA
5128





1371
UGGACAUG G UGGCGGGG
332
CCCCGCGA GGCTAGCTACAACGA CATGTCCA
5129





1374
ACAUGGUG G CCGGGGCC
333
CGCCCCCG GGCTAGCTACAACGA CACCATGT
5130





1380
UGGCGGGG G CCCACUGG
334
CCAGTGGG GGCTAGCTACAACGA CCCCGCCA
5131





1384
GCGGGCCC A CUGGGGAG
335
CTCCCCAC GGCTAGCTACAACGA GGGCCCCC
5132





1392
ACUGGGGA G UCCUGGCG
336
CGCCAGGA GGCTAGCTACAACGA TCCCCAGT
5133





1398
GAGUCCUG G CGGGCCUU
337
AAGGCCCG GGCTAGCTACAACGA CAGGACTC
5134





1402
CCUCGCGG G CCUUGCCU
338
AGCCAAGG GGCTAGCTACAACGA CCGCCAGG
5135





1407
CGGGCCUU G CCUAUUAU
339
ATAATAGG GGCTAGCTACAACGA AAGGCCCG
5136





1411
CCUUGCCU A UUAUUCGA
340
TGGAATAA GGCTAGCTACAACGA AGGCAAGG
5137





1414
UGCCUAUU A UUCCAUGG
341
CCATGGAA GGCTAGCTACAACGA AATAGGCA
5138





1419
AUUAUUCC A UGGUGGGG
342
CCCCACGA GGCTAGCTACAACGA GGAATAAT
5139





1422
AUUCCAUG G UGGGGAAC
343
GTTCCCGA GGCTAGCTACAACGA CATGGAAT
5140





1429
GGUGGGGA A CUGGGCUA
344
TAGCCCAG GGCTAGCTACAACGA TCCCCACC
5141





1434
GGAACUGG G CUAAGGUG
345
CACCTTAG GGCTAGCTACAACGA CCAGTTCC
5142





1440
GGGCUAAG G UGUUGAUU
346
AATCAACA GGCTAGCTACAACGA CTTAGCCC
5143





1442
GCUAAGGU G UUGAUUGU
347
ACAATCAA GGCTAGCTACAACGA ACCTTAGC
5144





1446
AGCUGUUG A UUGUCAUG
348
CATCACAA GGCTAGCTACAACGA CAACACCT
5145





1449
UGUUGAUU G UGAUGCUA
349
TAGCATCA GGCTAGCTACAACGA AATCAACA
5146





1452
UCAUUCUC A UGCUACUC
350
GAGTAGCA GGCTAGCTACAACGA CACAATCA
5147





1454
AUUGUCAU G CUACUCUU
351
AAGAGTAG GGCTAGCTACAACGA ATCACAAT
5148





1457
GUGAUCCU A CUCUUUGC
352
GCAAAGAG GGCTAGCTACAACGA AGCATCAC
5149





1464
UACUCUUU G CCGGCGUU
353
AACGCCGC GGCTAGCTACAACGA AAAGAGTA
5150





1468
CUUUGCCG G CCUUGACG
354
CGTCAACG GGCTAGCTACAACGA CCGCAPAG
5151





1470
UUGCCGGC G UUGACGGG
355
CCCGTCAA GGCTAGCTACAACGA GCCGGCAA
5152





1474
CGCCGUUC A CGGGGACA
356
TGTCCCCG GGCTAGCTACAACGA CAACGCCG
5153





1480
UGACGGGG A CACCUACA
357
TGTAGGTG GGCTAGCTACAACGA CCCCGTCA
5154





1482
ACGCCCAC A CCUACACG
358
CCTCTAGC GGCTAGCTACAACGA CTCCCCGT
5155





1486
GGACACCU A CACGACAG
359
CTCTCGTG GGCTAGCTACAACGA ACGTCTCC
5156





1488
ACACCUAC A CGACACCC
360
CCCTCTCC GGCTAGCTACAACGA GTAGGTCT
5157





1491
CCUACACG A CAGGCGGG
361
CCCCCCTG GGCTAGCTACAACGA CCTGTAGG
5158





1500
CAGCGGGG G CGCACCGC
362
CCCCTCCC GGCTAGCTACAACGA CCCCCCTC
5159





1502
CCGGCGGC G CACCCCGA
363
TCCCCCTC GGCTAGCTACAACGA GCCCCCCC
5160





1507
GGCGCACG G CCACACGA
364
TGGTGTGC GGCTAGCTACAACGA CCTGCGCC
5161





1510
GCACCCCC A CACCACUA
365
TAGTGGTC GGCTAGCTACAACGA CGCCCTCC
5162





1512
ACCCCCAC A CCACUACU
366
ACTAGTGC GGCTAGCTACAACGA GTGCCCCT
5163





1515
GCCACACC A CUAGUACG
367
CCTACTAG GGCTAGCTACAACGA CCTCTGGC
5164





1519
CACCACUA G UACCGUGG
368
CCACCCTA GGCTAGCTACAACGA TAGTCCTC
5165





1524
CUACUACC G UCCCAUCC
369
CCATGCGA GGCTAGCTACAACGA CCTACTAC
5166





1527
GUACCGUC G CAUCCCUC
370
GAGCCATC GGCTAGCTACAACGA CACCCTAC
5167





1529
ACCCUGGC A UCCCUCUU
371
AACACGCA GGCTAGCTACAACGA GCCACCCT
5168





1539
CCCUCUUU A CAUCUGGA
372
TCCACATG GGCTAGCTACAACGA AAAGACCC
5169





1541
CUCUUUAC A UCUGGAGC
373
GCTCCACA GGCTAGCTACAACGA GTAAAGAG
5170





1548
CAUCUCGA G CAUCUCAC
374
CTGAGATC GGCTAGCTACAACGA TCCACATG
5171





1550
UCUCGAGC A UCUCACAA
375
TTCTGACA GGCTAGCTACAACGA GCTCCAGA
5172





1558
AUCUCAGA A UAUCCACC
376
CCTCCATA GGCTAGCTACAACGA TCTGACAT
5173





1560
CUCAGAAU A UCCAGCUU
377
AACCTCGA GGCTAGCTACAACGA ATTCTGAG
5174





1565
AAUAUCGA G CUUAUUAA
378
TTAATAAC GGCTAGCTACAACGA TCCATATT
5175





1569
UCCAGCUU A UUAACACC
379
CGTGTTAA GGCTAGCTACAACGA AACCTCGA
5176





1573
CCUUAUUA A CACCAACC
380
CCTTCCTG GGCTAGCTACAACGA TAATAACC
5177





1575
UUAUUAAC A CCAACCCC
381
CCCCTTCC GGCTAGCTACAACGA GTTAATAA
5178





1579
UAACACCA A CCCCAGCU
382
ACCTGCCC GGCTAGCTACAACGA TCCTCTTA
5179





1582
CACCAACC G CACCUCCC
383
CCCACCTC GGCTAGCTACAACGA CCTTCCTC
5180





1585
CAACCCGA G CUCCCACA
384
TCTCCCAC GGCTAGCTACAACGA TCCCCTTC
5181





1589
CGCAGCUG G CACAUUAA
385
TTAATGTG GGCTAGCTACAACGA CAGCTCCC
5182





1591
CACCUCCC A CAUUAACA
386
TCTTAATC GGCTAGCTACAACGA CCCACCTC
5183





1593
CCUCCCAC A UUAACACC
387
CCTCTTAA GGCTAGCTACAACGA CTCCCACC
5184





1597
CCACAUUA A CACCACUG
388
CACTCCTC GGCTAGCTACAACGA TAATCTCC
5185





1602
UUAACACC A CUCCCCUC
389
CACCCCAC GGCTAGCTACAACGA CCTCTTAA
5186





1605
ACACCACU G CCCUCAAC
390
CTTCACCC GGCTAGCTACAACGA ACTCCTCT
5187





1612
UCCCCUCA A CUCCAAUC
391
CATTCCAC GGCTAGCTACAACGA TCAGCCCA
5188





1615
CCUCAACU G CAAUCACU
392
ACTCATTC GGCTAGCTACAACGA ACTTCACC
5189





1618
CAACUCCA A UCACUCCC
393
CCCACTCA GGCTAGCTACAACGA TGCAGTTC
5190





1621
CUCCAAUC A CUCCCUCC
394
CCACCCAC GGCTAGCTACAACGA CATTCCAC
5191





1632
CCCUCCAA A CCCCGUUC
395
CAACCCGG GGCTAGCTACAACGA TTGGAGCC
5192





1637
CAAACCGG G UUCAUUGC
396
GCAATGAA GGCTAGCTACAACGA CCGGTTTG
5193





1641
CCGGGUUC A UUGCUGCA
397
TGCAGCAA GGCTAGCTACAACGA GAACCCGG
5194





1644
GGUUCAUU G CUGCACUG
398
CAGTGCAG GGCTAGCTACAACGA AATGAACC
5195





1647
UCAUUGCU G CACUGUUC
399
GAACAGTG GGCTAGCTACAACGA AGCAATGA
5196





1649
AUUGCUGC A CUGUUCUA
400
TAGAACAG GGCTAGCTACAACGA GCAGCAAT
5197





1652
GCUGCACU G UUCUAUGC
401
GCATAGAA GGCTAGCTACAACGA AGTGCAGC
5198





1657
ACUGUUCU A UGCACACA
402
TGTGTGCA GGCTAGCTACAACGA AGAACAGT
5199





1659
UGUUCUAU G CACACAGG
403
CCTGTGTG GGCTAGCTACAACGA ATAGAACA
5200





1661
UUCUAUGC A CACAGGUU
404
AACCTGTG GGCTAGCTACAACGA GCATAGAA
5201





1663
CUAUGCAC A CAGGUUCA
405
TGAACCTG GGCTAGCTACAACGA GTGCATAG
5202





1667
GCACACAG G UUCAACUC
406
GAGTTGAA GGCTAGCTACAACGA CTGTGTGC
5203





1672
CAGGUUCA A CUCGUCCG
407
CGGACGAG GGCTAGCTACAACGA TGAACCTG
5204





1676
UUCAACUC G UCCGGAUG
408
CATCCGGA GGCTAGCTACAACGA GAGTTGAA
5205





1682
UCGUCCGG A UGCCCACA
409
TGTGGGCA GGCTAGCTACAACGA CCGGACGA
5206





1684
GUCCGGAU G CCCACAGC
410
GCTGTGGG GGCTAGCTACAACGA ATCCGGAC
5207





1688
GGAUGCCC A CAGCGCUU
411
AAGCGCTG GGCTAGCTACAACGA GGGCATCC
5208





1691
UGCCCACA G CGCUUGGC
412
GCCAAGCG GGCTAGCTACAACGA TGTGGGCA
5209





1693
CCCACAGC G CUUGGCCA
413
TGGCCAAG GGCTAGCTACAACGA GCTGTGGG
5210





1698
AGCGCUUG G CCAGCUGC
414
GCAGCTGG GGCTAGCTACAACGA CAAGCGCT
5211





1702
CUUGGCGA G CUGCCGCU
415
AGCGGCAG GGCTAGCTACAACGA TGGCCAAG
5212





1705
GGCCAGCU G CCGCUCGA
416
TGGAGCGG GGCTAGCTACAACGA AGCTGGCC
5213





1708
CAGCUGCC G CUCCAUUG
417
CAATGGAG GGCTAGCTACAACGA GGCAGCTG
5214





1713
GCCGCUCC A UUGACAAG
418
CTTCTCAA GGCTAGCTACAACGA GGAGCGGC
5215





1717
CUCCAUUG A CAAGUUCG
419
CGAACTTC GGCTAGCTACAACGA CAATGGAG
5216





1721
AUUGACAA G UUCGCUCA
420
TCAGCGAA GGCTAGCTACAACGA TTGTCAAT
5217





1725
ACAAGUUC G CUCAGGGG
421
CCCCTGAG GGCTAGCTACAACGA GAACTTGT
5218





1733
GCUCAGGG G UGGGGUCC
422
GGACCCGA GGCTAGCTACAACGA CCCTGAGC
5219





1738
GGGGUGGG G UCCUAUCA
423
TGATAGGA GGCTAGCTACAACGA CCCACCCC
5220





1743
GGGGUCCU A UCACCUAC
424
GTAGGTGA GGCTAGCTACAACGA AGGACCCC
5221





1746
GUCCUAUC A CCUACACC
425
GGTGTAGG GGCTAGCTACAACGA GATAGGAC
5222





1750
UAUCACCU A CACCGAGG
426
CCTCGGTG GGCTAGCTACAACGA AGGTGATA
5223





1752
UCACCUAC A CCGAGGGC
427
GCCCTCGG GGCTAGCTACAACGA GTAGGTGA
5224





1759
CACCGAGG G CCACAACU
428
ACTTGTGG GGCTAGCTACAACGA CCTCGGTG
5225





1762
CGAGGGCC A CAACUCGG
429
CCGAGTTG GGCTAGCTACAACGA GGCCCTCG
5226





1765
GGGCCACA A CUCGGACC
430
GGTCCGAG GGCTAGCTACAACGA TGTGGCCC
5227





1771
CAACUCGG A CCAGAGGC
431
GCCTCTGG GGCTAGCTACAACGA CCGAGTTG
5228





1778
GACCAGAG G CCCUAUUG
432
CAATAGGG GGCTAGCTACAACGA CTCTGGTC
5229





1783
GAGGCCCU A UUGCUGGC
433
GCCAGCAA GGCTAGCTACAACGA AGGGCCTC
5230





1786
GCCCUAUU G CUGGCACU
434
AGTGCCAG GGCTAGCTACAACGA AATAGGGC
5231





1790
UAUUGCUG G CACUACGC
435
GCGTAGTG GGCTAGCTACAACGA CAGCAATA
5232





1792
UUGCUGGC A CUACGCAC
436
GTGCGTAG GGCTAGCTACAACGA GCCAGCAA
5233





1795
CUGGCACU A CGCACCGC
437
GCGGTGCG GGCTAGCTACAACGA AGTGCCAG
5234





1797
GGCACUAC G CACCGCGG
438
CCGCGGTG GGCTAGCTACAACGA GTAGTGCC
5235





1799
CACUACGC A CCGCGGCC
439
GGCCGCGG GGCTAGCTACAACGA GCGTAGTG
5236





1802
UACGCACC G CGGCCGUG
440
CACGGCCG GGCTAGCTACAACGA GGTGCGTA
5237





1805
GCACCGCG G CCGUGUGG
441
CCACACGG GGCTAGCTACAACGA CGCGGTGC
5238





1808
CCGCGGCC G UGUGGUAU
442
ATACCACA GGCTAGCTACAACGA GGCCGCGG
5239





1810
GCGGCCGU G UGGUAUCG
443
CGATACGA GGCTAGCTACAACGA ACGGCCGC
5240





1813
GCCGUGUG G UAUCGUAC
444
GTACGATA GGCTAGCTACAACGA CACACGGC
5241





1815
CGUGUGGU A UCGUACCC
445
GGGTACGA GGCTAGCTACAACGA ACCACACG
5242





1818
GUGGUAUC G UACCCGCA
446
TGCGGGTA GGCTAGCTACAACGA GATACCAC
5243





1820
GGUAUCGU A CCCGCAUC
447
GATGCGGG GGCTAGCTACAACGA ACGATACCC
5244





1824
UCGUACCC G CAUCGCAG
448
CTGCGATG GGCTAGCTACAACGA GGGTACGA
5245





1826
GUACCCGC A UCGCAGGU
449
ACCTGCGA GGCTAGCTACAACGA GCCGGTAC
5246





1829
CCCGCAUC G CAGGUAUG
450
CATACCTG GGCTAGCTACAACGA GATGCGGG
5247





1833
CAUCGCAG G UAUGUGGU
451
ACCACATA GGCTAGCTACAACGA CTGCGATG
5248





1835
UCGCAGGU A UGUGGUCC
452
GGACCACA GGCTAGCTACAACGA ACCTGCGA
5249





1837
GCAGGUAU G UGGUCCAG
453
CTGGACGA GGCTAGCTACAACGA ATACCTGC
5250





1840
GGUAUGUG G UCCAGUGU
454
ACACTGGA GGCTAGCTACAACGA CACATACC
5251





1845
GUGGUCGA G UGUAUUGC
455
GCAATACA GGCTAGCTACAACGA TGGACCAC
5252





1847
GGUCCAGU G UAUUGCUU
456
AAGCAATA GGCTAGCTACAACGA ACTGGACC
5253





1849
UCCAGUGU A UUGCUUCA
457
TGAAGCAA GGCTAGCTACAACGA ACACTGGA
5254





1852
AGUGUAUU G CUUCACCC
458
GGGTGAAG GGCTAGCTACAACGA AATACACT
5255





1857
AUUGCUUC A CCCCAAGC
459
GCTTGGGG GGCTAGCTACAACGA GAAGCAAT
5256





1864
CACCCCAA G CCCUGGUG
460
CAACAGGG GGCTAGCTACAACGA TTGGGGTG
5257





1869
CAAGCCCU G UUGUGGUG
461
CACCACAA GGCTAGCTACAACGA AGGGCTTG
5258





1872
GCCCUGUU G UGGUGGGG
462
CCCCACGA GGCTAGCTACAACGA AACAGGGC
5259





1875
CUGGUGUG G UGGGGACG
463
CGTCCCGA GGCTAGCTACAACGA CACAACAG
5260





1881
UGGUGGGG A CGACCGAC
464
GTCGGTCG GGCTAGCTACAACGA CCCCACCA
5261





1884
UGGGGACG A CCGACCGU
465
ACGGTCGG GGCTAGCTACAACGA CGTCCCCA
5262





1888
GACGACCG A CCGUUUCG
466
CGAAACGG GGCTAGCTACAACGA CGGTCGTC
5263





1891
GACCGACC G UUUCGGCG
467
CGCCGAAA GGCTAGCTACAACGA GGTCGGTC
5264





1897
CCGUUUCG G CGCCCCCA
468
TGGGGGCG GGCTAGCTACAACGA CGAAACGG
5265





1899
GUUUCGGC G CCCCCACG
469
CGTGGGGG GGCTAGCTACAACGA GCCGAAAC
5266





1905
GCGCCCCC A CGUAUAAC
470
GTTATACG GGCTAGCTACAACGA GGGGGCGC
5267





1907
GCCCCCAC G UAUAACUG
471
CAGTTATA GGCTAGCTACAACGA GTGGGGGC
5268





1909
CCCCACGU A UAACUGGG
472
CCCAGTTA GGCTAGCTACAACGA ACGTGGGG
5269





1912
CACGUAUA A CUGCGGGG
473
CCCCCCAG GGCTAGCTACAACGA TATACGTG
5270





1920
ACUGGGGG G CGAACGAG
474
CTCGTTCG GGCTAGCTACAACGA CCCCCAGT
5271





1924
GGGGGCCA A CGAGACGG
475
CCGTCTCG GGCTAGCTACAACGA TCGCCCCC
5272





1929
CGAACGAG A CGGACGUG
476
CACGTCCG GGCTAGCTACAACGA CTCGTTCG
5273





1933
CGAGACGG A CGUGCUGC
477
GCAGCACG GGCTAGCTACAACGA CCGTCTCG
5274





1935
AGACGGAC G UGCUGCUC
478
GACCACGA GGCTAGCTACAACGA GTCCGTCT
5275





1937
ACGGACGU G CUCCUCCU
479
ACGAGCAG GGCTAGCTACAACGA ACGTCCCT
5276





1940
CACGUGCU G CUCCUCAA
480
TTGAGGAC GGCTAGCTACAACGA ACCACCTC
5277





1948
GCUCCUCA A CAACACGC
481
GCGTGTTG GGCTAGCTACAACGA TGACCACC
5278





1951
CCUCAACA A CACGCGGC
482
CCCCCGTC GGCTAGCTACAACGA TGTTGAGG
5279





1953
UCAACAAC A CCCCGCCC
483
CGGCCGCG GGCTAGCTACAACGA CTTGTTCA
5280





1955
AACAACAC G CCCCCGCC
484
GCCGGCCC GGCTAGCTACAACGA GTCTTCTT
5281





1958
AACACCCG G CCCCCCGA
485
TGCGGCCC GGCTAGCTACAACGA CGCGTGTT
5282





1961
ACGCCCCC G CCGCAAGG
486
CCTTCCCC GGCTAGCTACAACGA CGCCCCCT
5283





1964
CGGCCGCC G CAAGGCAA
487
TTCCCTTC GGCTAGCTACAACGA CGCCCCCC
5284





1969
GCCGCAAC G CAACUGGU
488
ACCACTTC GGCTAGCTACAACGA CTTCCCCC
5285





1972
GCAAGCCA A CUGGUUCG
489
CCAACCAG GGCTAGCTACAACGA TCCCTTCC
5286





1976
GGCAACUG G UUCGGCUG
490
CAGCCGAA GGCTAGCTACAACGA CACTTCCC
5287





1981
CUGGUUCG G CUCCACAU
491
ATGTGCAG GGCTAGCTACAACGA CGAACCAG
5288





1984
GUUCGGCU G CACAUCCA
492
TCCATCTC GGCTAGCTACAACGA AGCCGAAC
5289





1986
UCCCCUCC A CAUCCAUC
493
CATCCATC GGCTAGCTACAACGA CCACCCCA
5290





1988
CCCUCCAC A UGGAUGAA
494
TTCATCGA GGCTAGCTACAACGA CTCCACCC
5291





1992
GCACAUCG A UGAAUGGC
495
CCCATTCA GGCTAGCTACAACGA CCATCTCC
5292





1996
AUCCAUCA A UCCCACUC
496
CACTCCGA GGCTAGCTACAACGA TCATCCAT
5293





1999
CAUCAAUC G CACUGCCU
497
ACCCACTC GGCTAGCTACAACGA CATTCATC
5294





2001
UCAAUCCC A CUCCCUUC
498
GAACCCAC GGCTAGCTACAACGA CCCATTCA
5295





2006
CCCACUCC G UUCACCAA
499
TTCCTCAA GGCTAGCTACAACGA CCACTCCC
5296





2010
CUCCCUUC A CCAACACC
500
CCTCTTCC GGCTAGCTACAACGA CAACCCAC
5297





2016
UCACCAAG A CCUCCGGG
501
CCCCCACC GGCTAGCTACAACGA CTTCCTCA
5298





2018
ACCAACAC G UGCGGGGG
502
CCCCCCGA GGCTAGCTACAACGA CTCTTCCT
5299





2020
CAACACGU G CCGGGGCC
503
CGCCCCCG GGCTAGCTACAACGA ACCTCTTG
5300





2026
CUCCCCCC G CCCCCCGU
504
ACCGCCCG GGCTAGCTACAACGA CCCCCCAC
5301





2033
CGCCCCCC G UCCAACAU
505
ATCTTCGA GGCTAGCTACAACGA GGGGGGCC
5302





2035
CCCCCCGU G CAACAUCG
506
CCATCTTC GGCTAGCTACAACGA ACGCCCCC
5303





2038
CCCCUGCA A CAUGGGGG
507
CCCCCATC GGCTAGCTACAACGA TCCACCCC
5304





2040
CGUGCAAC A UCGGGGGG
508
CCCCCCGA GGCTAGCTACAACGA CTTCCACC
5305





2049
UCGGGGGG G CCGGUAAC
509
CTTACCCC GGCTAGCTACAACGA CCCCCCGA
5306





2053
GGGGGCCG G UAACGACA
510
TGTCGTTA GGCTAGCTACAACGA CGGCCCCC
5307





2058
GGCCGGUA A CGACACCU
511
AGGTGTCG GGCTAGCTACAACGA TACCGGCC
5308





2059
CGGUAACG A CACCUUAA
512
TTAAGGTG GGCTAGCTACAACGA CGTTACCG
5309





2061
GUAACGAC A CCUUAACC
513
GGTTAAGG GGCTAGCTACAACGA GTCGTTAC
5310





2067
ACACCUUA A CCUGCCCC
514
GGGGCAGG GGCTAGCTACAACGA TAAGGTGT
5311





2071
CUUAACCU G CCCCACGG
515
CCGTGGGG GGCTAGCTACAACGA AGGTTAAG
5312





2076
CCUGCCCC A CGGACUGC
516
GCAGTCCG GGCTAGCTACAACGA GGGGCAGG
5313





2080
CCCCACGG A CUGCUUCC
517
GGAAGCAG GGCTAGCTACAACGA CCGTGGGG
5314





2083
CACGGACU G CUUCCGGA
518
TCCGGAAG GGCTAGCTACAACGA AGTCCCCG
5315





2093
UUCCGGAA G CACCCCGA
519
TCGGGGTG GGCTAGCTACAACGA TTCCGGAA
5316





2095
CCGGAAGC A CCCCGAGG
520
CCTCGGGG GGCTAGCTACAACGA GCTTCCGG
5317





2103
ACCCCGAG G CCACUUAC
521
GTAAGTGG GGCTAGCTACAACGA CTCGGGGT
5318





2106
CCGAGGCC A CUUACGCA
522
TGCGTAAG GGCTAGCTACAACGA GGCCTCGG
5319





2110
GGCCACUU A CGCAAAGU
523
ACTTTGCG GGCTAGCTACAACGA AAGTGGCC
5320





2112
CCACUUAC G CAAAGUGC
524
GCACTTTG GGCTAGCTACAACGA GTAAGTGG
5321





2117
UACGCAAA G UGCGGUUC
525
GAACCGCA GGCTAGCTACAACGA TTTGCGTA
5322





2119
CGCAAAGU G CGGUUCGG
526
CCGAACCG GGCTAGCTACAACGA ACTTTGCG
5323





2122
AAAGUGCG G UUCGGGGC
527
GCCCCGAA GGCTAGCTACAACGA CGCACTTT
5324





2129
GGUUCGGG G CCUUGGUU
528
AACCAAGG GGCTAGCTACAACGA CCCGAACC
5325





2135
CGGCCUUG G UUAACACC
529
GGTGTTAA GGCTAGCTACAACGA CAAGGCCC
5326





2139
CUUGGUUA A CACCUAGA
530
TCTAGGTG GGCTAGCTACAACGA TAACCAAG
5327





2141
UGGUUAAC A CCUAGAUG
531
CATCTAGG GGCTAGCTACAACGA GTTAACCA
5328





2147
ACACCUAG A UGCAUAGU
532
ACTATGCA GGCTAGCTACAACGA CTAGGTGT
5329





2149
ACCUAGAU G CAUAGUUG
533
CAACTATG GGCTAGCTACAACGA ATCTAGGT
5330





2151
CUAGAUGC A UAGUUGAC
534
GTCAACTA GGCTAGCTACAACGA GCATCTAG
5331





2154
GAUGCAUA G UUGACUAC
535
GTAGTCAA GGCTAGCTACAACGA TATGCATC
5332





2158
CAUAGUUG A CUACCCAU
536
ATGGGTAG GGCTAGCTACAACGA CAACTATG
5333





2161
AGUUGACU A CCCAUACA
537
TGTATGGG GGCTAGCTACAACGA AGTCAACT
5334





2165
GACUACCC A UACAGGCU
538
AGCCTGTA GGCTAGCTACAACGA GGGTAGTC
5335





2167
CUACCCAU A CAGGCUUU
539
AAAGCCTG GGCTAGCTACAACGA ATGGGTAG
5336





2171
CCAUACAG G CUUUGGCA
540
TGCCAAAG GGCTAGCTACAACGA CTGTATGG
5337





2177
AGGCUUUG G CACUACCC
541
GGGTAGTG GGCTAGCTACAACGA CAAAGCCT
5338





2179
GCUUUGGC A CUACCCCU
542
AGGGGTAG GGCTAGCTACAACGA GCCAAAGC
5339





2182
UUGGCACU A CCCCUGCA
543
TGCAGGGG GGCTAGCTACAACGA AGTGCCAA
5340





2188
CUACCCCU G CACUGUCA
544
TGACAGTG GGCTAGCTACAACGA AGGGGTAG
5341





2190
ACCCCUGC A CUGUCAAU
545
ATTGACAG GGCTAGCTACAACGA GCAGGGGT
5342





2193
CCUGCACU G UCAAUUUU
546
AAAATTGA GGCTAGCTACAACGA AGTGCAGG
5343





2197
CACUGUCA A UUUUUCCA
547
TGGAAAAA GGCTAGCTACAACGA TGACAGTG
5344





2205
AUUUUUCC A UCUUUAAG
548
CTTAAAGA GGCTAGCTACAACGA GGAAAAAT
5345





2214
UCUUUAAG G UUAGGAUG
549
CATCCTAA GGCTAGCTACAACGA CTTAAAGA
5346





2220
AGGUUAGG A UGUAUGUG
550
CACATACA GGCTAGCTACAACGA CCTAACCT
5347





2222
GUUAGGAU G UAUGUGGG
551
CCCACATA GGCTAGCTACAACGA ATCCTAAC
5348





2224
UAGGAUGU A UGUGGGGG
552
CCCCCACA GGCTAGCTACAACGA ACATCCTA
5349





2226
GGAUGUAU G UGGGGGGC
553
GCCCCCGA GGCTAGCTACAACGA ATACATCC
5350





2233
UGUGGGGG G CGUGGAGC
554
GGCTCCACG GGCTAGCTACAACGA CCCCCACA
5351





2235
UGGGGGGC G UGGACCAC
555
GTGCTCGA GGCTAGCTACAACGA GCCCCCCA
5352





2240
GGCGUGGA G CACAGGCU
556
AGCCTGTG GGCTAGCTACAACGA TCCACGCC
5353





2242
CGUGGAGC A CAGGCUCA
557
TGAGCCTG GGCTAGCTACAACGA GCTCCACG
5354





2246
GAGCACAG G CUCACCGC
558
GCGGTGAG GGCTAGCTACAACGA CTGTGCTC
5355





2250
ACAGGCUC A CCGCCGCA
559
TGCGGCGG GGCTAGCTACAACGA GAGCCTGT
5356





2253
GGCUCACC G CCGCAUGC
560
GCATGCGG GGCTAGCTACAACGA GGTGAGCC
5357





2256
UCACCGCC G CAUGCAAU
561
ATTGCATG GGCTAGCTACAACGA GGCGGTGA
5358





2258
ACCGCCGC A UGCAAUUG
562
CAATTGCA GGCTAGCTACAACGA GCGGCGGT
5359





2260
CGCCGCAU G CAAUUGGA
563
TCCAATTG GGCTAGCTACAACGA ATGCGGCG
5360





2263
CGCAUGCA A UUGGACUC
564
GAGTCCAA GGCTAGCTACAACGA TGCATGCG
5361





2268
GCAAUUGG A CUCGAGGA
565
TCCTCGAG GGCTAGCTACAACGA CCAATTGC
5362





2279
CGAGGAGA G CGUUGUGA
566
TCACAACG GGCTAGCTACAACGA TCTCCTCG
5363





2281
AGGAGAGC G UUGUGAUU
567
AATCACAA GGCTAGCTACAACGA GCTCTCCT
5364





2284
AGAGCGUU G UGAUUUGG
568
CCAAATCA GGCTAGCTACAACGA AACGCTCT
5365





2287
GCGUUGUG A UUUGGAGG
569
CCTCCAAA GGCTAGCTACAACGA CACAACGC
5366





2296
UUUGGAGG A CAGGGACA
570
TGTCCCTG GGCTAGCTACAACGA CCTCCAAA
5367





2302
GGACAGGG A CAGAUCAG
571
CTGATCTG GGCTAGCTACAACGA CCCTGTCC
5368





2306
AGGGACAG A UCAGAGCU
572
AGCTCTGA GGCTAGCTACAACGA CTGTCCCT
5369





2312
AGAUCAGA G CUCAGCCC
573
GGGCTGAG GGCTAGCTACAACGA TCTGATCT
5370





2317
AGAGCUCA G CCCGCUGC
574
GCAGCGGG GGCTAGCTACAACGA TGAGCTCT
5371





2321
CUCAGCCC G CUGCUGUU
575
AACAGCAG GGCTAGCTACAACGA GGGCTGAG
5372





2324
AGCCCGCU G CUGUUGUC
576
GACAACAG GGCTAGCTACAACGA AGCGGGCT
5373





2327
CCGCUGCU G UUGUCCAC
577
GTGGACAA GGCTAGCTACAACGA AGCAGCGG
5374





2330
CUGCUGUU G UCCACUAC
578
GTAGTGGA GGCTAGCTACAACGA AACAGCAG
5375





2334
UGUUGUCC A CUACAGAG
579
CTCTGTAG GGCTAGCTACAACGA GGACAACA
5376





2337
UGUCCACU A CAGAGUGG
580
CCACTCTG GGCTAGCTACAACGA AGTGGACA
5377





2342
ACUACAGA G UGGCAAAU
581
ATTTGCGA GGCTAGCTACAACGA TCTGTAGT
5378





2345
ACAGAGUG G CAAAUACU
582
AGTATTTG GGCTAGCTACAACGA CACTCTGT
5379





2349
AGUGGCAA A UACUGCCC
583
GGGCAGTA GGCTAGCTACAACGA TTGCCACT
5380





2351
UGGCAAAU A CUGCCCUG
584
CAGGGCAG GGCTAGCTACAACGA ATTTGCCA
5381





2354
CAAAUACU G CCCUGCUC
585
GAGCAGGG GGCTAGCTACAACGA AGTATTTG
5382





2359
ACUGCCCU G CUCCUUCA
586
TGAAGGAG GGCTAGCTACAACGA AGGGCAGT
5383





2367
GCUCCUUC A CCACCCUA
587
TAGGGTGG GGCTAGCTACAACGA GAAGGAGC
5384





2370
CCUUCACC A CCCUACCG
588
CGGTAGGG GGCTAGCTACAACGA GGTGAAGG
5385





2375
ACCACCCU A CCGGCUCU
589
AGAGCCGG GGCTAGCTACAACGA AGGGTGGT
5386





2379
CCCUACCG G CUCUGUCC
590
GGACAGAG GGCTAGCTACAACGA CGGTAGGG
5387





2384
CCGGCUCU G UCCACUGG
591
CCAGTGGA GGCTAGCTACAACGA AGAGCCGG
5388





2388
CUCUGUCC A CUGGUUUG
592
CAAACCAG GGCTAGCTACAACGA GGACAGAG
5389





2392
GUCCACUG G UUUGAUCC
593
GGATCAAA GGCTAGCTACAACGA CAGTGGAC
5390





2397
CUGGUUUG A UCCAUCUC
594
GAGATGGA GGCTAGCTACAACGA CAAACCAG
5391





2401
UUUGAUCC A UCUCCACC
595
GGTGGAGA GGCTAGCTACAACGA GGATCAAA
5392





2407
CCAUCUCC A CCAGAACA
596
TGTTCTGG GGCTAGCTACAACGA GGAGATGG
5393





2413
CCACCAGA A CAUCGUGG
597
CCACGATG GGCTAGCTACAACGA TCTGGTGG
5394





2415
ACCAGAAC A UCGUGGAC
598
GTCCACGA GGCTAGCTACAACGA GTTCTGGT
5395





2418
AGAACAUC G UGGACCUG
599
CACGTCGA GGCTAGCTACAACGA GATGTTCT
5396





2422
CAUCGUGG A CGUGCAAU
600
ATTGCACG GGCTAGCTACAACGA CCACGATG
5397





2424
UCGUGGAC G UGCAAUAC
601
GTATTGCA GGCTAGCTACAACGA GTCCACGA
5398





2426
GUGGACGU G CAAUACCU
602
AGGTATTG GGCTAGCTACAACGA ACGTCCAC
5399





2429
GACGUGCA A UACCUGUA
603
TACAGGTA GGCTAGCTACAACGA TGCACGTC
5400





2431
CGUGCAAU A CCUGUACG
604
CGTACAGG GGCTAGCTACAACGA ATTGCACG
5401





2435
CAAUACCU G UACGGUGU
605
ACACCGTA GGCTAGCTACAACGA AGGTATTG
5402





2437
AUACCUGU A CGGUGUAG
606
CTACACCG GGCTAGCTACAACGA ACAGGTAT
5403





2440
CCUGUACG G UGUAGGGU
607
ACCCTACA GGCTAGCTACAACGA CGTACAGG
5404





2442
UGUACGGU G UAGGGUCA
608
TGACCCTA GGCTAGCTACAACGA ACCGTACA
5405





2447
GGUGUAGG G UCAGCGGU
609
ACCGCTGA GGCTAGCTACAACGA CCTACACC
5406





2451
UAGGGUCA G CGGUUGUC
610
GACAACCG GGCTAGCTACAACGA TGACCCTA
5407





2454
GGUCAGCG G UUGUCUCC
611
GGAGACAA GGCTAGCTACAACGA CGCTGACC
5408





2457
CAGCGGUU G UCUCCUUC
612
GAAGGAGA GGCTAGCTACAACGA AACCGCTG
5409





2466
UCUCCUUC G CAAUCAAA
613
TTTGATTG GGCTAGCTACAACGA GAAGGAGA
5410





2469
CCUUCGCA A UCAAAUGG
614
CCATTTGA GGCTAGCTACAACGA TGCGAAGG
5411





2474
GCAAUCAA A UGGGAGUA
615
TACTCCGA GGCTAGCTACAACGA TTGATTGC
5412





2480
AAAUGGGA G UAUGUCCU
616
AGGACATA GGCTAGCTACAACGA TCCCATTT
5413





2482
AUGGGAGU A UGUCCUGU
617
ACAGGACA GGCTAGCTACAACGA ACTCCCAT
5414





2484
GGGAGUAU G UCCUGUUG
618
CAACAGGA GGCTAGCTACAACGA ATACTCCC
5415





2489
UAUGUCCU G UUGCUUUU
619
AAAAGCAA GGCTAGCTACAACGA AGGACATA
5416





2492
GUCCUGUU G CUUUUCCU
620
AGGAAAAG GGCTAGCTACAACGA AACAGGAC
5417





2508
UUCUCCUG G CAGACGCG
621
CGCGTCTG GGCTAGCTACAACGA CAGGAGAA
5418





2512
CCUGGCAG A CGCGCGCG
622
CGCGCGCG GGCTAGCTACAACGA CTGCCAGG
5419





2514
UGGCAGAC G CGCGCGUC
623
GACGCGCG GGCTAGCTACAACGA GTCTGCCA
5420





2516
GCAGACGC G CGCGUCUG
624C
AGACGCG GGCTAGCTACAACGA GCGTCTGC
5421





2518
AGACGCGC G CGUCUGUG
625
CACAGACG GGCTAGCTACAACGA GCGCGTCT
5422





2520
ACGCGCGC G UCUGUGCC
626
GGCACAGA GGCTAGCTACAACGA GCGCGCGT
5423





2524
GCGCGUCU G UGCCUGUU
627
AACAGGCA GGCTAGCTACAACGA AGACGCGC
5424





2526
GCGUCUGU G CCUGUUUG
628
CAAACAGG GGCTAGCTACAACGA ACAGACGC
5425





2530
CUGUGCCU G UUUGUGGA
629
TCCACAAA GGCTAGCTACAACGA AGGCACAG
5426





2534
GCCUGUUU G UGGAUGAU
630
ATCATCGA GGCTAGCTACAACGA AAACAGGC
5427





2538
GUUUGUGG A UGAUGCUG
631
CAGCATCA GGCTAGCTACAACGA CCACAAAC
5428





2541
UGUGGAUG A UGCUGUUG
632
CAACAGCA GGCTAGCTACAACGA CATCCACA
5429





2543
UGGAUGAU G CUGUUGGU
633
ACCAACAG GGCTAGCTACAACGA ATCATCCA
5430





2546
AUGAUGCU G UUGGUAGC
634
GCTACCAA GGCTAGCTACAACGA AGCATCAT
5431





2550
UGCUGUUG G UAGCCCAG
635
CTGGGCTA GGCTAGCTACAACGA CAACAGCA
5432





2553
UGUUGGUA G CCCAGGCC
636
GGCCTGGG GGCTAGCTACAACGA TACCAACA
5433





2559
UAGCCCAG G CCGAGGCU
637
AGCCTCGG GGCTAGCTACAACGA CTGGGCTA
5434





2565
AGGCCGAG G CUGCCCUA
638
TAGGGCAG GGCTAGCTACAACGA CTCGGCCT
5435





2568
CCGAGGCU G CCCUAGAG
639
CTCTAGGG GGCTAGCTAGAACGA AGCCTCGG
5436





2578
CCUAGAGA A CCUGGUGG
640
CCACCAGG GGCTAGCTACAACGA TCTCTAGG
5437





2583
AGAACCUG G UGGUCCUC
641
GAGGACGA GGCTAGCTACAACGA CAGGTTCT
5438





2586
ACCUGGUG G UCCUCAAU
642
ATTGAGGA GGCTAGCTACAACGA CACCAGGT
5439





2593
GGUCCUCA A UGCAGCAU
643
ATGCTGCA GGCTAGCTACAACGA TGAGGACC
5440





2595
UCCUCAAU G CAGCAUCC
644
GGATGCTG GGCTAGCTACAACGA ATTGAGGA
5441





2598
UCAAUGCA G CAUCCUUG
645
CAAGGATG GGCTAGCTACAACGA TGCATTGA
5442





2600
AAUGCAGC A UCCUUGGC
646
GCCAAGGA GGCTAGCTACAACGA GCTGCATT
5443





2607
CAUCCUUG G CCGGAGUG
647
CACTCCGG GGCTAGCTACAACGA CAAGGATG
5444





2613
UGGCCGGA G UGCAUGGC
648
GCCATUCA GGCTAUCTACAACGA TCCUGCCA
5445





2615
UCCGUAGU G CAUUGCAU
649
ATUCCATG GGCTAUCTACAACGA ACTCCGUC
5446





2617
CGGAGUGC A UUGCAUCC
650
GGATGCGA UGCTAGCTACAACGA GCACTCCG
5447





2620
AGUGCAUG G CAUCCUCU
651
AGAGGATG GGCTAGCTACAACGA CATGCACT
5448





2622
UGCAUGGC A UCCUCUCC
652
GGAGAGGA GGCTAUCTACAACGA GCCATGCA
5449





2637
CCUUCCUC G UGUUCUUC
653
GAAGAACA GGCTAGCTACAACGA GAGGAAGG
5450





2639
UUCCUCGU G UUCUUCUG
654
CAGAAGAA GGCTAGCTACAACGA ACGAGGAA
5451





2647
GUUCUUCU G UGCUGCCU
655
AGGCAGCA GGCTAGCTACAACGA AGAAGAAC
5452





2649
UCUUCUGU G CUGCCUGG
656
CCAGGCAG GGCTAGCTACAACGA ACAGAAGA
5453





2652
UCUGUGCU G CCUGGUAC
657
GTACCAGG GGCTAGCTACAACGA AGCACAGA
5454





2657
GCUGCCUG G UACAUCAA
658
TTGATGTA GGCTAGCTACAACGA CAGGCAGC
5455





2659
UGCCUGGU A CAUCAAAG
659
CTTTGATG GGCTAGCTACAACGA ACCAGGCA
5456





2661
CCUGGUAC A UCAAAGGC
660
GCCTTTGA GGCTAGCTACAACGA GTACCAGG
5457





2668
CAUCAAAG G CAAGCUGG
661
CCAGCTTG GGCTAGCTACAACGA CTTTGATG
5458





2672
AAAGGCAA G CUGGUCCC
662
GGGACCAG GGCTAGCTACAACGA TTGCCTTT
5459





2676
GCAAGCUG G UCCCUGGC
663
CCCAGGGA GGCTAGCTACAACGA CAGCTTGC
5460





2685
UCCCUGGG G CGGCAUAU
664
ATATUCCG GGCTAGCTACAACGA CCCAGGGA
5461





2688
CUUUGGCG G CAUAUGCU
665
AGCATATG GGCTAGCTACAACGA CGCCCCAU
5462





2690
GGGGCGGC A UAUUCUCU
666
AGAUCATA GGCTAGCTACAACGA GCCGCCCC
5463





2692
UUCUGCAU A UUCUCUCU
667
AGAGAUCA GGCTAGCTACAACGA ATGCCGCC
5464





2694
CUUCAUAU G CUCUCUAC
668
GTAGAGAG GGCTAUCTACAACGA ATATUCCG
5465





2701
UGCUCUCU A CUUCUUAU
669
ATACGCCG GGCTAGCTACAACGA AGAGAUCA
5466





2704
UCUCUACG G CUUAUGGC
670
GCCATACG GGCTAGCTACAACGA CUTAGAGA
5467





2706
UCUACGGC G UAUGGCCG
671
CGGCCATA GGCTAGCTACAACGA UCCUTAGA
5468





2708
UACGUCGU A UUUCCGCU
672
AGTAGCGG GGCTAGCTACAACGA ACUCCUTA
5469





2711
GUCUUAUU G CCGCUACU
673
AGTAGCGG GGCTAGCTACAACGA CATACGCC
5470





2714
UUAUUUCC G CUACUCCU
674
AGGAGTAG GGCTAGCTACAACGA GUCCATAC
5471





2717
UUUCCGCU A CUCCUGCU
675
AGCAGGAG GGCTAGCTACAACGA AGCGGCCA
5472





2723
CUACUCCU G CUCCUGCU
676
AGCAGGAG GGCTAGCTACAACGA AGGAUTAG
5473





2729
CUGCUCCU G CUGGCGUU
677
AACGCCAG GGCTAGCTACAACGA AUGAUCAG
5474





2733
UCCUGCUG G CGUUACCA
678
TGGTAACG GGCTAGCTACAACGA CAUCAGGA
5475





2735
CUUCUGUC G UUACCACC
679
GGTGGTAA GGCTAGCTACAACGA UCCAUCAG
5476





2738
CUGGCGUU A CCACCACG
680
CGTGGTGG GGCTAGCTACAACGA AACGCCAG
5477





2741
GCGUUACC A CCACGGGC
681
GCCCGTGG GGCTAGCTACAACGA GGTAACGC
5478





2744
UUACCACC A CGGGCGUA
682
TACGCCCG GGCTAGCTACAACGA GGTGGTAA
5479





2748
CACCACGG G CGUACGCC
683
GGCGTACG GGCTAGCTACAACGA CCGTGGTG
5480





2750
CCACGGGC G UACGCCAU
684
ATGGCGTA GGCTAGCTACAACGA GCCCGTGG
5481





2752
ACGGGCGU A CGCCAUGG
685
CCATCCCC GGCTAGCTACAACGA ACCCCCGT
5482





2754
GGGCGUAC G CCAUGGAC
686
GTCCATGG GGCTAGCTACAACGA GTACGCCC
5483





2757
CGUACGCC A UGGACCGG
687
CCGGTCGA GGCTAGCTACAACGA GGCGTACG
5484





2761
CGCCAUCC A CCGGGAGA
688
TCTCCCGG GGCTAGCTACAACGA CCATGGCG
5485





2769
ACCGGGAG A UGGCCGCA
689
TGCGGCGA GGCTAGCTACAACGA CTCCCGGT
5486





2772
GGGAGAUG G CCGCAUCG
690
CGATGCGG GGCTAGCTACAACGA CATCTCCC
5487





2775
AGAUGGCC G CAUCGUGC
691
GCACGATG GGCTAGCTACAACGA GGCCATCT
5488





2777
AUGGCCGC A UCGUGCGG
692
CCGCACGA GGCTAGCTACAACGA GCGGCCAT
5489





2780
GCCGCAUC G UGCGCACC
693
CCTCCCGA GGCTAGCTACAACGA GATGCGGC
5490





2782
CGCAUCCU G CGGAGCCC
694
CCCCTCCG GGCTAGCTACAACGA ACGATGCG
5491





2788
GUGCGGAG G CGUGCUUU
695
AAACCACG GGCTAGCTACAACGA CTCCGCAC
5492





2790
GCGGAGGC G UGGUUUUU
696
AAAAACGA GGCTAGCTACAACGA GCCTCCGC
5493





2793
GAGGCGUG G UUUUUGUA
697
TACAAAAA GGCTAGCTACAACGA CACGCCTC
5494





2799
UGCUUUUU G UACGUCUA
698
TAGACCTA GGCTAGCTACAACGA AAAAACCA
5495





2803
UUUUGUAG G UCUACCAC
699
CTCCTACA GGCTAGCTACAACGA CTACAAAA
5496





2808
UAGGUCUA G CACUCUUG
700
CAAGAGTC GGCTAGCTACAACGA TAGACCTA
5497





2810
GCUCUAGC A CUCUUCAC
701
GTCAAGAG GGCTAGCTACAACGA GCTAGACC
5498





2817
CACUCUUG A CCUUCUCA
702
TCACAACC GGCTAGCTACAACGA CAAGACTC
5499





2822
UUGACCUU G UCACCAUA
703
TATCCTCA GGCTAGCTACAACGA AAGCTCAA
5500





2825
ACCUUGUC A CCAUACUA
704
TAGTATCG GGCTAGCTACAACGA GACAACCT
5501





2828
UUGUCACC A UACUACAA
705
TTGTACTA GGCTAGCTACAACGA CGTCACAA
5502





2830
CUCACCAU A CUACAAAC
706
CTTTGTAG GGCTAGCTACAACGA ATGGTGAC
5503





2833
ACCAUACU A CAAAGUCU
707
ACACTTTG GGCTAGCTACAACGA AGTATCGT
5504





2838
ACUACAAA G UCUUCCUC
708
GAGCAACA GGCTAGCTACAACGA TTTGTAGT
5505





2840
UACAAAGU G UUCCUCGC
709
CCCACGAA GGCTAGCTACAACGA ACTTTCTA
5506





2847
UCUUCCUC G CUAGGCUC
710
CAGCCTAC GGCTAGCTACAACGA GACCAACA
5507





2852
CUCGCUAG G CUCAUAUG
711
CATATCAG GGCTAGCTACAACGA CTACCGAC
5508





2856
CUACCCUC A UAUCGUCC
712
CCACCATA GGCTAGCTACAACGA CAGCCTAC
5509





2858
AGCCUCAU A UCCUCCUU
713
AACCACGA GGCTAGCTACAACGA ATGAGCCT
5510





2861
CUCAUAUG G UCCUUCCA
714
TGCAACGA GGCTAGCTACAACGA CATATGAG
5511





2864
AUAUGCUC G UUCCAAUA
715
TATTCCAA GGCTAGCTACAACGA CACCATAT
5512





2867
UCCUCCUU G CAAUACCU
716
ACCTATTC GGCTAGCTACAACGA AACCACCA
5513





2870
UCCUUCCA A UACCUUAU
717
ATAACCTA GGCTAGCTACAACGA TCCAACCA
5514





2872
CUUCCAAU A CCUUAUCA
718
TCATAACC GGCTAGCTACAACGA ATTCCAAC
5515





2877
AAUACCUU A UCACCAGA
719
TCTCCTCA GGCTAGCTACAACGA AAGGTATT
5516





2880
ACCUUAUC A CCACACCC
720
CCCTCTCC GGCTAGCTACAACGA CATAACCT
5517





2886
UCACCACA G CCCACCCC
721
CCCCTCCC GGCTAGCTACAACGA TCTCCTCA
5518





2892
CACCCCAC G CCCACUUC
722
CAACTCCC GGCTAGCTACAACGA CTCCCCTC
5519





2894
CCCCACCC G CACUUCGA
723
TCCAACTC GGCTAGCTACAACGA CCCTCCCC
5520





2897
CACCCCGA G UUCCAAGU
724
ACTTCCAA GGCTAGCTACAACGA TCCCCCTC
5521





2900
CCCCACUU G CAACUCUC
725
CACACTTC GGCTAGCTACAACGA AACTGCGC
5522





2904
ACUUCCAA G UCUCCAUC
726
CATCCACA GGCTAGCTACAACGA TTCCAACT
5523





2906
UUCCAACU G UCCAUCCC
727
CCCATCGA GGCTAGCTACAACGA ACTTCCAA
5524





2910
AACUCUCC A UCCCCCCC
728
CCCCCCGA GGCTAGCTACAACGA CCACACTT
5525





2923
CCCCCUCA A CCUUCCCC
729
CCCCAACC GGCTAGCTACAACGA TCACCCCC
5526





2925
CCCUCAAC G UUCCGCCC
730
CCCCCGAA GGCTAGCTACAACGA CTTGACCG
5527





2936
CGGGGGGG G CCCCCUCC
731
CCACCCCC GGCTAGCTACAACGA CCCCCCCG
5528





2938
GGGGGGGC G CCCUGCGA
732
TGGCACCC GGCTAGCTACAACGA GCCCCCCC
5529





2941
GGGGCGCG G UCCCAUCA
733
TCATCCGA GGCTAGCTACAACGA CGCGCCCC
5530





2943
GGCGCGGU G CCAUCAUU
734
AATGATCC GGCTAGCTACAACGA ACCGCCCC
5531





2946
GCGGUGCC A UCAUUCUC
735
CACAATCA GGCTAGCTACAACGA GGCACCCG
5532





2949
GUGCCAUC A UUCUCCUC
736
CACCACAA GGCTAGCTACAACGA GATGGCAC
5533





2958
UUCUCCUC A CGUGUGUG
737
CACACACC GGCTAGCTACAACGA CAGGAGAA
5534





2960
CUCCUCAC G UGUGUGGU
738
ACCACACA GGCTAGCTACAACGA GTGAGGAG
5535





2962
CCUCACGU G UGUGGUCC
739
GGACCACA GGCTAGCTACAACGA ACGTGAGG
5536





2964
UCACGUGU G UGGUCCAC
740
GTGGACGA GGCTAGCTACAACGA ACACGTGA
5537





2967
CGUGUGUG G UCCACCGA
741
TGGGTGGA GGCTAGCTACAACGA CACACACG
5538





2971
UGUGGUCC A CCCAGAGC
742
GCTCTGGG GGCTAGCTACAACGA GGACCACA
5539





2978
CACCCAGA G CUAAUCUU
743
AAGATTAG GGCTAGCTACAACGA TCTGGGTG
5540





2982
CAGAGCUA A UCUUUGAC
744
GTCAAAGA GGCTAGCTACAACGA TAGCTCTG
5541





2989
AAUCUUUG A CAUCACGA
745
TGGTGATG GGCTAGCTACAACGA CAAAGATT
5542





2991
UCUUUGAC A UCACCAAA
746
TTTGGTGA GGCTAGCTACAACGA GTCAAAGA
5543





2994
UUGACAUC A CCAAAAUU
747
AATTTTGG GGCTAGCTACAACGA GATGTCAA
5544





3000
UCACCAAA A UUAUGCUC
748
GAGCATAA GGCTAGCTACAACGA TTTGGTGA
5545





3003
CCAAAAUU A UGCUCGCC
749
GGCGAGCA GGCTAGCTACAACGA AATTTTGG
5546





3005
AAAAUUAU G CUCGCCAU
750
ATGGCGAG GGCTAGCTACAACGA ATAATTTT
5547





3009
UUAUGCUC G CCAUACUC
751
GAGTATGG GGCTAGCTACAACGA GAGCATAA
5548





3012
UGCUCGCC A UACUCGGC
752
GCCGAGTA GGCTAGCTACAACGA GGCGAGCA
5549





3014
CUCGCCAU A CUCGGCCC
753
GGGCCGAG GGCTAGCTACAACGA ATGGCGAG
5550





3019
CAUACUCC G CCCGCUCA
754
TGAGCGGG GGCTAGCTACAACGA CGAGTATG
5551





3023
CUCGGCCC G CUCAUGGU
755
ACCATGAG GGCTAGCTACAACGA GGGCCGAG
5552





3027
CCCCGCUC A UGGUCCUC
756
GAGCACGA GGCTAGCTACAACGA GAGCGGGC
5553





3030
CGCUCAUG G UGCUCCAG
757
CTGGAGCA GGCTAGCTACAACGA CATGAGCG
5554





3032
CUCAUGGU G CUCCAGCC
758
GCCTGGAG GGCTAGCTACAACGA ACCATGAG
5555





3039
UGCUCCAG G CUGGUAUA
759
TATACCAG GGCTAGCTACAACGA CTGGAGCA
5556





3043
CCAGGCUG G UAUAGCAA
760
TTGCTATA GGCTAGCTACAACGA CAGCCTGG
5557





3045
AGGCUGGU A UAGCAAAA
761
TTTTGCTA GGCTAGCTACAACGA ACCAGCCT
5558





3048
CUGGUAUA G CAAAAGUG
762
CACTTTTG GGCTAGCTACAACGA TATACCAG
5559





3054
UAGCAAAA G UGCCGGAC
763
GTCCGGCA GGCTAGCTACAACGA TTTTGCTA
5560





3056
GCAAAACU G CCGCACUU
764
AAGTCCGG GGCTAGCTACAACGA ACTTTTGC
5561





3061
ACUGCCGG A CUUUGUGC
765
GCACAAAG GGCTAGCTACAACGA CCGGCACT
5562





3066
CCGACUUU G UGCGGGCU
766
AGCCCGCA GGCTAGCTACAACGA AAAGTCCG
5563





3068
GACUUUGU G CGGGCUCA
767
TGAGCCCG GGCTAGCTACAACGA ACAAAGTC
5564





3072
UUGUGCGG G CUCAAGGG
768
CCCTTGAG GGCTAGCTACAACGA CCGCACAA
5565





3081
CUCAAGGG G UCAUCCGU
769
ACGGATCA GGCTAGCTACAACGA CCCTTCAC
5566





3084
AACGGCUC A UCCGUGAA
770
TTCACCGA GGCTAGCTACAACGA GACCCCTT
5567





3088
GGUCAUCC G UGAAUGCA
771
TGCATTCA GGCTAGCTACAACGA GGATGACC
5568





3092
AUCCGUGA A UGCAUUUU
772
AAAATCGA GGCTAGCTACAACGA TCACGGAT
5569





3094
CCGUCAAU G CAUUUUGC
773
CCAAAATC GGCTAGCTACAACGA ATTCACGG
5570





3096
CUCAAUGC A UUUUGCUG
774C
ACCAAAA GGCTAGCTACAACGA GCATTCAC
5571





3102
GCAUUUUG G UGCGGAAA
775
TTTCCGCA GGCTAGCTACAACGA CAAAATGC
5572





3204
AUUUUGGU G CGGAAAGU
776
ACTTTCCG GGCTAGCTACAACGA ACCAAAAT
5573





3211
UCCCCAAA G UCGCUGGC
777
CCCACCGA GGCTAGCTACAACGA TTTCCGCA
5574





3215
GAAAGUCG G UGGGGGGC
778
GCCCCCGA GGCTAGCTACAACGA CGACTTTC
5575





3122
GGUGGGGG G CAAUAUGU
779
ACATATTG GGCTAGCTACAACGA CCCCCACC
5576





3125
GGGGGGCA A UAUGUCGA
780
TGGACATA GGCTAGCTACAACGA TGCCCCCC
5577





3127
CCGCCAAU A UGUCCAAA
781
TTTGGACA GGCTAGCTACAACGA ATTGCCCC
5578





3129
GGCAAUAU G UCCAAAUG
782
CATTTGGA GGCTAGCTACAACGA ATATTGCC
5579





3135
AUCUCCAA A UGGCCUUC
783
GAACCCGA GGCTAGCTACAACGA TTGGACAT
5580





3138
UCCAAAUG G CCUUCAUG
784
CATCAAGG GGCTAGCTACAACGA CATTTGGA
5581





3144
UGGCCUUC A UCAAGUUG
785
CAACTTCA GGCTAGCTACAACGA GAAGGCCA
5582





3149
UUCAUCAA G UUGCCCGA
786
TCCCCCAA GGCTAGCTACAACGA TTCATCAA
5583





3153
UCAACUUC G CCCAAUUC
787
CAATTCCC GGCTAGCTACAACGA CAACTTCA
5584





3158
UUCCCCCA A UUCAAACC
788
CCTTTCAA GGCTAGCTACAACCA TCCCCCAA
5585





3166
AUUCAAAC G UACCUCCC
789
CCCACCTA GGCTAGCTACAACCA CTTTCAAT
5586





3168
UCAAAGCU A CCUCCCUC
790
CACGCACG GGCTAGCTACAACGA ACCTTTCA
5587





3170
AAACCUAC G UCCCUCUA
791
TACACCCA GGCTAGCTACAACCA CTACCTTT
5588





3174
CUACCUCC G UCUAUCAC
792
GTCATACA GGCTAGCTACAACCA CCACGTAC
5589





3178
GUCCCUCU A UCACCACC
793
CCTCGTCA GGCTAGCTACAACGA ACACCCAC
5590





3182
CGUCUAUC A CCACCUCA
794
TGAGGTGG GGCTAGCTACAACGA CATAGACG
5591





3184
CUAUGACC A CCUCACUC
795
GAGTGAGG GGCTAGCTACAACGA GGTCATAG
5592





3189
ACCACCUG A CUCCACUG
796
CAGTGGAG GGCTAGCTACAACGA GAGGTGGT
5593





3194
CUCACUCC A CUGCAGGA
797
TCCTGCAG GGCTAGCTACAACGA GGAGTGAG
5594





3197
ACUCCACU G CAGGACUG
798
CAGTCCTG GGCTAGCTACAACGA AGTGGAGT
5595





3202
ACUCCAGG A CUGGGCCC
799
GGGCCCAG GGCTAGCTACAACGA CCTGCAGT
5596





3207
AGGACUGG G CCCACACA
800
TGTGTGGG GGCTAGCTACAACGA CCAGTCCT
5597





3211
CUGGGCCC A CACAGGUC
801
GACCTGTG GGCTAGCTACAACGA GGGCCCAG
5598





3213
GGGCCCAC A CAGGUCUA
802
TAGACCTG GGCTAGCTACAACGA GTGGGCCC
5599





3217
CCACACAG G UCUACCAG
803
CTCGTAGA GGCTAGCTACAACGA CTGTGTGG
5600





3221
ACAGGUCU A CGAGACCU
804
AGGTCTCG GGCTAGCTACAACGA AGACCTGT
5601





3226
UCUACCAG A CCUGGCGG
805
CCGCCAGG GGCTAGCTACAACGA CTCGTAGA
5602





3231
GAGACCUG G CGGUACCC
806
CGCTACCG GGCTAGCTACAACGA CAGGTCTC
5603





3234
ACCUGGCG G UAGCGGUC
807
CACCGCTA GGCTAGCTACAACGA CGCCACGT
5604





3237
UGGCGGUA G CGGUCCAG
808
CTCGACCG GGCTAGCTACAACGA TACCGCCA
5605





3240
CGGUAGCG G UCGACCCC
809
GGGCTCGA GGCTAGCTACAACGA CCCTACCG
5606





3245
GCGGUCGA G CCCCUCGU
810
ACGACGCG GGCTAGCTACAACGA TCGACCGC
5607





3249
UCGACCCC G UCGUCUUC
811
GAACACGA GGCTAGCTACAACGA CGGCTCGA
5608





3252
ACCCCGUC G UCUUCUCC
812
GGACAACA GGCTAGCTACAACGA GACGCGCT
5609





3262
CUUCUCCG A CAUGGAAA
813
TTTCCATG GGCTAGCTACAACGA CGGAGAAG
5610





3264
UCUCCGAC A UGGAAAUC
814
GATTTCGA GGCTAGCTACAACGA GTCCGAGA
5611





3270
ACAUCGAA A UCAACAUC
815
GATCTTGA GGCTAGCTACAACGA TTCCATGT
5612





3276
AAAUCAAG A UCAUCACC
816
CGTGATCA GGCTAGCTACAACGA CTTCATTT
5613





3279
UCAAGAUC A UCACCUGG
817
CCAGGTCA GGCTAGCTACAACGA GATCTTGA
5614





3282
AGAUCAUC A CCUGGGGC
818
CCCCCAGG GGCTAGCTACAACGA GATCATCT
5615





3295
GGGGGGAC A CACCGCCG
819
CCGCGGTG GGCTAGCTACAACGA CTCCCCCC
5616





3297
GGCCAGAC A CCGCGCCG
820
CGCCCCCC CCCTAGCTACAACGA GTCTCCCC
5617





3300
GAGACACC G CGCCCUGU
821
ACACGCCG GGCTAGCTACAACGA GGTGTCTC
5618





3303
ACACCCCG G CGUGUCGG
822
CCCACACG GGCTAGCTACAACGA CGCGGTGT
5619





3305
ACCGCGGC G UGUGGGGA
823
TCCCCACA GGCTAGCTACAACGA GCCGCGGT
5620





3307
CCCGCCGU G UCGCCACA
824
TGTCCCGA GGCTAGCTACAACGA ACGCCGCG
5621





3313
GUGUGCGG A CAUCAUUA
825
TAATCATG GGCTAGCTACAACGA CCCCACAC
5622





3315
GUGGCGAC A UCAUUAUG
826
CATAATGA GGCTAGCTACAACGA GTCCCCAC
5623





3318
GGGACAUC A UUAUGGCU
827
ACCCATAA GGCTAGCTACAACGA GATCTCCC
5624





3321
ACAUCAUU A UGGGUCUA
828
TACACCGA GGCTAGCTACAACGA AATGATGT
5625





3325
CAUUAUCG G UCUACCUG
829
CAGGTACA GGCTAGCTACAACGA CCATAATG
5626





3329
AUGGGUCU A CCUGUCUC
830
GAGACAGG GGCTAGCTACAACGA AGACCCAT
5627





3333
CUCUACCU G UCUCCGCC
831
CGCGCAGA GGCTAGCTACAACGA AGGTAGAC
5628





3339
CUGUCUCC G CCCCAACC
832
CCTTCCCC GGCTAGCTACAACGA CCACACAC
5629





3357
GCACGCAG A UACUCCUA
833
TAGGACTA GGCTAGCTACAACGA CTCCCTCC
5630





3359
AGGCAGAU A CUCCUACC
834
CCTACGAG GGCTAGCTACAACGA ATCTCCCT
5631





3368
CUCCUACG A CCACCCGA
835
TCCCCTCC GGCTAGCTACAACGA CCTAGCAC
5632





3372
UACCACGA G CCCACACU
836
ACTCTCCC GGCTAGCTACAACGA TCCTCCTA
5633





3376
ACCACCCG A CAGUCUUG
837
CAACACTG GGCTAGCTACAACGA CGGCTCCT
5634





3379
ACCCCACA G UCUUGAGG
838
CCTCAACA CCCTAGCTACAACGA TCTCCCCT
5635





3389
CUUCACCC G CACGGCUG
839
CACCCCTC CCCTAGCTACAACGA CCCTCAAC
5636





3395
CCCCACCC G UCCCCACU
840
ACTCCCGA CCCTAGCTACAACGA CCCTCCCC
5637





3398
CAGGGGUG G CGACUCCU
841
AGGAGTCG GGCTAGCTACAACGA CACCCCTG
5638





3401
GCGUGGCG A CUCCUCGC
842
GCGACGAG GGCTAGCTACAACGA CCCCACCC
5639





3408
GACUCCUC G CGCCCAUU
843
AATGGGCG GGCTAGCTACAACGA CACGAGTC
5640





3410
CUCCUCCC G CCCAUUAC
844
CTAATGCC CCCTAGCTACAACGA CCCACGAC
5641





3414
UCGCGCCC A UUACGGCC
845
GGCCCTAA GGCTAGCTACAACGA CGGCGCGA
5642





3417
CGCCCAUU A CGGCCUAC
846
GTACCCCC GGCTAGCTACAACGA AATCCCCC
5643





3420
CCAUUACC G CCUACUCC
847
CCACTAGC GGCTAGCTACAACGA CCTAATGC
5644





3424
UACGCCCU A CUCCCAAC
848
GTTCCCAG GGCTAGCTACAACGA ACCCCCTA
5645





3431
UACUCCCA A CACACCCC
849
CCCCTCTC CCCTAGCTACAACGA TCGCAGTA
5646





3435
CCCAACAC A CCCCCGCC
850
GCCCCGCG CCCTAGCTACAACGA CTCTTCCG
5647





3437
CAACACAC G CGGGCCCU
851
AGCCCCCG GGCTAGCTACAACGA CTCTCTTG
5648





3442
GACGCGGG G CCUGUUUG
852
CAAACAGG GGCTAGCTACAACGA CCCGCGTC
5649





3446
CGGGGCCU G UUUGGCUG
853
CAGCCAAA GGCTAGCTACAACGA AGGCCCCG
5650





3451
CCUGUUUG G CUGCAUUA
854
TAATGCAG GGCTAGCTACAACGA CAAACAGG
5651





3454
GUUUGGCU G CAUUAUCA
855
TGATAATG GGCTAGCTACAACGA AGCCAAAC
5652





3456
UUGGCUGC A UUAUCACC
856
GGTGATAA GGCTAGCTACAACGA GCAGCCAA
5653





3459
GCUGCAUU A UCACCAGC
857
GCTGGTGA GGCTAGCTACAACGA AATGCAGC
5654





3462
GCAUUAUC A CCAGCCUC
858
GAGGCTGG GGCTAGCTACAACGA GATAATGC
5655





3466
UAUCACGA G CCUCACGG
859
CCGTGAGG GGCTAGCTACAACGA TGGTGATA
5656





3471
CCAGCCUC A CGGGCCGG
860
CCGGCCCG GGCTAGCTACAACGA GAGGCTGG
5657





3475
CCUCACGG G CCGGGACA
861
TGTCCCGG GGCTAGCTACAACGA CCGTGAGG
5658





3481
GGGCCGGG A CAAGAACC
862
GGTTCTTG GGCTAGCTACAACGA CCCGGCCC
5659





3487
GGACAAGA A CCAAGUCG
863
CGACTTGG GGCTAGCTACAACGA TCTTGTCC
5660





3492
AGAACCAA G UCGAGGGG
864
CCCCTCGA GGCTAGCTACAACGA TTGGTTCT
5661





3504
AGGGGGAA G UUCAAGUG
865
CACTTGAA GGCTAGCTACAACGA TTCCCCCT
5662





3510
AAGUUCAA G UGGUUUCC
866
GGAAACGA GGCTAGCTACAACGA TTGAACTT
5663





3513
UUCAAGUG G UUUCCACC
867
GGTGGAAA GGCTAGCTACAACGA CACTTGAA
5664





3519
UGGUUUCC A CCGCGACG
868
CGTCGCGG GGCTAGCTACAACGA GGAAACCA
5665





3522
UUUCCACC G CGACGCAG
869
CTGCGTCG GGCTAGCTACAACGA GGTGGAAA
5666





3525
CCACCGCG A CGCAGUCU
870
AGACTGCG GGCTAGCTACAACGA CGCGGTGG
5667





3527
ACCGCGAC G CAGUCUUU
871
AAAGACTG GGCTAGCTACAACGA GTCGCGGT
5668





3530
GCGACGCA G UCUUUCCU
872
AGGAAAGA GGCTAGCTACAACGA TGCGTCGC
5669





3540
CUUUCCUA G CGACCUCC
873
GCAGGTCG GGCTAGCTACAACGA TAGGAAAG
5670





3543
UCCUAGCG A CCUGCGUC
874
GACCCAGG GGCTAGCTACAACGA GGCTAGGA
5671





3547
AGCCACCU G CGUCAACG
875
CGTTGACG GGCTAGCTACAACGA AGGTCGCT
5672





3549
CGACCUGC G UCAACGGC
876
GCCGTTCA GGCTAGCTACAACGA GCAGCTCC
5673





3553
CUCCGUCA A CCGCGUGU
877
ACACCCCG GGCTAGCTACAACGA TCACGCAG
5674





3556
CGUCAACG G CGUGUGCU
878
AGCACACG GGCTAGCTACAACGA CGTTGACG
5675





3558
UCAACGCC G UGUCCUGC
879
CCAGCACA CCCTAGCTACAACGA CCCGTTCA
5676





3560
AACCGCGU G UGCUCCAC
880
GTCCACGA GGCTAGCTACAACGA ACGCCCTT
5677





3562
CCGCGUCU G CUGGACUG
881
CAGTCCAG GGCTAGCTACAACGA ACACGCCG
5678





3567
UGUGCUGG A CUGUCUAC
882
CTAGACAG GGCTAGCTACAACGA CCACCACA
5679





3570
CCUCCACU G UCUACCAC
883
CTGCTACA GGCTAGCTACAACGA ACTCCAGC
5680





3574
GACUCUCU A CCACGCCC
884
CGCCGTGG GGCTAGCTACAACGA AGACAGTC
5681





3577
UCUCUACC A CGCCGCCC
885
CCGCGCCC GGCTAGCTACAACGA CGTAGACA
5682





3580
CUACCACG G CGCCGCCU
886
AGCCCGCG GGCTAGCTACAACGA CGTGGTAG
5683





3582
ACCACCCC G CCCCCUCA
887
TCAGCCCG GGCTAGCTACAACGA GCCCTCGT
5684





3586
CGCCGCCC G CUCAAAGA
888
TCTTTGAG GGCTAGCTACAACGA CGCCGCCG
5685





3594
CCUCAAAC A CCCUAGCC
889
CGCTACGC CCCTAGCTACAACGA CTTTGAGC
5686





3600
AGACCCUA G CCGGCCCA
890
TCCCCCGG GGCTAGCTACAACGA TAGGGTCT
5687





3604
CCUAGCCG G CCCAAACC
891
CCTTTGCG GGCTAGCTACAACGA CGCCTACG
5688





3613
CCCAAAGG G UCCAAUCA
892
TGATTCGA GGCTAGCTACAACGA CCTTTGGC
5689





3618
AGGGUCCA A UCACCCAA
893
TTGGGTGA GGCTAGCTACAACGA TGGACCCT
5690





3621
GUCCAAUC A CCCAAAUC
894
CATTTGCC GGCTAGCTACAACGA GATTGCAC
5691





3627
UCACCCAA A UGUACACC
895
GGTGTACA GGCTAGCTACAACGA TTGGGTGA
5692





3629
ACCCAAAU G UACACCAA
896
TTCGTGTA GGCTAGCTACAACGA ATTTGCGT
5693





3631
CCAAAUGU A CACCAAUG
897
CATTCGTG GGCTAGCTACAACGA ACATTTGG
5694





3633
AAAUGUAC A CCAAUCUA
898
TACATTGG GGCTAGCTACAACGA CTACATTT
5695





3637
CUACACCA A UCUAGACC
899
CCTCTACA CCCTAGCTACAACGA TCGTGTAC
5696





3639
ACACCAAU G UACACCAG
900
CTCCTCTA CCCTAGCTACAACGA ATTCCTCT
5697





3643
CAAUCUAC A CCAGGACC
901
CCTCCTCC CCCTAGCTACAACGA CTACATTC
5698





3649
ACACCACC A CCUCCUCC
902
CCACCACC GGCTAGCTACAACGA CCTCCTCT
5699





3654
ACCACCUC G UCCCAUGG
903
CCATCCGA CCCTAGCTACAACGA CACCTCCT
5700





3659
CUCGUCGG A UGGCCGGC
904
GCCGGCGA GGCTAGCTACAACGA CCCACGAG
5701





3662
GUCGGAUG G CCGGCGCC
905
GGCGCCGG GGCTAGCTACAACGA CATCCGAC
5702





3666
GAUGGCCG G CGCCCCCC
906
GGGGGGCG CCCTAGCTACAACGA CGGCCATC
5703





3668
UGGCCGGC G CCCCCCGG
907
CCGGGGGG GGCTAGCTACAACGA GCCGGCCA
5704





3678
CCCCCGGA G CGCGGUCC
908
GGACCGCG GGCTAGCTACAACGA TCCGGGGG
5705





3680
CCCGGAGC G CGGUCCUU
909
AAGGACCG GGCTAGCTACAACGA GCTCCGGG
5706





3683
GGAGCGCG G UCCUUGAC
910
GTCAAGGA GGCTAGCTACAACGA CGCGCTCC
5707





3690
GGUCCUUG A CACCAUGC
911
GCATGGTG GGCTAGCTACAACGA CAAGGACC
5708





3692
UCCUUGAC A CCAUGCAC
912
GTGCATGG GGCTAGCTACAACGA GTCAAGGA
5709





3695
UUGACACC A UGCACCUG
913
CAGGTGCA GGCTAGCTACAACGA GGTGTCAA
5710





3697
GACACCAU G CACCUGCG
914
CGCAGGTG GGCTAGCTACAACGA ATGGTGTC
5711





3699
CACCAUGC A CCUGCGGC
915
GCCGCAGG GGCTAGCTACAACGA GCATGGTG
5712





3703
AUGCACCU G CGGCGGCU
916
AGCCGCCG GGCTAGCTACAACGA AGGTGCAT
5713





3706
CACCUGCG G CGGCUCGG
917
CCGAGCCG GGCTAGCTACAACGA CGCAGGTG
5714





3709
CUGCGGCG G CUCGGACC
918
GGTCCGAG GGCTAGCTACAACGA CGCCGCAG
5715





3715
CGGCUCGG A CCUUUACU
919
AGTAAAGG GGCTAGCTACAACGA CCGAGCCG
5716





3721
GGACCUUU A CUUGGUCA
920
TGACCAAG GGCTAGCTACAACGA AAAGGTCC
5717





3726
UUUACUUG G UCACGAGA
921
TCTCGTGA GGCTAGCTACAACGA CAAGTAAA
5718





3729
ACUUGGUC A CGACACAC
922
GTGTCTCG GGCTAGCTACAACGA GACCAAGT
5719





3734
GUCACGAG A CACGCUGA
923
TCAGCCTG GGCTAGCTACAACGA CTCGTGAC
5720





3736
CACGAGAC A CGCUGAUG
924
CATCAGCG GGCTAGCTACAACGA GTCTCGTG
5721





3738
CGAGACAC G CUGAUGUC
925
GACATCAG GGCTAGCTACAACGA GTGTCTCG
5722





3742
ACACGCUG A UGUCAUUC
926
GAATGACA GGCTAGCTACAACGA CAGCGTGT
5723





3744
ACGCUGAU G UCAUUCCG
927
CGGAATGA GGCTAGCTACAACGA ATCAGCGT
5724





3747
CUGAUGUC A UUCCGGUG
928
CACCGGAA GGCTAGCTACAACGA GACATCAG
5725





3753
UCAUUCCG G UGCGCCGG
929
CCGGCGCA GGCTAGCTACAACGA CGGAATGA
5726





3755
AUUCCGGU G CGCCGGCG
930
CGCCGGCG GGCTAGCTACAACGA ACCGGAAT
5727





3757
UCCGGUGC G CCGGCGGG
931
CCCGCCGG GGCTAGCTACAACGA GCACCGGA
5728





3761
GUGCGCCG G CGGGGUGA
932
TCACCCCG GGCTAGCTACAACGA CGGCGCAC
5729





3766
CCGGCGGG G UGACAGCA
933
TGCTGTCA GGCTAGCTACAACGA CCCGCCGG
5730





3769
GCGGGGUG A CAGCAGGG
934
CCCTGCTG GGCTAGCTACAACGA CACCCCGC
5731





3772
GGGUGACA G CAGGGGGA
935
TCCCCCTG GGCTAGCTACAACGA TGTCACCC
5732





3781
CAGGGGGA G CUUACUAU
936
ATAGTAAG GGCTAGCTACAACGA TCCCCCTG
5733





3785
GGGAGCUU A CUAUCCCC
937
GGGGATAG GGCTAGCTACAACGA AAGCTCCC
5734





3788
AGCUUACU A UCCCCCAG
938
CTGGGGGA GGCTAGCTACAACGA AGTAAGCT
5735





3797
UCCCCCAG G CCCAUCUC
939
GAGATGGG GGCTAGCTACAACGA CTGGGGGA
5736





3801
CCAGGCCC A UCUCCUAC
940
GTAGGAGA GGCTAGCTACAACGA GGGCCTGG
5737





3808
CAUCUCCU A CUUGAAGG
941
CCTTCAAG GGCTAGCTACAACGA AGGAGATG
5738





3817
CUUGAAGG G CUCCUCGG
942
CCGAGGAG GGCTAGCTACAACGA CCTTCAAG
5739





3826
CUCCUCGG G CGGUCCAC
943
GTGGACCG GGCTAGCTACAACGA CCGAGGAG
5740





3829
CUCGGGCG G UCCACUGC
944
GCAGTGGA GGCTAGCTACAACGA CGCCCGAG
5741





3833
GGCGGUCC A CUGCUCUG
945
CAGAGCAG GGCTAGCTACAACGA GGACCGCC
5742





3836
GGUCCACU G CUCUGCCC
946
GGGCAGAG GGCTAGCTACAACGA AGTCGACC
5743





3841
ACUGCUCU G CCCUUCGG
947
CCGAAGGC GGCTAGCTACAACGA ACAGCAGT
5744





3851
CCUUCGGG G CACGUUCU
948
ACAACGTG GGCTAGCTACAACGA CCCGAACC
5745





3853
UUCGGGGC A CGUUGUGG
949
CCACAACG GGCTAGCTACAACGA GCCCCGAA
5746





3855
CGGGGCAC G UUGUGGGC
950
GCCCACAA GGCTAGCTACAACGA GTGCCCCG
5747





3858
GGCACGUU G UGGCCAUC
951
GATGCCGA GGCTAGCTACAACGA AACGTGCC
5748





3862
CGUUGUGG G CAUCUUCC
952
CGAAGATG GGCTAGCTACAACGA CCACAACG
5749





3864
UUGUGGGC A UCUUCCGG
953
CCGGAAGA GGCTAGCTACAACGA GCCCACAA
5750





3873
UCUUCCGG G CUCCUGUG
954
CACACCAC GGCTAGCTACAACGA CCGGAAGA
5751





3876
UCCGCCCU G CUGUCUCC
955
GCACACAG GGCTAGCTACAACGA AGCCCGGA
5752





3879
CGGCUGCU G UGUGCACC
956
GGTCCACA GGCTAGCTACAACGA ACCAGCCC
5753





3881
CCUCCUGU G UCCACCCG
957
CCGGTGCA GGCTAGCTACAACGA ACAGCACC
5754





3883
UCCUGUGU G CACCCGCG
958
CCCGGGTC GGCTAGCTACAACGA ACACAGCA
5755





3885
CUGUGUGC A CCCGCGGG
959
CCCCCCGG GGCTAGCTACAACGA CCACACAG
5756





3894
CCCGCGGG G UUGCGAAG
960
CTTCGCAA GGCTAGCTACAACGA CCCCCGGG
5757





3897
GGGCGCUU G CGAAGCCC
961
CCCCTTCC GGCTAGCTACAACGA AACCCCCC
5758





3903
UUGCGAAG G CGGUCGAC
962
GTCCACCG GGCTAGCTACAACGA CTTCGCAA
5759





3906
CGAAGGCG G UGGACUUU
963
AAAGTCGA GGCTAGCTACAACGA CGCCTTCC
5760





3910
CCCGCUGG A CUUUGUAC
964
GTACAAAG GGCTAGCTACAACGA CCACCGCC
5761





3915
UGGACUUU G UACCCGUU
965
AACGGGTA GGCTAGCTACAACGA AAAGTCCA
5762





3917
GACUUUGU A CCCGUUGA
966
TCAACGGG GGCTAGCTACAACGA ACAAAGTC
5763





3921
UUGAUCCC G UUGAGUCU
967
AGACTCAA GGCTAGCTACAACGA GGGTACAA
5764





3926
CCCGUUGA G UCUAUGGA
968
TCCATAGA GGCTAGCTACAACGA TCAACGGG
5765





3930
UUGAGUCU A UGGAAACU
969
AGTTTCGA GGCTAGCTACAACGA AGACTCAA
5766





3936
CUAUGGAA A CUACCAUG
970
CATGGTAG GGCTAGCTACAACGA TTCCATAG
5767





3939
UGGAAACU A CCAUGCGG
971
CCGCATGG GGCTAGCTACAACGA AGTTTCCA
5768





3942
AAACUACC A UGCGGUCC
972
GGACCGCA GGCTAGCTACAACGA GGTAGTTT
5769





3944
ACUACCAU G CGGUCCCC
973
GGGGACCG GGCTAGCTACAACGA ATGGTAGT
5770





3947
ACCAUGCG G UCCCCGGU
974
ACCGGGGA GGCTAGCTACAACGA CGCATGGT
5771





3954
GGUCCCCG G UCUUCACG
975
CGTGAAGA GGCTAGCTACAACGA CGGGGACC
5772





3960
CGGUCUUC A CGGACAAC
976
GTTGTCCG GGCTAGCTACAACGA GAAGACCG
5773





3964
CUUCACGG A CAACUCGU
977
ACGAGTTG GGCTAGCTACAACGA CCGTGAAG
5774





3967
CACGGACA A CUCGUCCC
978
GGGACGAG GGCTAGCTACAACGA TGTCCGTG
5775





3971
GACAACUC G UCCCCCCC
979
GGGGGGGA GGCTAGCTACAACGA GAGTTGTC
5776





3981
CCCCCCGA G CCGUACCG
980
CGGTACGG GGCTAGCTACAACGA TGGGGGGG
5777





3984
CCCCAGCC G UACCGCAG
981
CTGCGGTA GGCTAGCTACAACGA GGCTGGGG
5778





3986
CCAGCCGU A CCGCAGAC
982
GTCTGCGG GGCTAGCTACAACGA ACGGCTGG
5779





3989
GCCGUACC G CAGACAUU
983
AATGTCTG GGCTAGCTACAACGA GGTACGGC
5780





3993
UACCGCAG A CAUUCCAA
984
TTGGAATG GGCTAGCTACAACGA CTGCGGTA
5781





3995
CCGCAGAC A UUCCAAGU
985
ACTTGGAA GGCTAGCTACAACGA GTCTGCGG
5782





4002
CAUUCCAA G UGGCCCAC
986
GTGGGCGA GGCTAGCTACAACGA TTGGAATG
5783





4005
UCCAAGUG G CCCACCUA
987
TAGGTGGG GGCTAGCTACAACGA CACTTGGA
5784





4009
AGUGGCCC A CCUACACG
988
CGTGTAGG GGCTAGCTACAACGA GGGCCACT
5785





4013
GCCCACCU A CACGCUCC
989
GGAGCGTG GGCTAGCTACAACGA AGGTGGGC
5786





4015
CCACCUAC A CGCUCCGA
990
TGGGAGCG GGCTAGCTACAACGA GTAGGTGG
5787





4017
ACCUACAC G CUCCCACU
991
AGTGGGAG GGCTAGCTACAACGA GTGTAGGT
5788





4023
ACGCUCCC A CUGGCAGC
992
GCTGCCAG GGCTAGCTACAACGA GGGAGCGT
5789





4027
UCCCACUG G CAGCGGCA
993
TGCCGCTG GGCTAGCTACAACGA CAGTGGGA
5790





4030
CACUGGCA G CGGCAAGA
994
TCTTGCCG GGCTAGCTACAACGA TGCCAGTG
5791





4033
UGGCAGCG G CAAGAGCA
995
TGCTCTTG GGCTAGCTACAACGA CGCTGCCA
5792





4039
CGGCAAGA G CACUAAGG
996
CCTTAGTG GGCTAGCTACAACGA TCTTGCCG
5793





4041
GCAAGAGC A CUAAGGUA
997
TACCTTAG GGCTAGCTACAACGA GCTCTTGC
5794





4047
GCACUAAG G UACCGGCU
998
AGCCGGTA GGCTAGCTACAACGA CTTAGTGC
5795





4049
ACUAAGGU A CCGGCUGC
999
GCAGCCGG GGCTAGCTACAACGA ACCTTAGT
5796





4053
AGGUACCG G CUGCAUAU
1000
ATATGCAG GGCTAGCTACAACGA CGGTACCT
5797





4056
UACCGGCU G CAUAUGCA
1001
TGCATATG GGCTAGCTACAACGA AGCCGGTA
5798





4058
CCGGCUGC A UAUGCAGC
1002
GCTGCATA GGCTAGCTACAACGA GCAGCCGG
5799





4060
GGCUGCAU A UGCAGCCC
1003
GGGCTGCA GGCTAGCTACAACGA ATGCAGCC
5800





4062
CUGCAUAU G CAGCCCAA
1004
TTGGGCTG GGCTAGCTACAACGA ATATGCAG
5801





4065
CAUAUGCA G CCCAAGGG
1005
CCCTTGGG GGCTAGCTACAACGA TGCATATG
5802





4073
GCCCAAGG G UACAAAGU
1006
ACTTTGTA GGCTAGCTACAACGA CCTTGGGC
5803





4075
CCAAGGGU A CAAAGUGC
1007
GCACTTTG GGCTAGCTACAACGA ACCCTTGG
5804





4080
GGUACAAA G UGCUCGUC
1008
GACGAGCA GGCTAGCTACAACGA TTTGTACC
5805





4082
UACAAAGU G CUCGUCCU
1009
AGGACGAG GGCTAGCTACAACGA ACTTTGTA
5806





4086
AAGUGCUC G UCCUAAAU
1010
ATTTAGGA GGCTAGCTACAACGA GAGCACTT
5807





4093
CGUCCUAA A UCCGUCCG
1011
CGGACGGA GGCTAGCTACAACGA TTAGGACG
5808





4097
CUAAAUCC G UCCGUUAC
1012
GTAACGGA GGCTAGCTACAACGA GGATTTAG
5809





4101
AUCCGUCC G UUACCGCC
1013
GGCGGTAA GGCTAGCTACAACGA GGACGGAT
5810





4104
CGUCCGUU A CCGCCACC
1014
GGTGGCGG GGCTAGCTACAACGA AACGGACG
5811





4107
CCGUUACC G CCACCUUA
1015
TAAGGTGG GGCTAGCTACAACGA GGTAACGG
5812





4110
UUACCGCC A CCUUAGGG
1016
CCCTAAGG GGCTAGCTACAACGA GGCGGTAA
5813





4118
ACCUUAGG G UUUGGGGC
1017
GCCCCAAA GGCTAGCTACAACGA CCTAAGGT
5814





4125
GGUUUGGG G CGUAUAUG
1018
CATATACG GGCTAGCTACAACGA CCCAAACC
5815





4127
UUUGGGGC G UAUAUGUC
1019
GACATATA GGCTAGCTACAACGA GCCCCAAA
5816





4129
UGGGGCGU A UAUGUCUA
1020
TAGACATA GGCTAGCTACAACGA ACGCCCCA
5817





4131
GGGCGUAU A UGUCUAAG
1021
CTTAGACA GGCTAGCTACAACGA ATACGCCC
5818





4133
GCGUAUAU G UCUAAGGC
1022
GCCTTAGA GGCTAGCTACAACGA ATATACGC
5819





4140
UGUCUAAG G CACACGGU
1023
ACCGTGTG GGCTAGCTACAACGA CTTAGACA
5820





4142
UCUAAGGC A CACGGUGU
1024
ACACCGTG GGCTAGCTACAACGA GCCTTAGA
5821





4144
UAAGGCAC A CGGUGUCG
1025
CGACACCG GGCTAGCTACAACGA GTGCCTTA
5822





4147
GGCACACG G UGUCGAUC
1026
GATCGACA GGCTAGCTACAACGA CGTGTGCC
5823





4149
CACACGGU G UCGAUCCU
1027
AGGATCGA GGCTAGCTACAACGA ACCGTGTG
5824





4153
CGGUGUCG A UCCUAACA
1028
TGTTAGGA GGCTAGCTACAACGA CGACACCG
5825





4159
CGAUCCUA A CAUCAGAA
1029
TTCTGATG GGCTAGCTACAACGA TAGGATCG
5826





4161
AUCCUAAC A UCAGAACU
1030
AGTTCTGA GGCTAGCTACAACGA GTTAGGAT
5827





4167
ACAUCAGA A CUGGGGUA
1031
TACCCCAG GGCTAGCTACAACGA TCTGATGT
5828





4173
GAACUGGG G UAAGGACC
1032
GGTCCTTA GGCTAGCTACAACGA CCCAGTTC
5829





4179
GGGUAAGG A CCAUCACC
1033
GGTCATGG GGCTAGCTACAACGA CCTTACCC
5830





4182
UAAGGACC A UCACCACG
1034
CGTGGTGA GGCTAGCTACAACGA GGTCCTTA
5831





4185
GGACCAUC A CCACGGGC
1035
GCCCGTGG GGCTAGCTACAACGA GATGGTCC
5832





4188
CCAUCACC A CGGGCGCC
1036
GGCGCCCG GGCTAGCTACAACGA GGTGATGG
5833





4192
CACCACGG G CGCCCCGA
1037
TGGGGGCG GGCTAGCTACAACGA CCGTGGTG
5834





4194
CCACGGGC G CCCCCAUC
1038
CATGGGGG GGCTAGCTACAACGA GCCCGTGG
5835





4200
GCGCCCCC A UCACGUAC
1039
GTACGTGA GGCTAGCTACAACGA GGGGGCGC
5836





4203
CCCCCAUC A CGUACUCC
1040
GGAGTACG GGCTAGCTACAACGA GATGGGGG
5837





4205
CCCAUCAC G UACUCCAC
1041
GTGGAGTA GGCTAGCTACAACGA GTGATGGG
5838





4207
CAUCACGU A CUCCACCU
1042
AGGTGGAG GGCTAGCTACAACGA ACGTCATG
5839





4212
CGUACUCC A CCUAUGGC
1043
GCCATAGG GGCTAGCTACAACGA GGAGTACG
5840





4216
CUCCACCU A UGGCAAGU
1044
ACTTGCGA GGCTAGCTACAACGA AGGTGGAC
5841





4219
CACCUAUG G CAAGUUCC
1045
GGAACTTG GGCTAGCTACAACGA CATAGGTG
5842





4223
UAUGGCAA G UUCCUUGC
1046
GCAAGGAA GGCTAGCTACAACGA TTGCCATA
5843





4230
AGUUCCUU G CCGACGGU
1047
ACCGTCGG GGCTAGCTACAACGA AAGGAACT
5844





4234
CCUUGCCG A CGGUGGUU
1048
AACCACCG GGCTAGCTACAACGA CGGCAAGG
5845





4237
UGCCGACG G UGGUUGCU
1049
AGCAACGA GGCTAGCTACAACGA CGTCGGCA
5846





4240
CGACGGUG G UUGCUCUG
1050
CAGAGCAA GGCTAGCTACAACGA CACCGTCG
5847





4243
CGGUGGUU G CUCUGGGG
1051
CCCCAGAG GGCTAGCTACAACGA AACCACCG
5848





4252
CUCUGGGG G CGCCUAUG
1052
CATAGGCG GGCTAGCTACAACGA CCCCAGAG
5849





4254
CUGGGGGC G CCUAUGAC
1053
GTCATAGG GGCTAGCTACAACGA GCCCCCAG
5850





4258
GGGCGCCU A UGACAUCA
1054
TGATGTCA GGCTAGCTACAACGA AGGCGCCC
5851





4261
CGCCUAUG A CAUCAUAA
1055
TTATGATG GGCTAGCTACAACGA CATAGGCG
5852





4263
CCUAUGAC A UCAUAAUG
1056
CATTATGA GGCTAGCTACAACGA GTCATAGG
5853





4266
AUGACAUC A UAAUCUGU
1057
ACACATTA GGCTAGCTACAACGA GATGTCAT
5854





4269
ACAUCAUA A UGUGUGAU
1058
ATCACACA GGCTAGCTACAACGA TATGATGT
5855





4271
AUCAUAAU G UCUGAUGA
1059
TCATCACA GGCTAGCTACAACGA ATTATGAT
5856





4273
CAUAAUGU G UGAUGAGU
1060
ACTCATCA GGCTAGCTACAACGA ACATTATG
5857





4276
AAUGUGUG A UGAGUGCC
1061
GGCACTCA GGCTAGCTACAACGA CACACATT
5858





4280
UGUGAUGA G UGCCACUC
1062
GAGTGGCA GGCTAGCTACAACGA TCATCACA
5859





4282
UGAUCAGU G CCACUCAA
1063
TTGACTGG GGCTAGCTACAACGA ACTCATCA
5860





4285
UCAGUGCC A CUCAAUUG
1064
CAATTGAG GGCTAGCTACAACGA GGCACTCA
5861





4290
UCCACUCA A UUGACUCG
1065
CGAGTCAA GGCTAGCTACAACGA TGAGTCCC
5862





4294
CUCAAUUG A CUCGACUU
1066
AAGTCGAG GGCTAGCTACAACGA CAATTGAG
5863





4299
UUGACUCG A CUUCCAUU
1067
AATGGAAG GGCTAGCTACAACGA CCAGTCAA
5864





4305
CGACUUCC A UUUUGGGC
1068
GCCCAAAA GGCTAGCTACAACGA CGAAGTCG
5865





4312
CAUUUUGG G CAUCGGCA
1069
TGCCGATG GGCTAGCTACAACGA CCAAAATG
5866





4314
UUUUGGGC A UCGGCACA
1070
TGTGCCGA GGCTAGCTACAACGA GCCCAAAA
5867





4318
GGGCAUCG G CACAGUCC
1071
GGACTGTG GGCTAGCTACAACGA CGATGCCC
5868





4320
GCAUCGGC A CAGUCCUG
1072
CAGGACTC GGCTAGCTACAACGA GCCGATGC
5869





4323
UCGGCACA G UCCUGGAC
1073
GTCCAGGA GGCTAGCTACAACGA TGTCCCGA
5870





4330
AGUCCUGG A CCAAGCCC
1074
CCGCTTGG GGCTAGCTACAACGA CCAGGACT
5871





4335
UGGACCAA G CGGAGACG
1075
CGTCTCCG GGCTAGCTACAACGA TTGGTCCA
5872





4341
AAGCGGAG A CGGCUGGA
1076
TCCAGCCG GGCTAGCTACAACGA CTCCGCTT
5873





4344
CGGAGACG G CUGGAGCG
1077
CGCTCCAG GGCTAGCTACAACGA CGTCTCCG
5874





4350
CCGCUGCA G CGCGGCUC
1078
GAGCCGCG GGCTAGCTACAACGA TCCAGCCC
5875





4352
GCUGCAGC G CGGCUCGU
1079
ACGAGCCG GGCTAGCTACAACGA GCTCCAGC
5876





4355
GGAGCGCG G CUCGUCGU
1080
ACGACGAG GGCTAGCTACAACGA CGCGCTCC
5877





4359
CGCGGCUC G UCGUGCUC
1081
GAGCACGA GGCTAGCTACAACGA GAGCCGCG
5878





4362
GGCUCGUC G UGCUCGCC
1082
GGCGAGCA GGCTAGCTACAACGA GACGAGCC
5879





4364
CUCGUCGU G CUCGCCAC
1083
GTGGCGAG GGCTAGCTACAACGA ACGACGAG
5880





4368
UCGUGCUC G CCACCGCU
1084
AGCGGTGG GGCTAGCTACAACGA GAGGACCA
5881





4371
UGCUCGCC A CCGCUACG
1085
CGTAGCGG GGCTAGCTACAACGA GGCGAGCA
5882





4374
UCGCCACC G CUACGCCU
1086
AGGCGTAG GGCTAGCTACAACGA GGTGGCGA
5883





4377
CCACCGCU A CGCCUCCG
1087
CGGAGGCG GGCTAGCTACAACGA AGCGGTGG
5884





4379
ACCGCUAC G CCUCCGGG
1088
CCCGGAGG GGCTAGCTACAACGA GTAGCGGT
5885





4388
CCUCCGGG A UCGGUCAC
1089
GTGACCGA GGCTAGCTACAACGA CCCGGAGG
5886





4392
CGGGAUCG G UCACCGUG
1090
CACGGTGA GGCTAGCTACAACGA CGATCCCG
5887





4395
GAUCGGUC A CCGUGCCA
1091
TGGCACGG GGCTAGCTACAACGA GACCGATC
5888





4398
CGGUCACC G UGCCACAU
1092
ATGTGGCA GGCTAGCTACAACGA GGTGACCG
5889





4400
GUCACCCU G CCACAUCC
1093
GGATGTGG GGCTAGCTACAACGA ACGGTGAC
5890





4403
ACCGUGCC A CAUCCCAA
1094
TTGGGATG GGCTAGCTACAACGA GGCACGGT
5891





4405
CGUGCCAC A UCCCAACA
1095
TGTTGGGA GGCTAGCTACAACGA GTGGCACG
5892





4411
ACAUCCCA A CAUCGAGG
1096
CCTCGATG GGCTAGCTACAACGA TGGGATGT
5893





4413
AUCCCAAC A UCGAGGAG
1097
CTCCTCGA GGCTAGCTACAACGA GTTGGGAT
5894





4422
UCCAGGAG A UAGCCUUC
1098
CAACGCTA GGCTAGCTACAACGA CTCCTCGA
5895





4425
AGGAGAUA G CCUUGUCC
1099
GGACAAGG GGCTAGCTACAACGA TATCTCCT
5896





4430
AUAGCCUU G UCCAACAC
1100
GTGTTGGA GGCTAGCTACAACGA AAGGCTAT
5897





4435
CUUGUCCA A CACCGGAG
1101
CTCCGGTG GGCTAGCTACAACGA TGGACAAG
5898





4437
UGUCCAAC A CCGGAGAG
1102
CTCTCCGG GGCTAGCTACAACGA GTTGGACA
5899





4446
CCGGAGAG A UCCCCUUC
1103
GAAGGGGA GGCTAGCTACAACGA CTCTCCGG
5900





4456
CCCCUUCU A UGGCAAAG
1104
CTTTGCGA GGCTAGCTACAACGA ACAAGGCG
5901





4459
CUUCUAUC G CAAAGCGA
1105
TCCCTTTG GGCTAGCTACAACGA CATAGAAG
5902





4464
AUCCCAAA G CCAUCCCC
1106
GGGGATGG GGCTAGCTACAACGA TTTGCCAT
5903





4467
CCAAAGCC A UCCCCAUC
1107
CATCGCGA GGCTAGCTACAACGA GGCTTTCC
5904





4473
CCAUCCCC A UCGAGACC
1108
GGTCTCGA GGCTAGCTACAACGA GGGCATCC
5905





4479
CCAUCGAG A CCAUCAAA
1109
TTTGATGC GGCTAGCTACAACGA CTCGATGG
5906





4482
UCGAGACC A UCAAAGGG
1110
CCCTTTGA GGCTAGCTACAACGA GGTCTCGA
5907





4496
GGGCCCAC G CAUCUCAU
1111
ATCAGATG GGCTAGCTACAACGA CTCCCCCC
5908





4498
GGCGACGC A UCUCAUCU
1112
AGATCACA GGCTAGCTACAACGA GCCTCCCC
5909





4503
GCCAUCUC A UCUUCUCC
1113
GCAGAACA GGCTAGCTACAACGA GAGATGCC
5910





4510
CAUCUUCU G CCAUUCCA
1114
TCCAATGG GGCTAGCTACAACGA AGAAGATG
5911





4513
CUUCUGCC A UUCCAACA
1115
TCTTGGAA GGCTAGCTACAACGA GGCAGAAG
5912





4526
AAGAAGAA A UGUCACGA
1116
TCGTCACA GGCTAGCTACAACGA TTCTTCTT
5913





4528
CAAGAAAU G UGACGACC
1117
CCTCGTCA CCCTAGCTACAACGA ATTTCTTC
5914





4531
CAAAUGUC A CGAGCUCG
1118
CGAGCTCC CCCTAGCTACAACGA CACATTTC
5915





4535
UGUGACGA G CUCGCUGC
1119
CCAGCCAC GGCTAGCTACAACGA TCCTCACA
5916





4539
ACCACCUC G CUGCAAAG
1120
CTTTGCAC GGCTAGCTACAACGA CACCTCGT
5917





4542
ACCUCCCU G CAAAGCUC
1121
CACCTTTC GGCTAGCTACAACGA ACCCACCT
5918





4547
GCUGCAAA G CUGUCGGG
1122
CCCCACAC GGCTAGCTACAACGA TTTCCAGC
5919





4550
GCAAAGCU G UCGGCCCU
1123
AGCCCCGA GGCTAGCTACAACGA AGCTTTCC
5920





4555
GCUGUCCG G CCUCGCAC
1124
CTCCGACG GGCTAGCTACAACGA CCGACACC
5921





4562
CGCCUCGG A CUUAACCC
1125
GCGTTAAG GGCTAGCTACAACGA CCCACGCC
5922





4567
CGGACUUA A CGCUCUAG
1126
CTACAGCC CCCTAGCTACAACGA TAAGTCCG
5923





4569
GACUUAAC G CUCUACCC
1127
CCCTACAC CCCTAGCTACAACGA CTTAACTC
5924





4572
UUAACCCU G UACCCUAU
1128
ATACCCTA CCCTAGCTACAACGA ACCCTTAA
5925





4575
ACCCUCUA G CCUAUUAC
1129
CTAATACC CCCTAGCTACAACGA TACACCCT
5926





4577
CCUCUACC G UAUUACCC
1130
CGCTAATA CCCTAGCTACAACGA CCTACACC
5927





4579
UCUACCCU A UUACCCCC
1131
CCCCCTAA CCCTAGCTACAACGA ACCCTACA
5928





4582
ACCCUAUU A CCCCCCUC
1132
CACCCCCC GGCTAGCTACAACGA AATACCCT
5929





4588
UUACCCCG G UCUCCACC
1133
CCTCCACA CCCTAGCTACAACGA CCCCCTAA
5930





4594
CCCUCUCC A CGUCUCCC
1134
CCGACACC GGCTAGCTACAACGA CCACACCC
5931





4596
CUCUCCAC G UCUCCGUC
1135
GACCCACA GGCTAGCTACAACGA CTCGACAC
5932





4598
CUCCACCU G UCCCUCAU
1136
ATCACCGA CCCTAGCTACAACGA ACCTCCAC
5933





4602
ACGUGUCC G UCAUACCG
1137
CGGTATGA GGCTAGCTACAACGA GGACACGT
5934





4605
UGUCCGUC A UACCGGCC
1138
GGCCGGTA GGCTAGCTACAACGA GACGGACA
5935





4607
UCCGUCAU A CCGGCCAG
1139
CTGGCCGG GGCTAGCTACAACGA ATGACGGA
5936





4611
UCAUACCG G CCAGCGGG
1140
CCCGCTGG GGCTAGCTACAACGA CGGTATGA
5937





4615
ACCGGCGA G CGGGGACG
1141
CGTCCCCG GGCTAGCTACAACGA TGGCCGGT
5938





4621
CAGCGGGG A CGUCGUUC
1142
CAACGACG GGCTAGCTACAACGA CCCCGCTG
5939





4623
GCGGGGAC G UCGUUGUC
1143
GACAACGA GGCTAGCTACAACGA GTCCCCGC
5940





4626
GGGACGAC G UUGUCGUG
1144
CACGACAA GGCTAGCTACAACGA GACGTCCC
5941





4629
ACGUCGUU G UCGUGGCA
1145
TGCCACGA GGCTAGCTACAACGA AACGACGT
5942





4632
UCGUUGUC G UGGCAACA
1146
TGTTGCGA GGCTAGCTACAACGA GACAACGA
5943





4635
UUGUCGUG G CAACAGAC
1147
GTCTGTTG GGCTAGCTACAACGA CACGACAA
5944





4638
UCGUGGCA A CAGACGCU
1148
AGCGTCTG GGCTAGCTACAACGA TGCCACGA
5945





4642
GGCAACAG A CGCUCUAA
1149
TTAGAGCG GGCTAGCTACAACGA CTGTTGCC
5946





4644
CAACAGAC G CUCUAAUG
1150
CATTAGAG GGCTAGCTACAACGA GTCTGTTG
5947





4650
ACGCUCUA A UGACGGGC
1151
GCCCGTCA GGCTAGCTACAACGA TAGAGCGT
5948





4653
CUCUAAUG A CGGGCUAU
1152
ATAGCCCG GGCTAGCTACAACGA CATTAGAG
5949





4657
AAUGACGG G CUAUACCG
1153
CGGTATAG GGCTAGCTACAACGA CCGTCATT
5950





4660
GACGGGCU A UACCGGCG
1154
CGCCGGTA GGCTAGCTACAACGA AGCCCGTC
5951





4662
CGGGCUAU A CCGGCGAU
1155
ATCGCCGG GGCTAGCTACAACGA ATAGCCCG
5952





4666
CUAUACCG G CGAUUUUG
1156
CAAAATCG GGCTAGCTACAACGA CGGTATAG
5953





4669
UACCGGCG A UUUUGACU
1157
AGTCAAAA GGCTAGCTACAACGA CGCCGGTA
5954





4675
CGAUUUUG A CUCGGUGA
1158
TCACCGAG GGCTAGCTACAACGA CAAAATCG
5955





4680
UUGACUCG G UGAUCGAC
1159
GTCGATCA GGCTAGCTACAACGA CGAGTCAA
5956





4683
ACUCGGUG A UCGACUGU
1160
ACAGTCGA GGCTAGCTACAACGA CACCGAGT
5957





4687
GGUGAUCG A CUGUAAUA
1161
TATTACAG GGCTAGCTACAACGA CGATCACC
5958





4690
GAUCGACU G UAAUACAU
1162
ATGTATTA GGCTAGCTACAACGA AGTCGATC
5959





4693
CGACUGUA A UACAUGUG
1163
CACATGTA GGCTAGCTACAACGA TACAGTCG
5960





4695
ACUGUAAU A CAUGUGUC
1164
GACACATG GGCTAGCTACAACGA ATTACAGT
5961





4697
UGUAAUAC A UGUGUCAC
1165
GTGACACA GGCTAGCTACAACGA GTATTACA
5962





4699
UAAUACAU G UGUCACCC
1166
GGGTGACA GGCTAGCTACAACGA ATGTATTA
5963





4701
AUACAUGU G UCACCCAA
1167
TTGGGTGA GGCTAGCTACAACGA ACATGTAT
5964





4704
CAUGUGUC A CCCAAACA
1168
TGTTTGGG GGCTAGCTACAACGA GACACATG
5965





4710
UCACCCAA A CAGUCGAC
1169
GTCGACTG GGCTAGCTACAACGA TTGGGTGA
5966





4713
CCCAAACA G UCGACUUC
1170
GAAGTCGA GGCTAGCTACAACGA TGTTTGGG
5967





4717
AACAGUCG A CUUCAGCU
1171
AGCTGAAG GGCTAGCTACAACGA CGACTGTT
5968





4723
CGACUUCA G CUUGGACC
1172
GGTCCAAG GGCTAGCTACAACGA TGAAGTCG
5969





4729
CAGCUUGG A CCCUACCU
1173
AGGTAGGG GGCTAGCTACAACGA CCAAGCTG
5970





4734
UGGACCCU A CCUUCACC
1174
GGTGAAGG GGCTAGCTACAACGA AGGGTCCA
5971





4740
CUACCUUC A CCAUUGAG
1175
CTCAATGG GGCTAGCTACAACGA GAAGGTAG
5972





4743
CCUUCACC A UUGAGACG
1176
CGTCTCAA GGCTAGCTACAACGA GGTGAAGG
5973





4749
CCAUUGAG A CGACGACC
1177
GGTCGTCG GGCTAGCTACAACGA CTCAATGG
5974





4752
UUGAGACG A CGACCGUG
1178
CACGGTCG GGCTAGCTACAACGA CGTCTCAA
5975





4755
AGACGACG A CCGUGCCC
1179
GGCCACGG GGCTAGCTACAACGA CGTCGTCT
5976





4758
CGACGACC G UGCCCCAA
1180
TTGGGGCA GGCTAGCTACAACGA GGTCGTCG
5977





4760
ACGACCGU G CCCCAAGA
1181
TCTTGGGG GGCTAGCTACAACGA ACGGTCGT
5978





4768
GCCCCAAG A CGCAGUGU
1182
ACACTGCG GGCTAGCTACAACGA CTTGGGGC
5979





4770
CCCAAGAC G CAGUGUCC
1183
GGACACTG GGCTAGCTACAACGA GTCTTGGG
5980





4773
AAGACGCA G UGUCCCGC
1184
GCGGGACA GGCTAGCTACAACGA TGCGTCTT
5981





4775
GACGCAGU G UCCCGCUC
1185
GAGCGGGA GGCTAGCTACAACGA ACTGCGTC
5982





4780
AGUGUCCC G CUCGCAGA
1186
TCTGCGAG GGCTAGCTACAACGA GGGACACT
5983





4784
UCCCGCUC G CAGAGGCG
1187
CGCCTCTG GGCTAGCTACAACGA CAGCGGGA
5984





4790
UCGCAGAG G CGAGGUAG
1188
CTACCTCG GGCTAGCTACAACGA CTCTGCGA
5985





4795
GAGGCGAG G UAGGACCG
1189
CGGTCCTA GGCTAGCTACAACGA CTCGCCTC
5986





4800
CAGGUACC A CCGGUAGG
1190
CCTACCGC GGCTAGCTACAACGA CCTACCTC
5987





4804
UAGGACCG G UAGGGGCA
1191
TGCCCCTA GGCTAGCTACAACGA CGGTCCTA
5988





4810
CGGUAGGG G CAGGAGAG
1192
CTCTCCTG GGCTAGCTACAACGA CCCTACCG
5989





4819
CAGGAGAG G CAGAGACA
1193
TGTATATG GGCTAGCTACAACGA CTCTCCTG
5990





4821
GGAGAGGC A UAUACAGG
1194
CCTGTATA GGCTAGCTACAACGA GCCTCTCC
5991





4823
AGAGGCAU A UACAGGUU
1195
AACCTGTA GGCTAGCTACAACGA ATGCCTCT
5992





4825
AGGCAUAU A CAGGUUUG
1196
CAAACCTG GGCTAGCTACAACGA ATATGCCT
5993





4829
AUAUACAG G UUUCUGAC
1197
CTCACAAA QCCTAGCTACAACGA CTGTATAT
5994





4833
ACAGGUUU G UGACUCCA
1198
TGGAGTCA GGCTAGCTACAACGA AAACCTGT
5995





4836
GGUUUGUG A CUCCAGGA
1199
TCCTGGAG GGCTAGCTACAACGA CACAAACC
5996





4847
CCAGGAGA G CGGCCUUC
1200
GAAGGCCG GGCTAGCTACAACGA TCTCCTCG
5997





4850
GGAGAGCG G CCUUCGGG
1201
CCCGAAGG GGCTAGCTACAACGA CGCTCTCC
5998





4858
GCCUUCGG G CAUGUUCG
1202
CGAACATG GGCTAGCTACAACGA CCGAAGGC
5999





4860
CUUCGGGC A UGUUCGAC
1203
GTCGAACA GGCTAGCTACAACGA GCCCGAAG
6000





4862
UCGGGCAU G UUCGACUC
1204
GAGTCGAA GGCTAGCTACAACGA ATGCCCGA
6001





4867
CAUGUUCG A CUCCUCGG
1205
CCGAGGAG GGCTAGCTACAACGA CGAACATG
6002





4875
ACUCCUCG G UCCUGUGU
1206
ACACAGGA GGCTAGCTACAACGA CGAGCAGT
6003





4880
UCGGUCCU G UGUGAGUG
1207
CACTCACA GGCTAGCTACAACGA AGGACCGA
6004





4882
GGUCCUGU G UGAGUGCU
1208
AGCACTCA GGCTAGCTACAACGA ACAGGACC
6005





4886
CUGUGUGA G UGCUAUGA
1209
TCATAGCA GGCTAGCTACAACGA TCACACAG
6006





4888
GUGUGAGU G CUAUGACG
1210
CGTCATAG GGCTAGCTACAACGA ACTCACAC
6007





4891
UGAGUGCU A UGACGCGG
1211
CCGCGTCA GGCTAGCTACAACGA AGCACTCA
6008





4894
GUGCUAUG A CGCGGGAU
1212
ATCCCGCG GGCTAGCTACAACGA CATACCAC
6009





4896
GCUAUGAC G CGGGAUGU
1213
ACATCCCG GGCTAGCTACAACGA GTCATAGC
6010





4901
GACGCGGG A UGUGCUUG
1214
CAAGCACA GGCTAGCTACAACGA CCCGCGTC
6011





4903
CGCGGGAU G UGCUUGGU
1215
ACCAAGCA GGCTAGCTACAACGA ATCCCGCG
6012





4905
CGGGAUGU G CUUGGUAC
1216
GTACCAAG GGCTAGCTACAACGA ACATCCCG
6013





4910
UGUGCUUG G UACCACCU
1217
AGCTCGTA GGCTAGCTACAACGA CAAGCACA
6014





4912
UGCUUGGU A CGAGCUCA
1218
TGAGCTCG GGCTAGCTACAACGA ACCAAGCA
6015





4916
UGGUACGA G CUCACGCC
1219
GGCGTGAG GGCTAGCTACAACGA TCCTACCA
6016





4920
ACCACCUC A CGCCCGCC
1220
GGCGGGCG GGCTAGCTACAACGA GAGCTCGT
6017





4922
CACCUCAC G CCCGCCGA
1221
TCCGCCCC GGCTAGCTACAACGA CTGAGCTC
6018





4926
UCACGCCC G CCGAGACC
1222
GCTCTCGG GGCTAGCTACAACGA GGGCGTGA
6019





4932
CCCCCGAG A CCUCCCUU
1223
AACGGAGC GGCTAGCTACAACGA CTCCGCGC
6020





4938
AGACCUCC G UUACGUUG
1224
CAACCTAA GGCTAGCTACAACGA GGACCTCT
6021





4943
UCCGUUAG G UUGCGGGC
1225
GCCCGCAA GGCTAGCTACAACGA CTAACGCA
6022





4946
GUUAGCUU G CCGGCUUA
1226
TAAGCCCC GGCTAGCTACAACGA AACCTAAC
6023





4950
CGUUGCGC G CUUACCUA
1227
TAGCTAAG GGCTAGCTACAACGA CCGCAACC
6024





4954
CCGGCCUU A CCUAAAUA
1228
TATTTACG GGCTAGCTACAACGA AAGCCCGC
6025





4960
UUACCUAA A UACACCAG
1229
CTGGTGTA GGCTAGCTACAACGA TTAGGTAA
6026





4962
ACCUAAAU A CACCACGG
1230
CCCTGCTC GGCTAGCTACAACGA ATTTAGCT
6027





4964
CUAAAUAC A CCAGCCUU
1231
AACCCTGG GGCTAGCTACAACGA CTATTTAG
6028





4970
ACACCAGG G UUCCCCUU
1232
AACGGCAA GGCTAGCTACAACGA CCTCCTGT
6029





4973
CCACGCUU G CCCUUCUC
1233
CAGAAGGG GGCTAGCTACAACGA AACCCTCG
6030





4981
GCCCUUCU G CCACCACC
1234
GGTCCTCG GGCTAGCTACAACGA AGAAGGGC
6031





4987
CUGCCAGC A CCAUCUGC
1235
CCAGATGC GGCTAGCTACAACGA CCTCCCAG
6032





4990
CCACGACC A UCUCGAGU
1236
ACTCCAGA GGCTAGCTACAACGA CGTCCTCG
6033





4997
CAUCUCGA G UUCUGGGA
1237
TCCCAGAA GGCTAGCTACAACGA TCCACATC
6034





5008
CUCGGAGC G UCUCUUCA
1238
TGAACACA GGCTAGCTACAACGA CCTCCCAG
6035





5010
CCCACCCU G UCUUCACA
1239
TCTCAAGA GGCTAGCTACAACGA ACCCTCCC
6036





5016
CUGUCUUC A CACCCCUC
1240
CACCCCTC GGCTAGCTACAACGA CAACACAC
6037





5020
CUUCACAG G CCUCACCC
1241
CCCTCACC GGCTAGCTACAACGA CTCTCAAC
6038





5025
CACCCCUC A CCCACAUA
1242
TATGTCCC GGCTAGCTACAACGA CACCCCTC
6039





5029
CCUCACCC A CAUACAUC
1243
CATCTATG GGCTAGCTACAACGA CCCTCACC
6040





5031
UCACCCAC A UAGAUGCC
1244
CCCATCTA GGCTAGCTACAACGA GTGCCTGA
6041





5035
CCACAUAC A UCCCCACU
1245
AGTCGGCA GGCTAGCTACAACGA CTATGTGG
6042





5037
ACAUACAU G CCCACUUC
1246
CAACTCCC GGCTAGCTACAACGA ATCTATCT
6043





5041
ACAUCCCC A CUUCUUGU
1247
ACAACAAC GGCTAGCTACAACGA CCCCATCT
6044





5048
CACUUCUU G UCCCACAC
1248
CTCTCCGA GGCTAGCTACAACGA AACAACTC
6045





5055
UCUCCCAG A CCAACCAC
1249
CTCCTTCC GGCTAGCTACAACGA CTCCGACA
6046





5060
CACACCAA G CACCCACC
1250
CCTCCCTC GGCTAGCTACAACGA TTGCTCTC
6047





5064
CCAAGCAG G CAGGAGAA
1251
TTCTCCTG GGCTAGCTACAACGA CTGCTTGG
6048





5074
AGGAGAAA A CCUCCCCU
1252
AGGGGAGG GGCTAGCTACAACGA TTTCTCCT
6049





5083
CCUCCCCU A CCUGGUAG
1253
CTACCAGG GGCTAGCTACAACGA AGGGGAGG
6050





5088
CCUACCUG G UAGCAUAC
1254
GTATGCTA GGCTAGCTACAACGA CAGGTAGG
6051





5091
ACCUGGGA G CAUACCAA
1255
TTGGTATG GGCTAGCTACAACGA TACCAGGT
6052





5093
CUGGUAGC A UACCAAGC
1256
GCTTGGTA GGCTAGCTACAACGA GCTACCAG
6053





5095
GGUAGCAU A CCAAGCGA
1257
TGGCTTGG GGCTAGCTACAACGA ATGCTACC
6054





5100
CAUACCAA G CCACAGUG
1258
CACTGTGG GGCTAGCTACAACGA TTGGTATG
6055





5103
ACCAAGCC A CAGUGUGC
1259
GCACACTG GGCTAGCTACAACGA GGCTTGGT
6056





5106
AAGCCACA G UGUGCGCC
1260
GGCGCACA GGCTAGCTACAACGA TGTCGCTT
6057





5108
GCCACAGU G UCCUCCAC
1261
CTGCCCGA GGCTAGCTACAACGA ACTGTGGC
6058





5110
CACAGUGU G CGCCAGCG
1262
CCCTGGCG GGCTAGCTACAACGA ACACTGTG
6059





5112
CAGUGUGC G CCAGGGCU
1263
AGCCCTGG GGCTAGCTACAACGA CCACACTG
6060





5118
GCCCCACC G CUCACCCU
1264
AGCCTGAG CCCTAGCTACAACGA CCTCGCCC
6061





5124
CCGCUCAG G CUCCACCC
1265
CCCTCGAG GGCTAGCTACAACGA CTCACCCC
6062





5129
CAGGCUCC A CCCCCAUC
1266
GATCCGCC GGCTAGCTACAACGA GCAGCCTG
6063





5135
CCACCCCC A UCGUGGGA
1267
TCCCACGA GGCTAGCTACAACGA CCCGGTGG
6064





5138
CCCCCAUC G UCCCAUCA
1268
TCATCCGA GGCTAGCTACAACGA CATGGGGG
6065





5143
AUCCUCGC A UCAAAUCU
1269
ACATTTCA CCCTAGCTACAACGA CCCACGAT
6066





5148
GGGAUCAA A UGUGCAAC
1270
CTTCCACA GGCTAGCTACAACGA TTGATCCC
6067





5150
GAUCAAAU G UGGAACUG
1271
CACTTCGA GGCTAGCTACAACGA ATTTGATC
6068





5156
AUCUGGAA G UCUCUCAC
1272
GTCACACA GGCTAGCTACAACGA TTCCACAT
6069





5158
GUGGAAGU G UCUCACAC
1273
CTGTGAGA GGCTAGCTACAACGA ACTTCCAC
6070





5163
AGUGUCUC A CACGGCUA
1274
TAGCCCTG GGCTAGCTACAACGA CAGACACT
6071





5165
UGUCUCAC A CGCCUAAA
1275
TTTAGCCG GGCTAGCTACAACGA GTGAGACA
6072





5168
CUCACACG G CUAAAGCC
1276
GGCTTTAG GGCTAGCTACAACGA CGTGTGAG
6073





5174
CGGCUAAA G CCUACGCU
1277
AGCGTAGG GGCTAGCTACAACGA TTTAGCCG
6074





5178
UAAACCCU A CGCUACAC
1278
CTGTAGCG GGCTAGCTACAACGA AGCCTTTA
6075





5180
AAGCCUAC G CUACACCG
1279
CCCTGTAC GGCTAGCTACAACGA CTACCCTT
6076





5183
CCUACGCU A CACGGGCC
1280
GCCCCCTC GGCTAGCTACAACGA AGCGTACC
6077





5185
UACCCUAC A CGCCCCAA
1281
TTGCCCCC GGCTAGCTACAACGA CTACCGTA
6078





5189
CUACACCG G CCAACACC
1282
CGTGTTGG GGCTAGCTACAACGA CCCTGTAC
6079





5193
ACCCGCCA A CACCCCUG
1283
CACGGGTG GGCTAGCTACAACGA TCCCCCGT
6080





5195
GGCCCAAC A CCCCUGCU
1284
ACCACCCC GGCTAGCTACAACGA GTTCCCCC
6081





5201
ACACCCCU G CUCUAUAC
1285
CTATACAC CCCTAGCTACAACGA ACCCCTCT
6082





5204
CCCCUCCU G UAUACGCU
1286
ACCCTATA CCCTAGCTACAACGA ACCACCCC
6083





5206
CCUCCUCU A UACCCUAC
1287
CTACCCTA CCCTAGCTACAACGA ACACCACC
6084





5210
CUCUAUAC G CUACCACC
1288
CCTCCTAC CCCTAGCTACAACGA CTATACAC
6085





5217
CCCUACGA G CCCUCCAA
1289
TTCCACCC CCCTAGCTACAACGA TCCTACCC
6086





5220
UACCAGCC G UCCAAAAU
1290
ATTTTGGA GGCTAGCTACAACGA CCCTCCTA
6087





5227
CCUCCAAA A UCAUCUCA
1291
TCACATCA GGCTAGCTACAACGA TTTGCACC
6088





5230
CCAAAAUC A UCUCACCC
1292
CCGTGACA GGCTAGCTACAACGA CATTTTCC
6089





5232
AAAAUCAU G UCACCCUC
1293
CACCCTCA CCCTAGCTACAACGA ATCATTTT
6090





5235
AUCAUCUC A CCCUCACA
1294
TCTCACCC CCCTAGCTACAACGA CACATCAT
6091





5241
UCACCCUC A CACACCCC
1295
CCGCTCTC CCCTAGCTACAACGA CACCCTCA
6092





5243
ACCCUCAC A CACCCCAU
1296
ATCCCCTC GGCTAGCTACAACGA CTCACCCT
6093





5245
CCUCACAC A CCCCAUAA
1297
TTATCCCC CCCTAGCTACAACGA CTCTGACG
6094





5250
CACACCCC A UAACCAAA
1298
TTTCCTTA CCCTAGCTACAACGA CCCCTCTC
6095





5253
ACCCCAUA A CCAAAUAC
1299
CTATTTCC CCCTAGCTACAACGA TATCGCCT
6096





5258
AUAACCAA A UACAUCAU
1300
ATCATCTA CCCTAGCTACAACGA TTGCTTAT
6097





5260
AACCAAAU A CAUCAUGA
1301
TCATCATC CCCTAGCTACAACGA ATTTCCTT
6098





5262
CCAAAUAC A UCAUGACA
1302
TCTCATCA CCCTAGCTACAACGA GTATTTCC
6099





5265
AAUACAUC A UCACAUGC
1303
CCATCTCA CCCTAGCTACAACGA GATGTATT
6100





5268
ACAUCAUC A CAUCCAUG
1304
CATCCATC CCCTAGCTACAACGA CATCATCT
6101





5270
AUCAUCAC A UGCAUGUC
1305
CACATCGA CCCTAGCTACAACGA GTCATGAT
6102





5272
CAUCACAU G CAUCUCGG
1306
CCGACATG CCCTAGCTACAACGA ATGTCATG
6103





5274
UCACAUCC A UGUCGGCU
1307
ACCCCACA CCCTAGCTACAACGA CCATCTCA
6104





5276
ACAUGCAU G UCGGCUGA
1308
TCAGCCGA GGCTAGCTACAACGA ATGCATGT
6105





5280
GCAUGUCG G CUGACCUG
1309
CAGGTCAG GGCTAGCTACAACGA CGACATGC
6106





5284
GUCGGCUG A CCUGGAGG
1310
CCTCCAGG GGCTAGCTACAACGA CAGCCGAC
6107





5292
ACCUGGAG G UCGUCACC
1311
GGTGACGA GGCTAGCTACAACGA CTCCAGGT
6108





5295
UGGAGGUC G UCACCAGC
1312
GCTGGTGA GGCTAGCTACAACGA GACCTCCA
6109





5298
AGGUCCUC A CCAGCACC
1313
GGTGCTGG GGCTAGCTACAACGA GACGACCT
6110





5302
CGUCACGA G CACCUGGG
1314
CCCAGGTG GGCTAGCTACAACGA TGGTGACG
6111





5304
UCACCAGC A CCUGGGUG
1315
CACCCAGG GGCTAGCTACAACGA GCTGGTGA
6112





5310
GCACCUGG G UGCUAGUA
1316
TACTAGCA GGCTAGCTACAACGA CCAGGTGC
6113





5312
ACCUGGGU G CUAGUAGG
1317
CCTACTAG GGCTAGCTACAACGA ACCCAGGT
6114





5316
GGGUGCUA G UAGGUGGC
1318
GCCACCTA GGCTAGCTACAACGA TAGCACCC
6115





5320
GCUAGUAG G UGGCGUCC
1319
GGACGCGA GGCTAGCTACAACGA CTACTAGC
6116





5323
AGUAGGUG G CGUCCUGG
1320
CCAGGACG GGCTAGCTACAACGA CACCTACT
6117





5325
UAGGUGGC G UCCUGGCA
1321
TGCCAGGA GGCTAGCTACAACGA GCCACCTA
6118





5331
GCGUCCUG G CAGCUCUG
1322
CAGAGCTG GGCTAGCTACAACGA CAGGACGC
6119





5334
UCCUGUCA G CUCUGACC
1323
GGTCAGAG GGCTAGCTACAACGA TGCCACGA
6120





5340
CAGCUCUG A CCGCGUAU
1324
ATACGCGG GGCTAGCTACAACGA CAGAGCTG
6121





5343
CUCUGACC G CGUAUUGC
1325
GCAATACG GGCTAGCTACAACGA GGTCAGAG
6122





5345
CUGACCGC G UAUUGCCU
1326
AGGCAATA GGCTAGCTACAACGA GCGGTCAC
6123





5347
GACCGCGU A UUGCCUGA
1327
TCAGGCAA GGCTAGCTACAACGA ACGCGGTC
6124





5350
CGCGUAUU G CCUGACGA
1328
TCGTCAGG GGCTAGCTACAACGA AATACGCG
6125





5355
AUUGCCUG A CGACAGGC
1329
GCCTGTCG GGCTAGCTACAACGA CAGGCAAT
6126





5358
GCCUGACG A CAGGCAGC
1330
GCTGCCTG GGCTAGCTACAACGA CGTCAGGC
6127





5362
GACGACAG G CAGCGUGG
1331
CCACGCTG GGCTAGCTACAACGA CTGTCGTC
6128





5365
GACAGGCA G CGUGGUCA
1332
TGACCACG GGCTAGCTACAACGA TGCCTGTC
6129





5367
CAGCCAGC G UGGUCAUU
1333
AATGACGA GGCTAGCTACAACGA CCTGCCTG
6130





5370
GCAGCGUG G UCAUGGUG
1334
CACAATGA GGCTAGCTACAACGA CACGCTGC
6131





5373
GCGUGGUC A UUGUGGGC
1335
GCCCACAA GGCTAGCTACAACGA GACCACCC
6132





5376
UGGUCAUU G UGGGCAGA
1336
TCTGCCGA GGCTAGCTACAACGA AATGACCA
6133





5380
CAUUGUGG G CAGAAUCA
1337
TGATTCTG GGCTAGCTACAACGA CCACAATG
6134





5385
UGGGCAGA A UCAUCUUG
1338
CAAGATGA GGCTAGCTACAACGA TCTGCCCA
6135





5368
GCAGAAUC A UCUUGUCC
1339
GGACAAGA GGCTAGCTACAACGA GATTCTCC
6136





5393
AUCAUCUU G UCCGGGAA
1340
TTCCCGGA GGCTAGCTACAACGA AAGATGAT
6137





5402
UCCGGGAA G CCGGCUGU
1341
ACAGCCCG GGCTAGCTACAACGA TTCCCGGA
6138





5406
GGAAGCCG G CUGUUAUC
1342
GATAACAG GGCTAGCTACAACGA CGCCTTCC
6139





5409
AGCCGGCU G UUAUCCCC
1343
GGGGATAA GGCTAGCTACAACGA AGCCGGCT
6140





5412
CGGCUGUU A UCCCCGAC
1344
GTCGCCGA GGCTAGCTACAACGA AACAGCCG
6141





5419
UAUCCCCG A CAGGGAGG
1345
CCTCCCTG GGCTAGCTACAACGA CGGGGATA
6142





5427
ACAGGGAG G CUCUCUAC
1346
GTACAGAG GGCTAGCTACAACGA CTCCCTGT
6143





5434
GGCUCUCU A CCAGGAGU
1347
ACTCCTGG GGCTAGCTACAACGA AGAGAGCC
6144





5441
UACCAGGA G UUCGAUCA
1348
TCATCCAA GGCTAGCTACAACGA TCCTGCTA
6145





5446
CCACUUCC A UCACAUCC
1349
CCATCTCA CCCTAGCTACAACGA CCAACTCC
6146





5451
UCCAUCAG A UCCACCAC
1350
CTCCTCGA CCCTAGCTACAACGA CTCATCCA
6147





5459
AUGGACGA G UCUGCCUC
1351
CACCCACA GGCTAGCTACAACGA TCCTCCAT
6148





5461
CCACCACU G UGCCUCAC
1352
CTGACCGA GGCTAGCTACAACGA ACTCCTCC
6149





5463
ACCAGUCU G CCUCACAC
1353
CTCTCACC GGCTAGCTACAACGA ACACTCCT
6150





5468
UCUCCCUC A CACCUCCC
1354
GCCACCTG GGCTAGCTACAACGA CAGCCACA
6151





5470
UCCCUCAC A CCUCCCUU
1355
AACCCACC GGCTAGCTACAACGA CTCACCCA
6152





5479
CCUCCCUU A CAUCCAAC
1356
CTTCCATC CCCTAGCTACAACGA AACCCAGC
6153





5481
UCCCUUAC A UCGAACAG
1357
CTGTTCGA GGCTAGCTACAACGA GTAAGGGA
6154





5486
UACAUCCA A CACGCGAU
1358
ATCCCCTC GGCTAGCTACAACGA TCCATCTA
6155





5493
AACAGGGG A UCCACCUC
1359
GAGCTCGA GGCTAGCTACAACGA CCCCTCTT
6156





5495
CACCCCAU G CACCUCCC
1360
CCCACCTC GGCTAGCTACAACGA ATCCCCTG
6157





5498
CCGAUCGA G CUCCCCGA
1361
TCCGCCAC GGCTAGCTACAACGA TGCATCCC
6158





5502
UCCACCUC G CCCACCAC
1362
CTCCTCCC CCCTAGCTACAACGA CACCTCCA
6159





5507
CUCCCCGA G CAGUUCAA
1363
TTGAACTC CCCTAGCTACAACGA TCCGCCAC
6160





5510
GCCCACGA G UUCAACGA
1364
TGCTTCAA GGCTAGCTACAACGA TGCTCCCC
6161





5516
CAGUUCAA G CAGAAGGC
1365
GCCTTCTG GGCTAGCTACAACGA TTGAACTG
6162





5523
AGCAGAAG G CGCUCGGA
1366
TCCGAGCG GGCTAGCTACAACGA CTTCTGCT
6163





5525
CAGAAGGC G CUCGGAUU
1367
AATCCGAG GGCTAGCTACAACGA GCCTTCTG
6164





5531
GCGCUCGG A UUGCUGCA
1368
TGCAGCAA GGCTAGCTACAACGA CCGAGCGC
6165





5534
CUCCGAUU G CUGCAAAC
1369
GTTTGCAG GGCTAGCTACAACGA AATCCGAG
6166





5537
GGAUUGCU G CAAACAGC
1370
GCTGTTTG GGCTAGCTACAACGA AGCAATCC
6167





5541
UGCUGCAA A CAGCCACC
1371
GGTGGCTG GGCTAGCTACAACGA TTGCAGCA
6168





5544
UGCAAACA G CCACCAAC
1372
GTTGGTGG GGCTAGCTACAACGA TGTTTGCA
6169





5547
AAACAGCC A CCAACCAA
1373
TTGGTTGG GGCTAGCTACAACGA GGCTGTTT
6170





5551
AGCCACGA A CCAAGCGG
1374
CCGCTTGG GGCTAGCTACAACGA TGGTGGCT
6171





5556
CCAACCAA G CGGAGGCU
1375
AGCCTCCG GGCTAGCTACAACGA TTGGTTGG
6172





5562
AAGCGGAG G CUGCUGCU
1376
AGCAGCAG GGCTAGCTACAACGA CTCCGCTT
6173





5565
CGGAGGCU G CUGCUCCC
1377
GGGAGCAG GGCTAGCTACAACGA AGCCTCCG
6174





5568
AGGCUGCU G CUCCCGUG
1378
CACGGGAG GGCTAGCTACAACGA AGCAGCCT
6175





5574
CUGCUCCC G UGGUGGAA
1379
TTCCACGA GGCTAGCTACAACGA GGGAGCAG
6176





5577
CUCCCGUG G UGGAAUCC
1380
GGATTCGA GGCTAGCTACAACGA CACGGGAG
6177





5582
GUGGUGGA A UCCAAGUG
1381
CACTTGGA GGCTAGCTACAACGA TCCACCAC
6178





5588
GAAUCCAA G UGGCGAGC
1382
GCTCGCGA GGCTAGCTACAACGA TTGGATTC
6179





5591
UCCAAGUG G CGAGCCCU
1383
AGGGCTCG GGCTAGCTACAACGA CACTTGGA
6180





5595
AGUGGCGA G CCCUUGAG
1384
CTCAAGGG GGCTA0CTACAACGA TCGCCACT
6181





5604
CCCUUGAG G CUUUCUGG
1385
CCAGAAAG GGCTAGCTACAACGA CTCAAGGG
6182





5613
CUUUCUGG G CGAAGCAC
1386
GTGCTTCG GGCTAGCTACAACGA CCAGAAAG
6183





5618
UGGGCGAA G CACAUGUG
1387
CACATGTG GGCTAGCTACAACGA TTCGCCCA
6184





5620
GGCGAAGC A CAUGUGGA
1388
TCCACATG GGCTAGCTACAACGA GCTTCGCC
6185





5622
CGAAGCAC A UGUUGAAU
1389
ATTCCACA GGCTAGCTACAACGA GTGCTTCG
6186





5624
AAGCACAU G UGGAAUUU
1390
AAATTCGA GGCTAGCTACAACGA ATGTGCTT
6187





5629
CAUGUGGA A UUUCAUCA
1391
TGATGAAA GGCTAGCTACAACGA TCCACATG
6188





5634
GGAAUUUC A UCAGCGGG
1392
CCCGCTGA GGCTAGCTACAACGA GAAATTCC
6189





5638
UUUCAUCA G CGGGAUAC
1393
GTATCCCG GGCTAGCTACAACGA TGATGAAA
6190





5643
UCAGCGGG A UACAGUAC
1394
GTACTGTA GGCTAGCTACAACGA CCCGCTGA
6191





5645
AGCGGGAU A CAGUACCU
1395
AGGTACTG GGCTAGCTACAACGA ATCCCGCT
6192





5648
GGGAUACA G UACCUAGC
1396
GCTAGGTA GGCTAGCTACAACGA TGTATCCC
6193





5650
GAUACAGU A CCUAGCAG
1397
CTGCTAGG GGCTAGCTACAACGA ACTGTATC
6194





5655
AGUACCUA G CAGGCUUG
1398
CAAGCCTG GGCTAGCTACAACGA TAGGTACT
6195





5659
CCUAGCAG G CUUGUCCA
1399
TGGACAAG GGCTAGCTACAACGA CTGCTAGG
6196





5663
GCAGGCUU G UCCACUCU
1400
AGAGTGGA GGCTAGCTACAACGA AAGCCTGC
6197





5667
GCUUGUCC A CUCUGCCU
1401
AGGCAGAG GGCTAGCTACAACGA GGACAAGC
6198





5672
UCCACUCU G CCUGGGAA
1402
TTCCCAGG GGCTAGCTACAACGA AGAGTGGA
6199





5680
GCCUGGGA A CCCCGCGA
1403
TCGCGGGG GGCTAGCTACAACGA TCCCAGGC
6200





5685
GGAACCCC G CGAUAGCA
1404
TGCTATCG GGCTAGCTACAACGA GGGGTTCC
6201





5688
ACCCCGCG A UAGCAUCA
1405
TGATGCTA GGCTAGCTACAACGA CGCGGGGT
6202





5691
CCGCGAUA G CAUCAUUG
1406
CAATGATG GGCTAGCTACAACGA TATCGCGG
6203





5693
GCGAUAGC A UCAUUGAU
1407
ATCAATGA GGCTAGCTACAACGA GCTATCGC
6204





5696
AUAGCAUC A UUGAUGGC
1408
GCCATCAA GGCTAGCTACAACGA GATGCTAT
6205





5700
CAUCAUUG A UGGCAUUC
1409
GAATGCGA GGCTAGCTACAACGA CAATGATG
6206





5703
CAUUGAUG G CAUUCACA
1410
TGTGAATG GGCTAGCTACAACGA CATCAATG
6207





5705
UUGAUGGC A UUCACAGC
1411
GCTGTGAA GGCTAGCTACAACGA GCCATCAA
6208





5709
UGGCAUUC A CAGCCUCC
1412
GGAGGCTG GGCTAGCTACAACGA GAATGCCA
6209





5712
CAUUCACA G CCUCCAUC
1413
GATGGAGG GGCTAGCTACAACGA TGTGAATG
6210





5718
CAGCCUCC A UCACCAGC
1414
GCTGGTGA GGCTAGCTACAACGA GGAGGCTG
6211





5721
CCUCCAUC A CCAGCCCG
1415
CGGGCTGG GGCTAGCTACAACGA GATGGAGG
6212





5725
CAUCACGA G CCCGCUCA
1416
TGAGCGGG GGCTAGCTACAACGA TGGTGATG
6213





5729
ACCAGCCC G CUCACCAC
1417
GTGGTGAG GGCTAGCTACAACGA GGGCTGGT
6214





5733
GCCCGCUC A CCACCCAA
1418
TTGGGTGG GGCTAGCTACAACGA GAGCGGGC
6215





5736
CGCUCACC A CCCAAAGC
1419
GCTTTGGG GGCTAGCTACAACGA GGTGAGCG
6216





5743
CACCCAAA G CACCCUCC
1420
GGAGGGTG GGCTAGCTACAACGA TTTGGGTG
6217





5745
CCCAAAGC A CCCUCCUG
1421
CAGGAGGG GGCTAGCTACAACGA GCTTTGGG
6218





5753
ACCCUCCU G UUCAACAU
1422
ATGTTGAA GGCTAGCTACAACGA AGGAGGGT
6219





5758
CCUGUUCA A CAUCUUGG
1423
CCAAGATG GGCTAGCTACAACGA TGAACAGG
6220





5760
UGUUCAAC A UCUUGGGA
1424
TCCCAAGA GGCTAGCTACAACGA GTTGAACA
6221





5771
UUGGGAGG G UGGGUGGC
1425
GCCACCGA GGCTAGCTACAACGA CCTCCCAA
6222





5775
GACGGUGG G UGGCCGCC
1426
GCCGGCGA GGCTAGCTACAACGA CCACCCTC
6223





5778
GGUGGGUG G CCGCCCAA
1427
TTGGGCGG GGCTAGCTACAACGA CACCCACC
6224





5781
GGGUGGCC G CCCAACUC
1428
GAGTTGGG GGCTAGCTACAACGA GGCCACCC
6225





5786
GCCGCCCA A CUCGCUCC
1429
GGAGCGAG GGCTAGCTACAACGA TGGGCGGC
6226





5790
CCCAACUC G CUCCCCCC
1430
GGGGGGAG GGCTAGCTACAACGA GAGTTGGG
6227





5802
CCCCCAGA G CCGUUUCG
1431
CGAAACGG GGCTAGCTACAACGA TCTGGGGG
6228





5805
CCAGAGCC G UUUCGGCC
1432
GGCCGAAA GGCTAGCTACAACGA GGCTCTGG
6229





5811
CCGUUUCC G CCUUCGUG
1433
CACGAAGG GGCTAGCTACAACGA CGAAACGG
6230





5817
CGGCCUUC G UGGGCGCC
1434
GGCGCCGA GGCTAGCTACAACGA GAAGGCCG
6231





5821
CUUCGUGG G CGCCGGCA
1435
TGCCGGCG GGCTAGCTACAACGA CCACGAAG
6232





5823
UCGUGGGC G CCGGCAUC
1436
GATGCCGG GGCTAGCTACAACGA GCCCACGA
6233





5827
CGCCGCCG G CAUCGCUG
1437
CACCGATG GGCTAGCTACAACGA CGGCCCCC
6234





5829
CCGCCGGC A UCCCUGGC
1438
GCCAGCGA GGCTAGCTACAACGA GCCGGCGC
6235





5832
CCCCCAUC G CUGGCGCG
1439
CGCGCCAG GGCTAGCTACAACGA GATGCCGG
6236





5836
CAUCGCUG G CGCGCCUG
1440
CAGCCGCG GGCTAGCTACAACGA CAGCGATC
6237





5838
UCCCUGGC G CGCCUGUU
1441
AACACCCG GGCTAGCTACAACGA GCCAGCGA
6238





5841
CUGGCGCG G CUGUUCGC
1442
CCCAACAG GGCTAGCTACAACGA CGCGCCAG
6239





5844
CCGCGGCU G UUGGCAGC
1443
CCTCCCAA GGCTAGCTACAACGA AGCCGCGC
6240





5848
GGCUCUUG G CAGCAUAC
1444
CTATGCTC GGCTAGCTACAACGA CAACAGCC
6241





5851
UCUUGCGA G CAUAGGCC
1445
GGCCTATG GGCTAGCTACAACGA TCCCAACA
6242





5853
UUGGCACC A UAGCCCUU
1446
AAGGCCTA CCCTAGCTACAACGA CCTCCCAA
6243





5857
CAGCAUAC G CCUUGGGA
1447
TCCCAAGC CCCTAGCTACAACGA CTATCCTC
6244





5868
UUGCCAAG G UGCUUGUA
1448
TACAAGCA GGCTAGCTACAACGA CTTCCCAA
6245





5870
GGGAAGGU G CUUGUACA
1449
TCTACAAG GGCTAGCTACAACGA ACCTTCCC
6246





5874
ACGUCCUU G UACACAUU
1450
AATGTCTA GGCTAGCTACAACGA AACCACCT
6247





5878
CCUUGUAG A CAUUCUGG
1451
CCAGAATG GGCTAGCTACAACGA CTACAAGC
6248





5880
UUGUAGAC A UUCUGGCG
1452
CGCCAGAA GGCTAGCTACAACGA GTCTACAA
6249





5886
ACAUUCUG G CGGGCUAU
1453
ATAGCCCG GGCTAGCTACAACGA CAGAATGT
6250





5890
UCUGGCGG G CUAUGCAG
1454
CTCCATAC GGCTAGCTACAACGA CCGCCAGA
6251





5893
GGCGGGCU A UGGACCAG
1455
CTGCTCGA GGCTAGCTACAACGA AGCCCGCC
6252





5898
CCUAUCGA G CACGAGUG
1456
CACTCCTG GGCTAGCTACAACGA TCCATAGC
6253





5904
GAGCACGA G UGGCGGCU
1457
ACCCGCGA GGCTAGCTACAACGA TCCTGCTC
6254





5907
CAGGAGUG G CGGGUGCU
1458
AGCACCCG GGCTAGCTACAACGA CACTCCTG
6255





5911
AGUGCCGG G UGCUCUCG
1459
CCAGAGCA GGCTAGCTACAACGA CCGCCACT
6256





5913
UGGCGGGU G CUCUCGUG
1460
CACGAGAG GGCTAGCTACAACGA ACCCGCCA
6257





5919
CUGCUCUC G UGCCCUUC
1461
GAACGCGA GGCTAGCTACAACGA GAGAGCAC
6258





5922
CUCUCCUG G CCUUCAAC
1462
CTTGAAGC GGCTAGCTACAACGA CACCACAG
6259





5931
CCUUCAAG G UCAUCACC
1463
CCTCATCA GGCTAGCTACAACGA CTTCAAGC
6260





5934
UCAAGCUC A UCAGCGGG
1464
CCCCCTCA GGCTAGCTACAACGA GACCTTCA
6261





5938
CCUCAUCA G CCCGCACA
1465
TCTCCCCC GGCTAGCTACAACGA TCATGACC
6262





5946
CCCCCCAC A UCCCUUCU
1466
ACAACCGA GGCTAGCTACAACGA CTCCCCCC
6263





5948
CCGCACAU G CCUUCUAC
1467
GTACAAGC GGCTAGCTACAACGA ATCTCCCC
6264





5955
UCCCUUCU A CCGAGGAC
1468
CTCCTCCC GGCTAGCTACAACGA ACAACGCA
6265





5962
UACCGACG A CCUGGUCA
1469
TGACCACC GGCTAGCTACAACGA CCTCGGTA
6266





5967
AGGACCUG G UCAACUUA
1470
TAACTTGA GGCTAGCTACAACGA CAGGTCCT
6267





5971
CCUCCUCA A CUUACUCC
1471
GCACTAAC GGCTAGCTACAACGA TGACCAGC
6268





5975
GUCAACUU A CUCCCUGC
1472
GCACGCAC GGCTAGCTACAACGA AACTTCAC
6269





5982
UACUCCCU G CCAUCCUC
1473
CAGCATCC GGCTAGCTACAACGA ACCCAGTA
6270





5985
UCCCUGCC A UCCUCUCU
1474
ACACAGGA GGCTAGCTACAACGA GGCACCCA
6271





5998
CUCUCCUC G CCCCCUGG
1475
CCACCCCC GGCTAGCTACAACGA CACCACAC
6272





6000
CUCCUGGC G CCCUGGUC
1476
CACCACGC GGCTAGCTACAACGA CCCACGAG
6273





6006
GCGCCCUG G UCGUCGGG
1477
CCCGACGA GGCTAGCTACAACGA CAGGCCCC
6274





6009
CCCUGGUC G UCGGGGUG
1478
CACCCCGA GGCTAGCTACAACGA CACCAGGC
6275





6015
UCGUCGGG G UGGUGUGC
1479
GCACACGA GGCTAGCTACAACGA CCCGACGA
6276





6018
UCGGGGUG G UGUGCGCA
1480
TGCGCACA GGCTAGCTACAACGA CACCCCGA
6277





6020
GGGGUGGU G UGCGCAGC
1481
GCTGCGCA GGCTAGCTACAACGA ACCACCCC
6278





6022
GGUGGUGU G CGCAGCGA
1482
TCGCTGCG GGCTAGCTACAACGA ACACCACC
6279





6024
UGGUGUGC G CAGCGAUA
1483
TATCGCTG GGCTAGCTACAACGA GCACACCA
6280





6027
UGUGCGCA G CGAUACUG
1484
CAGTATCG GGCTAGCTACAACGA TGCGCACA
6281





6030
GCGCAGCG A UACUGCGU
1485
ACGCAGTA GGCTAGCTACAACGA CGCTGCGC
6282





6032
GCAGCGAU A CUGCGUCG
1486
CGACGCAG GGCTAGCTACAACGA ATCGCTGC
6283





6035
GCGAUACU G CGUCGGCA
1487
TGCCGACG GGCTAGCTACAACGA AGTATCGC
6284





6037
GAUACUGC G UCGGCAUG
1488
CATGCCGA GGCTAGCTACAACGA GCAGTATC
6285





6041
CUGCGUCG G CAUGUGGG
1489
CCCACATG GGCTAGCTACAACGA CCACCCAC
6286





6043
GCCUCGGC A UGUGGGCC
1490
GGCCCACA GGCTAGCTACAACGA GCCGACGC
6287





6045
CUCCCCAU G UGGGCCCA
1491
TGGGCCGA GGCTAGCTACAACGA ATGCCGAC
6288





6049
GCAUGUGG G CCCAGGAG
1492
CTCCTGGG GGCTAGCTACAACGA CCACATGC
6289





6061
AGCAGAGG G CGCUGUGC
1493
GCACAGCG GGCTAGCTACAACGA CCTCTCCT
6290





6063
GACACCCC G CUGUCCAG
1494
CTGCACAG GGCTAGCTACAACGA GCCCTCTC
6291





6066
AGGGCGCU G UGCAGUGG
1495
CCACTGCA GGCTAGCTACAACGA AGCGCCCT
6292





6068
CGCGCUGU G CAGUGGAU
1496
ATCCACTG GGCTAGCTACAACGA ACAGCGCC
6293





6071
GCUCUCGA G UGGAUGAA
1497
TTCATCGA GGCTAGCTACAACGA TCCACACC
6294





6075
UCCACUGG A UCAAUCGC
1498
CCCATTCA GGCTAGCTACAACGA CCACTGCA
6295





6079
GUGGAUCA A UCGCCUCA
1499
TCAGCCGA GGCTAGCTACAACGA TCATCCAC
6296





6083
AUGAAUCG G CUGAUAGC
1500
GCTATCAG GGCTAGCTACAACGA CGATTCAT
6297





6087
AUCGGCUG A UAGCGUUC
1501
CAACGCTA GGCTAGCTACAACGA CACCCCAT
6298





6090
CCCUGAUA G CGUUCGCU
1502
AGCGAACG GGCTAGCTACAACGA TATCAGCC
6299





6092
CUCAUAGC G UUCGCUUC
1503
GAAGCGAA GGCTAGCTACAACGA GCTATCAG
6300





6096
UAGCGUUC G CUUCGCGG
1504
CCGCGAAG GGCTAGCTACAACGA GAACGCTA
6301





6101
UUCGCUUC G CGGGCCAA
1505
TTGCCCCG GGCTAGCTACAACGA GAAGCGAA
6302





6106
UUCGCGGG G CAACCAUG
1506
CATGGTTG GGCTAGCTACAACGA CCCGCGAA
6303





6109
GCCCGGCA A CCAUGUCU
1507
AGACATGG GGCTAGCTACAACGA TGCCCCGC
6304





6112
GGGCAACC A UGUCUCCC
1508
GGGAGACA GGCTAGCTACAACGA GGTTGCCC
6305





6114
CCAACCAU G UCUCCCCC
1509
GGGGGACA GGCTAGCTACAACGA ATGGTTGC
6306





6123
UCUCCCCC A CGCACUAU
1510
ATAGTGCG GGCTAGCTACAACGA G3GGGAGA
6307





6125
UCCCCCAC G CACUAUGU
1511
ACATAGTC GGCTAGCTACAACGA CTGGGGGA
6308





6127
CCCCACCC A CUAUCUGC
1512
CCACATAG GGCTAGCTACAACGA GCCTGGGG
6309





6130
CACGCACU A UGUCCCUG
1513
CAGGCACA GGCTAGCTACAACGA AGTGCGTG
6310





6132
CCCACUAU G UGCCUCAG
1514
CTCACCGA GGCTAGCTACAACGA ATAGTCCC
6311





6134
CACUAUCU G CCUGAGAG
1515
CTCTCAGC GGCTAGCTACAACGA ACATAGTG
6312





6142
GCCUGACA G CGACCCAC
1516
CTGCGTCG GGCTAGCTACAACGA TCTCACCC
6313





6145
UCACAGCG A CGCAGCGC
1517
CCGCTCCC GGCTAGCTACAACGA CGCTCTCA
6314





6147
AGAGCGAC G CAGCGGCG
1518
CGCCGCTG GGCTAGCTACAACGA GTCGCTCT
6315





6150
GCCACCGA G CGCCGCCC
1519
GCGCGCCG GGCTAGCTACAACGA TGCGTCCC
6316





6153
ACGCAGCG G CCCGCGUC
1520
CACCCCCG GGCTAGCTACAACGA CCCTCCGT
6317





6155
CCACCCGC G CGCCUCAC
1521
CTCACCCC GGCTAGCTACAACGA GCCCCTCC
6318





6157
ACCGGCCC G CGUCACAC
1522
GTGTCACG GGCTAGCTACAACGA GCCCCGCT
6319





6159
CCCCGCCC G UCACACAA
1523
TTCTCTCA GGCTAGCTACAACGA GCGCGCCG
6320





6162
CGCCCGUC A CACAAAUC
1524
CATTTGTG GGCTAGCTACAACGA GACGCGCG
6321





6164
CCCCUCAC A CAAAUCCU
1525
ACCATTTG GGCTAGCTACAACGA GTCACCCG
6322





6168
UCACACAA A UCCUCUCC
1526
CCAGAGGA GGCTAGCTACAACGA TTGTGTGA
6323





6178
CCUCUCGA G CCUCACGA
1527
TCCTGAGG GGCTAGCTACAACGA TCCACAGC
6324





6283
CCACCCUC A CCAUCACU
1528
AGTCATGC GGCTAGCTACAACGA GACCCTGG
6325





6186
CCCUCACC A UCACUCAG
1529
CTCACTGA GGCTAGCTACAACGA CCTCACCC
6326





6189
UCACCAUC A CUCACCUG
1530
CAGCTGAC GGCTAGCTACAACGA GATGGTGA
6327





6194
AUCACUCA G CUCCUGAG
1531
CTCAGCAG GGCTAGCTACAACGA TGACTCAT
6328





6197
ACUCAGCU G CUGAGGAG
1532
CTCCTCAG GGCTAGCTACAACGA ACCTCAGT
6329





6206
CUGAGGAG G CUCCAUCA
1533
TCATGCAC GGCTAGCTACAACGA CTCCTCAG
6330





6211
GAGGCUCC A UCACUGGA
1534
TCCACTCA GGCTAGCTACAACGA CGACCCTC
6331





6215
CUCCAUCA G UGGAUCAA
1535
TTGATCGA GGCTAGCTACAACGA TCATCGAC
6332





6219
AUCAGUGG A UCAAUGAG
1536
CTCATTGA GGCTAGCTACAACGA CCACTGAT
6333





6223
GUGGAUCA A UGAGGACU
1537
AGTCCTCA GGCTAGCTACAACGA TGATCCAC
6334





6229
CAAUGAGG A CUGCUCGA
1538
TGGAGCAG GGCTAGCTACAACGA CCTCATTG
6335





6232
UGAGGACU G CUCCACGC
1539
GCGTGGAG GGCTAGCTACAACGA AGTCCTCA
6336





6237
ACUGCUCC A CGCCAUGU
1540
ACATGGCG GGCTAGCTACAACGA GGAGCAGT
6337





6239
UGCUCCAC G CCAUGUUC
1541
GAACATGG GGCTAGCTACAACGA GTGGAGCA
6338





6242
UCCACGCC A UGUUCCCG
1542
CCGGAACA GGCTAGCTACAACGA GCCGTGGA
6339





6244
CACGCCAU G UUCCGGCU
1543
AGCCGGAA GGCTAGCTACAACGA ATGGCGTC
6340





6250
AUGUUCCG G CUCGUGGC
1544
GCCACGAG GGCTAGCTACAACGA CGGAACAT
6341





6254
UCCGGCUC G UGGCUAAG
1545
CTTAGCGA GGCTAGCTACAACGA GAGCCGGA
6342





6257
GGCUCGUG G CUAAGGGA
1546
TCCCTTAG GGCTAGCTACAACGA CACGAGCC
6343





6265
GCUAAGGG A UGUUUGGG
1547
CCCAAACA GGCTAGCTACAACGA CCCTTAGC
6344





6267
UAAGGGAU G UUUGGGAC
1548
GTCCCAAA GGCTAGCTACAACGA ATCCCTTA
6345





6274
UGUUUGGG A CUGGAUAU
1549
ATATCCAG GGCTAGCTACAACGA CCCAAACA
6346





6279
GGGACUGG A UAUGCACG
1550
CGTGCATA GGCTAGCTACAACGA CCAGTCCC
6347





6281
GACUGGAU A UGCACGGU
1551
ACCGTGCA GGCTAGCTACAACGA ATCCAGTC
6348





6283
CUGGAUAU G CACGGUGU
1552
ACACCGTG GGCTAGCTACAACGA ATATCCAG
6349





6285
GGAUAUGC A CGCUGUUG
1553
CAACACCG GGCTAGCTACAACGA GCATATCC
6350





6288
UAUGCACG G UGUUGACU
1554
AGTCAACA GGCTAGCTACAACGA CGTGCATA
6351





6290
UGCACGGU G UUGACUGA
1555
TCAGTCAA GGCTAGCTACAACGA ACCGTGCA
6352





6294
CGGUGUUG A CUGACUUC
1556
GAAGTCAG GGCTAGCTACAACGA CAACACCG
6353





6298
GUUGACUG A CUUCAAGA
1557
TCTTGAAG GGCTAGCTACAACGA CAGTCAAC
6354





6306
ACUUCAAG A CCUGGCUU
1558
AAGCCAGG GGCTAGCTACAACGA CTTGAAGT
6355





6311
AAGACCUG G CUUCAGUC
1559
CACTGAAG GGCTAGCTACAACGA CAGGTCTT
6356





6317
UGGCUUCA G UCCAAGCU
1560
AGCTTGGA GGCTAGCTACAACGA TGAAGCCA
6357





6323
CAGUCCAA G CUCCUGCC
1561
CGCAGGAG GGCTAGCTACAACGA TTGGACTG
6358





6329
AAGCUCCU G CCGCGGUU
1562
AACCGCGG GGCTAGCTACAACGA AGGAGCTT
6359





6332
CUCCUGCC G CGGUUGCC
1563
CGCAACCG GGCTAGCTACAACGA GGCAGGAG
6360





6335
CUGCCCCC G UUGCCGGG
1564
CCCGGCAA GGCTAGCTACAACGA CGCGGCAG
6361





6338
CCGCGGUU G CCGGGAGU
1565
ACTCCCGG GGCTAGCTACAACGA AACCGCGG
6362





6345
UGCCGGGA G UCCCUUUC
1566
GAAAGGGA GGCTAGCTACAACGA TCCCCCCA
6363





6359
UUCUUCUC A UGCCAACG
1567
CGTTGGCA GGCTAGCTACAACGA GAGAAGAA
6364





6361
CUUCUCAU G CCAACGUG
1568
CACGTTGG GGCTAGCTACAACGA ATGAGAAG
6365





6365
UCAUGCCA A CGUGGGUA
1569
TACCCACG GGCTAGCTACAACGA TGGCATGA
6366





6367
AUGCCAAC G UGGGUACA
1570
TGTACCGA GGCTAGCTACAACGA GTTGGCAT
6367





6371
CAACGUGG G UACAGGGG
1571
CCCCTGTA GGCTAGCTACAACGA CCACGTTG
6368





6373
ACCUGGGU A CAGGGGGG
1572
CCCCCCTG GGCTAGCTACAACGA ACCCACGT
6369





6381
ACAGGGGG G UCUGGCGG
1573
CCGCCACA GGCTAGCTACAACGA CCCCCTGT
6370





6386
GGGCUCUC G CGGGGACA
1574
TCTCCCCG GGCTAGCTACAACGA CAGACCCC
6371





6394
GCGGGGAC A CGCUAUCA
1575
TGATACCG GGCTAGCTACAACGA CTCCCCGC
6372





6397
GCGAGACC G UAUCAUCC
1576
CCATCATA GGCTAGCTACAACGA CGTCTCCC
6373





6399
CAGACCCU A UCAUGCAA
1577
TTCCATCA GGCTAGCTACAACGA ACCGTCTC
6374





6402
ACGGUAUC A UGCAAACC
1578
CGTTTCGA GGCTAGCTACAACGA GATACCGT
6375





6404
GCUAUCAU G CAAACCAC
1579
GTGGTTTG GGCTAGCTACAACGA ATGATACC
6376





6408
UCAUCCAA A CCACCUCC
1580
GCACGTGG GGCTAGCTACAACGA TTGCATGA
6377





6411
UCCAAACC A CCUGCCGA
1581
TGGCCACG GGCTAGCTACAACGA CGTTTGCA
6378





6415
AACCACCU G CCCAUGCG
1582
CGCATCGC GGCTAGCTACAACGA ACCTGGTT
6379





6419
ACCUGCCC A UGCCGAGC
1583
CCTCCCGA GGCTAGCTACAACGA GGCCAGCT
6380





6421
CUCCCCAU G CGGACCCC
1584
GCGCTCCG GGCTAGCTACAACGA ATGGCCAC
6381





6426
CAUGCGGA G CGCAGAUC
1585
GATCTGCG GGCTAGCTACAACGA TCCGCATC
6382





6428
UCCCCAGC G CACAUCAC
1586
GTCATCTC GGCTAGCTACAACGA GCTCCGCA
6383





6432
GAGCGCAG A UCACUGGA
1587
TCCAGTCA GGCTAGCTACAACGA CTGCGCTC
6384





6435
CCCACAUC A CUGGACAU
1588
ATGTCCAC GGCTAGCTACAACGA CATCTGCC
6385





6440
AUCACUGG A CAUGUCAA
1589
TTGACATC GGCTAGCTACAACGA CCACTGAT
6386





6442
CACUGGAC A UGUCAAGA
1590
TCTTGACA GGCTAGCTACAACGA GTCCAGTC
6387





6444
CUGGACAU G UCAAGAAC
1591
GTTCTTGA GGCTAGCTACAACGA ATGTCCAC
6388





6451
UGUCAAGA A CGGUUCCA
1592
TGGAACCG GGCTAGCTACAACGA TCTTGACA
6389





6454
CAAGAACG G UUCCAUGA
1593
TCATGGAA GGCTAGCTACAACGA CGTTCTTG
6390





6459
ACGGUUCC A UGAGGAUC
1594
GATCCTCA GGCTAGCTACAACGA GGAACCGT
6391





6465
CCAUGAGG A UCGUCGGG
1595
CCCGACGA GGCTAGCTACAACGA CCTCATGG
6392





6468
UGAGGAUC G UCGGGCCU
1596
AGGCCCGA GGCTAGCTACAACGA GATCCTCA
6393





6473
AUCGUCGG G CCUAAGAC
1597
GTCTTAGG GGCTAGCTACAACGA CCGACGAT
6394





6480
GGCCUAAG A CCUGUAGC
1598
GCTACAGG GGCTAGCTACAACGA CTTAGGCC
6395





6484
UAAGACCU G UAGCAACA
1599
TGTTGCTA GGCTAGCTACAACGA AGGTCTTA
6396





6487
GACCUGUA G CAACACGU
1600
ACGTGTTG GGCTAGCTACAACGA TACAGGTC
6397





6490
CUGUAGCA A CACGUGGC
1601
GCCACGTG GGCTAGCTACAACGA TGCTACAG
6398





6492
GUAGCAAC A CGUGGCAU
1602
ATGCCACG GGCTAGCTACAACGA GTTGCTAC
6399





6494
AGCAACAC G UGGCAUGG
1603
CCATGCGA GGCTAGCTACAACGA GTGTTGCT
6400





6497
AACACGUG G CAUCGAAC
1604
GTTCCATG GGCTAGCTACAACGA CACGTGTT
6401





6499
CACGUGGC A UGGAACAU
1605
ATGTTCGA GGCTAGCTACAACGA GCCACGTG
6402





6504
GGCAUGGA A CAUUCCCC
1606
GGGGAATG GGCTAGCTACAACGA TCCATGCC
6403





6506
CAUGGAAC A UUCCCCAU
1607
ATGGGGAA GGCTAGCTACAACGA GTTCCATG
6404





6513
CAUUCCCC A UCAACGCA
1608
TGCGTTGA GGCTAGCTACAACGA GGGGAATG
6405





6517
CCCCAUCA A CGCAUACA
1609
TGTATGCG GGCTAGCTACAACGA TGATGGGG
6406





6519
CCAUCAAC G CAUACACC
1610
GGTGTATG GGCTAGCTACAACGA GTTGATGG
6407





6521
AUCAACGC A UACACCAC
1611
GTGGTGTA GGCTAGCTACAACGA GCGTTGAT
6408





6523
CAACGCAU A CACCACGG
1612
CCGTGGTG GGCTAGCTACAACGA ATGCGTTG
6409





6525
ACGCAUAC A CCACGGGC
1613
GCCCGTGG GGCTAGCTACAACGA GTATGCGT
6410





6528
CAUACACC A CGGGCCCC
1614
GGGGCCCG GGCTAGCTACAACGA GGTGTATG
6411





6532
CACCACGG G CCCCUGCA
1615
TGCAGGGG GGCTAGCTACAACGA CCGTGGTG
6412





6538
GGGCCCCU G CACACCCU
1616
AGGGTGTG GGCTAGCTACAACGA AGGGGCCC
6413





6540
GCCCCUGC A CACCCUCC
1617
GGAGGGTG GGCTAGCTACAACGA GCAGGGGC
6414





6542
CCCUGCAC A CCCUCCCC
1618
GGGGAGGG GGCTAGCTACAACGA GTGCAGGG
6415





6552
CCUCCCCG G CGCCAAAC
1619
GTTTGGCG GGCTAGCTACAACGA CGGGGAGG
6416





6554
UCCCCGGC G CCAAACUA
1620
TAGTTTGG GGCTAGCTACAACGA GCCGGGGA
6417





6559
GGCGCCAA A CUAUUCUA
1621
TAGAATAG GGCTAGCTACAACGA TTGGCGCC
6418





6562
GCCAAACU A UUCUAGGG
1622
GGCTAGAA GGCTAGCTACAACGA AGTTTGGC
6419





6570
AUUCUAGG G CGCUAUGG
1623
CCATAGCG GGCTAGCTACAACGA CCTAGAAT
6420





6572
UCUAGGGC G CUAUGGCG
1624
CGCCATAG GGCTAGCTACAACGA GGGCTAGA
6421





6575
AGGGCGCU A UGGCGGGU
1625
ACCCGCGA GGCTAGCTACAACGA AGCGCCCT
6422





6578
GCGCUAUG G CGGGUGGC
1626
GCCACCCG GGCTAGCTACAACGA CATAGCGC
6423





6582
UAUGGCGG G UGGCCGCU
1627
AGCGGCGA GGCTAGCTACAACGA CCGCCATA
6424





6585
GGCGGCUG G CCGCUGAG
1628
CTCAGCGG GGCTAGCTACAACGA CACCCGCC
6425





6588
GGGUGGCC G CUGAGGAG
1629
CTCCTCAG GGCTAGCTACAACGA GGCCACCC
6426





6596
GCUCACGA G UACGUGGA
1630
TCCACGTA GGCTAGCTACAACGA TCCTCAGC
6427





6598
UGACGAGU A CGUCCAGG
1631
CCTCCACG GGCTAGCTACAACGA ACTCCTCA
6428





6600
AGGAGUAC G UGGAGCUU
1632
AACCTCGA GGCTAGCTACAACGA GTACTCCT
6429





6606
ACGUGGAG G UUACGCGG
1633
CCGCGTAA GGCTAGCTACAACGA CTCCACCT
6430





6609
UGCAGGUU A CGCGGGUG
1634
CACCCCCG GGCTAGCTACAACGA AACCTCCA
6431





6611
GACGUUAC G CCCGUGGC
1635
CCCACCCC GGCTAGCTACAACGA GTAACCTC
6432





6615
UUACCCGG G UGCGGGAU
1636
ATCCCCGA GGCTAGCTACAACGA CCGCGTAA
6433





6622
GCUCGGGC A UUUCCACU
1637
AGTGGAAA GGCTAGCTACAACGA CCCCCACC
6434





6628
GGAUUUCC A CUACCUGA
1638
TCACGTAG GGCTAGCTACAACGA CGAAATCC
6435





6631
UUUCCACU A CGUCACGG
1639
CCGTCACG GGCTAGCTACAACGA AGTGGAAA
6436





6633
UCCACUAC G UGACCCGC
1640
GCCCGTCA GGCTAGCTACAACGA GTACTGGA
6437





6636
ACUACGUG A CGGGCAUG
1641
CATCCCCG GGCTAGCTACAACGA CACGTAGT
6438





6640
CGUCACCC G CAUGACGA
1642
TGGTCATG GGCTAGCTACAACGA CCGTCACG
6439





6642
UGACGGGC A UGACCACU
1643
AGTGGTCA GGCTAGCTACAACGA GCCCGTCA
6440





6645
CCCGCAUC A CCACUCAC
1644
CTCACTCG GGCTAGCTACAACGA CATGCCCG
6441





6648
GCAUGACC A CUGACAAC
1645
GTTGTCAG GGCTAGCTACAACGA GGTCATCC
6442





6652
GACCACUG A CAACGUAA
1646
TTACGTTC GGCTAGCTACAACGA CAGTGGTC
6443





6655
CACUGACA A CGUAAAAU
1647
ATTTTACG GGCTAGCTACAACGA TGTCAGTG
6444





6657
CUGACAAC G UAAAAUGC
1648
GCATTTTA GGCTAGCTACAACGA GTTGTCAG
6445





6662
AACGUAAA A UGCCCGUG
1649
CACGCGCA GGCTAGCTACAACGA TTTACGTT
6446





6664
CGUAAAAU G CCCGUGCC
1650
GGCACGGG GGCTAGCTACAACGA ATTTTACG
6447





6668
AAAUGCCC G UGCCACGU
1651
ACCTGGCA GGCTAGCTACAACGA GGGCATTT
6448





6670
AUGCCCGU G CCAGGUUC
1652
GAACCTGG GGCTAGCTACAACGA ACGGGCAT
6449





6675
CGUGCCAG G UUCCGCCC
1653
GGGCGGAA GGCTAGCTACAACGA CTGGCACG
6450





6680
CAGGUUCC G CCCCCCGA
1654
TCGGGGGG GGCTAGCTACAACGA GGAACCTG
6451





6689
CCCCCCGA A UUCUUCAC
1655
GTGAAGAA GGCTAGCTACAACGA TCGGGGGG
6452





6696
AAUUCUUC A CGGAAGUG
1656
CACTTCCG GGCTAGCTACAACGA GAAGAATT
6453





6702
UCACGGAA G UGGAUGGG
1657
CCCATCGA GGCTAGCTACAACGA TTCCGTGA
6454





6706
GGAAGUGG A UGGGGUAC
1658
GTACCCGA GGCTAGCTACAACGA CCACTTCC
6455





6711
UGGAUGGG G UACGCCUG
1659
CAGGCGTA GGCTAGCTACAACGA CCCATCCA
6456





6713
GAUGGGGU A CGCCUGCA
1660
TGCAGGCG GGCTAGCTACAACGA ACCCCATC
6457





6715
UGGGGUAC G CCUGCACA
1661
TGTGCAGG GGCTAGCTACAACGA GTACCCCA
6458





6719
GUACGCCU G CACAGAAA
1662
TTTCTGTG GGCTAGCTACAACGA AGGCGTAC
6459





6721
ACGCCUGC A CAGAAACG
1663
CGTTTCTG GGCTAGCTACAACGA GCAGGCGT
6460





6727
GCACAGAA A CGCUCCGG
1664
CCGGAGCG GGCTAGCTACAACGA TTCTGTGC
6461





6729
ACAGAAAC G CUCCGGCG
1665
CGCCGGAG GGCTAGCTACAACGA GTTTCTGT
6462





6735
ACGCUCCG G CGUGUGGA
1666
TCCACACG GGCTAGCTACAACGA CGGAGCGT
6463





6737
GCUCCGGC G UGUGGACC
1667
GGTCCACA GGCTAGCTACAACGA GCCGGAGC
6464





6739
UCCGGCGU G UCGACCUC
1668
GAGGTCGA GGCTAGCTACAACGA ACGCCGGA
6465





6743
GCGUGUGG A CCUCUCCU
1669
AGGAGAGG GGCTAGCTACAACGA CCACACGC
6466





6752
CCUCUCCU A CGGGAGGA
1670
TCCTCCCG GGCTAGCTACAACGA AGGAGAGG
6467





6762
GGGAGGAG G UCACAUUC
1671
GAATGTGA GGCTAGCTACAACGA CTCCTCCC
6468





6765
AGGAGGUC A CAUUCCAG
1672
CTGGAATG GGCTAGCTACAACGA GACCTCCT
6469





6767
GAGGUCAC A UUCCAGGU
1673
ACCTGGAA GGCTAGCTACAACGA GTGACCTC
6470





6774
CAUUCCAG G UCGGGCUC
1674
GAGCCCGA GGCTAGCTACAACGA CTGGAATG
6471





6779
CAGGUCGG G CUCAACCA
1675
TGGTTGAG GGCTAGCTACAACGA CCGACCTG
6472





6784
CGGGCUCA A CCAAUACC
1676
GGTATTGG GGCTAGCTACAACGA TGAGCCCG
6473





6788
CUCAACCA A UACCUGGU
1677
ACCAGGTA GGCTAGCTACAACGA TGGTTGAG
6474





6790
CAACCAAU A CCUGGUUG
1678
CAACCAGG GGCTAGCTACAACGA ATTGGTTG
6475





6795
AAUACCUG G UUG3GUCA
1679
TGACCCAA GGCTAGCTACAACGA CAGGTATT
6476





6800
CUGGUUGG G UCACAGCU
1680
AGCTGTGA GGCTAGCTACAACGA CCAACCAG
6477





6803
GUUGGGUC A CAGCUCCC
1681
GGGAGCTG GGCTAGCTACAACGA GACCCAAC
6478





6806
GUGUCACA G CUCCCAUG
1682
CATGGGAG GGCTAGCTACAACGA TGTGACCC
6479





6812
CAGCUCCC A UGCGAGCC
1683
GGCTCGCA GGCTAGCTACAACGA GGGAGCTG
6480





6814
GCUCCCAU G CGAGCCCG
1684
CGGGCTCG GGCTAGCTACAACGA ATGGGAGC
6481





6818
CCAUGCGA G CCCGAACC
1685
GGTTCGGG GGCTAGCTACAACGA TCGCATGG
6482





6824
GAGCCCCA A CCGGAUGU
1686
ACATCCGG GGCTAGCTACAACGA TCGGGCTC
6483





6829
CGAACCGG A UGUAGCAG
1687
CTGCTACA GGCTAGCTACAACGA CCGGTTCG
6484





6831
AACCGGAU G UAGCAGUG
1688
CACTGCTA GGCTAGCTACAACGA ATCCGGTT
6485





6834
CGGAUGUA G CAGUGCUC
1689
GAGCACTG GGCTAGCTACAACGA TACATCCG
6486





6837
AUGUAGCA G UGCUCACG
1690
CGTGAGCA GGCTAGCTACAACGA TGCTACAT
6487





6839
GUAGCAGU G CUCACGUC
1691
GACGTGAG GGCTAGCTACAACGA ACTGCTAC
6488





6843
CAGUGCUC A CGUCCAUG
1692
CATGGACG GGCTAGCTACAACGA GAGCACTG
6489





6845
GUGCUCAC G UCCAUGCU
1693
AGCATGGA GGCTAGCTACAACGA GTGAGCAC
6490





6849
UCACGUCC A UGCUCACC
1694
GGTGAGCA GGCTAGCTACAACGA GGACGTGA
6491





6851
ACGUCCAU G CUCACCGA
1695
TCGGTGAG GGCTAGCTACAACGA ATGGACGT
6492





6855
CCAUGCUC A CCGACCCC
1696
GGGGTCGG GGCTAGCTACAACGA GAGCATGG
6493





6859
GCUCACCG A CCCCUCCC
1697
GGGAGGGG GGCTAGCTACAACGA CGGTGAGC
6494





6868
CCCCUCCC A CAUCACAG
1698
CTGTAATG GGCTAGCTACAACGA GGGAGGGG
6495





6870
CCUCCCAC A UUACAGGA
1699
TCCTGTAA GGCTAGCTACAACGA GTGGGAGG
6496





6873
CCCACAUU A CAGGAGAG
1700
CTCTCCTG GGCTAGCTACAACGA AATGTGGG
6497





6882
CAGGAGAG A CGGCUAAG
1701
CTTAGCCG GGCTAGCTACAACGA CTCTCCTG
6498





6885
GAGAGACG G CUAAGCGU
1702
ACGCTTAG GGCTAGCTACAACGA CGTCTCTC
6499





6890
ACGGCUAA G CGUAGGCU
1703
AGCCTACG GGCTAGCTACAACGA TTAGCCGT
6500





6892
GGCUAAGC G UAGGCUGG
1704
CCAGCCTA GGCTAGCTACAACGA GCTTAGCC
6501





6896
AAGCGUAG G CUGGCCAG
1705
CTGGCCAG GGCTAGCTACAACGA CTACGCTT
6502





6900
GUAGGCUG G CCAGGGGG
1706
CCCCCTGG GGCTAGCTACAACGA CAGCCTAC
6503





6908
GCCAGGGG G UCUCCCCC
1707
GGGGGAGA GGCTAGCTACAACGA CCCCTGGC
6504





6924
CCUCCUUG G CCAGCUCC
1708
GGAGCTGG GGCTAGCTACAACGA CAAGGAGG
6505





6928
CUUGGCGA G CUCCUCAG
1709
CTGAGGAG GGCTAGCTACAACGA TGGCCAAG
6506





6936
GCUCCUCA G CUAGCCAG
1710
CTGGCTAG GGCTAGCTACAACGA TGAGGAGC
6507





6940
CUCAGCUA G CCAGCUGU
1711
ACAGCTGG GGCTAGCTACAACGA TAGCTGAG
6508





6944
GCUAGCGA G CUGUCUGC
1712
GCAGACAG GGCTAGCTACAACGA TGGCTAGC
6509





6947
AGCCAGCU G UCUGCGCC
1713
GGCGCAGA GGCTAGCTACAACGA AGCTGGCT
6510





6951
AGCUGUCU G CGCCUUCU
1714
AGAAGGCG GGCTAGCTACAACGA AGACAGCT
6511





6953
CUGUCUGC G CCUUCUUC
1715
GAAGAAGG GGCTAGCTACAACGA GCAGACAG
6512





6966
CUUCGAAG G CGACAUAC
1716
GTATGTCG GGCTAGCTACAACGA CTTCGAAG
6513





6969
CGAAGGCG A CAUACAUU
1717
AATGTATG GGCTAGCTACAACGA CGCCTTCG
6514





6971
AAGGCGAC A UACAUUAC
1718
GTAATGTA GGCTAGCTACAACGA GTCGCCTT
6515





6973
GGCGACAU A CAUUACCC
1719
GGGTAATG GGCTAGCTACAACGA ATGTCGCC
6516





6975
CGACAUAC A UUACCCAA
1720
TTGGGTAA GGCTAGCTACAACGA GTATGTCG
6517





6978
CAUACAUU A CCCAAUAU
1721
ATATTGGG GGCTAGCTACAACGA AATGTATG
6518





6983
AUUACCCA A UAUGACUC
1722
GAGTCATA GGCTAGCTACAACGA TGGGTAAT
6519





6985
UACCCAAU A UGACUCCC
1723
GGGAGTCA GGCTAGCTACAACGA ATTGGGTA
6520





6988
CCAAUAUG A CUCCCCAG
1724
CTGGGGAG GGCTAGCTACAACGA CATATTGG
6521





6997
CUCCCCAG A CUUUGACC
1725
GGTCAAAG GGCTAGCTACAACGA CTGGGGAG
6522





7003
AGACUUUG A CCUCAUCG
1726
CGATGAGG GGCTAGCTACAACGA CAAAGTCT
6523





7008
UUGACCUC A UCGAGGCC
1727
GGCCTCGA GGCTAGCTACAACGA GAGGTCAA
6524





7014
UCAUCGAG G CCAACCUC
1728
GAGGTTGG GGCTAGCTACAACGA CTCGATGA
6525





7018
CGAGGCCA A CCUCCUGU
1729
ACAGGAGG GGCTAGCTACAACGA TGGCCTCG
6526





7025
AACCUCCU G UGGCGGCA
1730
TGCCGCGA GGCTAGCTACAACGA AGGAGGTT
6527





7028
CUCCUGUG G CGGCAGGA
1731
TCCTGCCG GGCTAGCTACAACGA CACAGGAG
6528





7031
CUGUGGCG G CAGGAGAU
1732
ATCTCCTG GGCTAGCTACAACGA CGCCACAG
6529





7038
GGCAGGAG A UGGGCGGU
1733
ACCGCCGA GGCTAGCTACAACGA CTCCTGCC
6530





7042
GGAGAUGG G CGGUAACA
1734
TGTTACCG GGCTAGCTACAACGA CCATCTCC
6531





7045
GAUGGGCG G UAACAUCA
1735
TGATGTTA GGCTAGCTACAACGA CGCCCATC
6532





7048
GGGCGGUA A CAUCACUC
1736
GAGTGATG GGCTAGCTACAACGA TACCGCCC
6533





7050
GCGGUAAC A UCACUCGC
1737
GCGAGTGA GGCTAGCTACAACGA GTTACCGC
6534





7053
GUAACAUC A CUCGCGUG
1738
CACGCGAG GGCTAGCTACAACGA GATGTTAC
6535





7057
CAUCACUC G CGUGGAGU
1739
ACTCCACG GGCTAGCTACAACGA GAGTGATG
6536





7059
UCACUCGC G UGGAGUCA
1740
TGACTCGA GGCTAGCTACAACGA GCGAGTGA
6537





7064
CGCGUGGA G UCAGAGAA
1741
TTCTCTGA GGCTAGCTACAACGA TCCACGCG
6538





7072
GUCAGAGA A UAAGGUAG
1742
CTACCTTA GGCTAGCTACAACGA TCTCTGAC
6539





7077
AGAAUAAG G UAGUUACC
1743
GGTAACTA GGCTAGCTACAACGA CTTATTCT
6540





7080
AUAAGGUA G UUACCCUG
1744
CAGGGTAA GGCTAGCTACAACGA TACCTTAT
6541





7083
AGGUAGUU A CCCUGCAC
1745
GTCCAGGG GGCTAGCTACAACGA AACTACCT
6542





7090
UACCCUGG A CUCUUUUG
1746
CAAAAGAG GGCTAGCTACAACGA CCAGGGTA
6543





7099
CUCUUUUG A CCCGCUUC
1747
GAAGCGGG GGCTAGCTACAACGA CAAAAGAG
6544





7103
UUUGACCC G CUUCGAGC
1748
GCTCCAAG GGCTAGCTACAACGA GGGTCAAA
6545





7110
CGCUUCGA G CGGAGGAG
1749
CTCCTCCG GGCTAGCTACAACGA TCGAAGCG
6546





7120
CGACCACG A UGAGAGAG
1750
CTCTCTCA GGCTAGCTACAACGA CCTCCTCC
6547





7131
AGAGAGAG G UGUCCAUU
1751
AATGGACA GGCTAGCTACAACGA CTCTCTCT
6548





7133
AGAGAGGU G UCCAUUCC
1752
GGAATGGA GGCTAGCTACAACGA ACCTCTCT
6549





7137
ACCUGUCC A UUCCGCCG
1753
CGCCGGAA GGCTAGCTACAACGA GCACACCT
6550





7143
CCAUUCCG G CCCAGAUC
1754
GATCTCCG GGCTAGCTACAACGA CGGAATGG
6551





7149
CGGCGGAG A UCCUGCGG
1755
CCGCAGGA GGCTAGCTACAACGA CTCCGCCG
6552





7154
GAGAUCCU G CGGAAAUC
1756
GATTTCCG GGCTAGCTACAACGA AGGATCTC
6553





7160
CUGCGGAA A UCCAAGAA
1757
TTCTTGCA GGCTAGCTACAACGA TTCCGCAG
6554





7169
UCCAAGAA G UUUCCUUC
1758
GAAGGAAA GGCTAGCTACAACGA TTCTTGGA
6555





7179
UUCCUUCA G CGUUACCC
1759
CGCTAACG GGCTAGCTACAACGA TGAACGAA
6556





7181
CCUUCAGC G UUACCCAU
1760
ATGGGTAA GGCTAGCTACAACGA GCTGAACG
6557





7184
UCAGCGUU A CCCAUAUG
1761
CATATGGG GGCTAGCTACAACGA AACGCTGA
6558





7188
CCUUACCC A UAUGGGCA
1762
TGCCCATA GGCTAGCTACAACGA GGGTAACG
6559





7190
UUACCCAU A UGCGCACG
1763
CGTGCCGA GGCTAGCTACAACGA ATGGGTAA
6560





7194
CCAUAUGG G CACGCCCG
1764
CGGGCGTG GGCTAGCTACAACGA CCATATGG
6561





7196
AUAUGGGC A CGCCCGGA
1765
TCCGGGCG GGCTAGCTACAACGA GCCCATAT
6562





7198
AUGGGCAC G CCCGGAUU
1766
AATCCGGG GGCTAGCTACAACGA GTGCCCAT
6563





7204
ACGCCCGG A UUACAACC
1767
GGTTGTAA GGCTAGCTACAACGA CCGGGCGT
6564





7207
CCCGGAUU A CAACCCUC
1768
GAGGGTTG GGCTAGCTACAACGA AATCCGGG
6565





7210
GGAUUACA A CCCUCCAC
1769
GTGGAGGG GGCTAGCTACAACGA TGTAATCC
6566





7217
AACCCUCC A CUACUAGA
1770
TCTAGTAG GGCTAGCTACAACGA GGAGGGTT
6567





7220
CCUCCACU A CUAGAGCC
1771
GGCTCTAG GGCTAGCTACAACGA AGTGGAGG
6568





7226
CUACUAGA G CCCUGGAA
1772
TTCCAGGG GGCTAGCTACAACGA TCTAGTAG
6569





7237
CUGGAAAG A CCCAGACU
1773
AGTCTGGG GGCTAGCTACAACGA CTTTCCAG
6570





7243
AGACCCAG A CUACGUCC
1774
GGACGTAG GGCTAGCTACAACGA CTGGGTCT
6571





7246
CCCAGACU A CGUCCCUC
1775
GAGGGACG GGCTAGCTACAACGA AGTCTGGG
6572





7248
CAGACUAC G UCCCUCCG
1776
CGGAGGGA GGCTAGCTACAACGA GTAGTCTG
6573





7257
UCCCUCCG G UGGUACAC
1777
GTGTACGA GGCTAGCTACAACGA CGGAGGGA
6574





7260
CUCCGGUG G UACACGGG
1778
CCCGTGTA GGCTAGCTACAACGA CACCGGAG
6575





7262
CCGGUGGU A CACGGGUG
1779
CACCCGTG GGCTAGCTACAACGA ACCACCGG
6576





7264
GGUGGUAC A CGGGUGCC
1780
GGCACCCG GGCTAGCTACAACGA GTACCACC
6577





7268
GUACACGG G UGCCCAUU
1781
AATGGGCA GGCTAGCTACAACGA CCGTGTAC
6578





7270
ACACGGGU G CCCAUUGC
1782
GCAATGGG GGCTAGCTACAACGA ACCCGTGT
6579





7274
GGGUGCCC A UUGCCACC
1783
GGTGGCAA GGCTAGCTACAACGA GGGCACCC
6580





7277
UGCCCAUU G CCACCUGC
1784
GCAGGTGG GGCTAGCTACAACGA AATGGGCA
6581





7280
CCAUUGCC A CCUGCCAA
1785
TTGGCAGG GGCTAGCTACAACGA GGCAATGG
6582





7284
UGCCACCU G CCAAGGCC
1786
GGCCTTGG GGCTAGCTACAACGA AGGTGGCA
6583





7290
CUGCCAAG G CCCCUCGA
1787
TGGAGGGG GGCTAGCTACAACGA CTTGGCAG
6584





7299
CCCCUCCA A UACCACCU
1788
AGGTGGTA GGCTAGCTACAACGA TGGAGGGG
6585





7301
CCUCCAAU A CCACCUCC
1789
GGAGGTGG GGCTAGCTACAACGA ATTGGAGG
6586





7304
CCAAUACC A CCUCCACG
1790
CGTGGAGG GGCTAGCTACAACGA GGTATTGG
6587





7310
CCACCUCC A CGGAGGAA
1791
TTCCTCCG GGCTAGCTACAACGA GGAGGTGG
6588





7323
GGAAGAGG A CGGUUGUU
1792
AACAACCG GGCTAGCTACAACGA CCTCTTCC
6589





7326
AGAGGACG G UUGUUCUG
1793
CAGAACAA GGCTAGCTACAACGA CGTCCTCT
6590





7329
GGACGGUU G UUCUGACA
1794
TGTCAGAA GGCTAGCTACAACGA AACCGTCC
6591





7335
UUGUUCUG A CAGAGUCC
1795
GGACTCTG GGCTAGCTACAACGA CAGAACAA
6592





7340
CUGACAGA G UCCACCGU
1796
ACGGTGGA GGCTAGCTACAACGA TCTGTCAG
6593





7344
CAGAGUCC A CCGUGUCU
1797
AGACACGG GGCTAGCTACAACGA GGACTCTG
6594





7347
AGUCCACC G UGUCUUCU
1798
AGAAGACA GGCTAGCTACAACGA GGTGGACT
6595





7349
UCCACCGU G UCUUCUGC
1799
GCAGAAGA GGCTAGCTACAACGA ACGGTGGA
6596





7356
UGUCUUCU G CCUUGGCG
1800
CGCCAAGG GGCTAGCTACAACGA AGAAGACA
6597





7362
CUGCCUUG G CGGAGCUC
1801
GAGCTCCG GGCTAGCTACAACGA CAAGGCAG
6598





7367
UUGGCGGA G CUCGCCAC
1802
GTGGCGAG GGCTAGCTACAACGA TCCGCCAA
6599





7371
CGGAGCUC G CCACAAAG
1803
CTTTGTGG GGCTAGCTACAACGA GAGCTCCG
6600





7374
AGCUCGCC A CAAAGACC
1804
GGTCTTTG GGCTAGCTACAACGA GGCGAGCT
6601





7380
CCACAAAG A CCUUCGGC
1805
GCCGAAGG GGCTAGCTACAACGA CTTTGTGG
6602





7387
GACCUUCG G CACCUCUG
1806
CAGAGCTG GGCTAGCTACAACGA CGAAGGTC
6603





7390
CUUCGGCA G CUCUGAAU
1807
ATTCAGAG GGCTAGCTACAACGA TGCCGAAG
6604





7397
AGCUCUGA A UCAUCGGC
1808
GCCGATGA GGCTAGCTACAACGA TCAGAGCT
6605





7400
UCUGAAUC A UCGGCCGC
1809
GCGGCCGA GGCTAGCTACAACGA GATTCAGA
6606





7404
AAUCAUCG G CCGCUGAU
1810
ATCAGCGG GGCTAGCTACAACGA CGATGATT
6607





7407
CAUCGGCC G CUGAUAGA
1811
TCTATCAG GGCTAGCTACAACGA GGCCGATG
6608





7411
GGCCGCUG A UAGAGGUA
1812
TACCTCTA GGCTAGCTACAACGA CAGCGGCC
6609





7417
UGAUAGAG G UACGGCAA
1813
TTGCCGTA GGCTAGCTACAACGA CTCTATCA
6610





7419
AUAGAGGU A CGGCAACC
1814
GGTTGCCG GGCTAGCTACAACGA ACCTCTAT
6611





7422
GAGGUACG G CAACCGCC
1815
GGCGGTTG GGCTAGCTACAACGA CGTACCTC
6612





7425
GUACGGCA A CCGCCCCC
1816
GGGGGCCG GGCTAGCTACAACGA TGCCGTAC
6613





7428
CGGCAACC G CCCCCCCC
1817
GGCGGGCG GGCTAGCTACAACGA GGTTGCCC
6614





7438
CCCCCCCG A CCAGACCU
1818
ACGTCTGG GGCTAGCTACAACGA CGGGGGGG
6615





7443
CCGACCAG A CCUCCAAU
1819
ATTGGAGG GGCTAGCTACAACGA CTGGTCGG
6616





7450
GACCUCCA A UGACGGUG
1820
CACCGTCA GGCTAGCTACAACGA TGGAGCTC
6617





7453
CUCCAAUG A CGGUGACG
1821
CGTCACCG GGCTAGCTACAACGA CATTGGAG
6618





7456
CAAUGACG G UGACGCAG
1822
CTGCGTCA GGCTAGCTACAACGA CGTCATTG
6619





7459
UGACGGUG A CGCAGGAU
1823
ATCCTGCG GGCTAGCTACAACGA CACCGTCA
6620





7461
ACGGUGAC G CAGGAUCC
1824
GGATCCTG GGCTAGCTACAACGA GTCACCGT
6621





7466
GACGCAGG A UCCGACGU
1825
ACGTCGGA GGCTAGCTACAACGA CCTGCGTC
6622





7471
AGGAUCCG A CGUUGAGU
1826
ACTCAACG GGCTAGCTACAACGA CGGATCCT
6623





7473
GAUCCGAC G UUGAGUCG
1827
CGACTCAA GGCTAGCTACAACGA GTCGGATC
6624





7478
GACGUUGA G UCGUACUC
1828
GAGTACGA GGCTAGCTACAACGA TCAACGTC
6625





7481
GUUGAGUC G UACUCCUC
1829
GAGGAGTA GGCTAGCTACAACGA GACTCAAC
6626





7483
UGAGUCGU A CUCCUCUA
1830
TAGAGGAG GGCTAGCTACAACGA ACGACTCA
6627





7491
ACUCCUCU A UGCCCCCC
1831
GGGGGGCA GGCTAGCTACAACGA AGAGGACT
6628





7493
UCCUCUAU G CCCCCCCU
1832
AGGGGGGG GGCTAGCTACAACGA ATAGAGGA
6629





7511
GAGGGGGA G CCGGGGGA
1833
TCCCCCGG GGCTAGCTACAACGA TCCCCCTC
6630





7519
GCCGGGGG A UCCCGAUC
1834
GATCGGGA GGCTAGCTACAACGA CCCCCGGC
6631





7525
GGAUCCCG A UCUCAGCG
1835
CGCTGAGA GGCTAGCTACAACGA CGGGATCC
6632





7531
CGAUCUCA G CGACGGGU
1836
ACCCGTCG GGCTAGCTACAACGA TGAGATCG
6633





7534
UCUCAGCG A CGGGUCUU
1837
AAGACCCG GGCTAGCTACAACGA CGCTGAGA
6634





7538
AGCGACGG G UCUUGGUC
1838
GACCAAGA GGCTAGCTACAACGA CCGTCGCT
6635





7544
GGGUCUUG G UCUACCGU
1839
ACGGTAGA GGCTAGCTACAACGA CAAGACCC
6636





7548
CUUGGUCU A CCGUGAGC
1840
GCTCACGG GGCTAGCTACAACGA AGACCAAG
6637





7551
GGUCUACC G UGAGCGAA
1841
TTCGCTCA GGCTAGCTACAACGA GGTAGACC
6638





7555
UACCGUGA G CGAAGAGG
1842
CCTCTTCG GGCTAGCTACAACGA TCACGGTA
6639





7563
GCGAAGAG G CUGGCGAG
1843
CTCGCCAG GGCTAGCTACAACGA CTCTTCGC
6640





7567
AGAGGCUG G CGAGGAUG
1844
CATCCTCG GGCTAGCTACAACGA CAGCCTCT
6641





7573
UGGCGAGG A UGUCGUCU
1845
AGACGACA GGCTAGCTACAACGA CCTCGCCA
6642





7575
GCGAGGAU G UCGUCUGC
1846
CCAGACGA GGCTAGCTACAACGA ATCCTCGC
6643





7578
AGGAUGUC G UCUGCUGC
1847
GCAGCAGA GGCTAGCTACAACGA GACATCCT
6644





7582
UGUCGUCU G CUGCUCGA
1848
TCGAGCAG GGCTAGCTACAACGA AGACGACA
6645





7585
CGUCUGCU G CUCGAUGU
1849
ACATCGAG GGCTAGCTACAACGA AGCAGACG
6646





7590
GCUGCUCG A UGUCCUAC
1850
GTAGGACA GGCTAGCTACAACGA CGAGCAGC
6647





7592
UGCUCGAU G UCCUACAC
1851
GTGTAGGA GGCTAGCTACAACGA ATCGAGCA
6648





7597
GAUGUCCU A CACAUGGA
1852
TCCATGTG GGCTAGCTACAACGA AGGACATC
6649





7599
UGUCCUAC A CAUGGACG
1853
CGTCCATG GGCTAGCTACAACGA GTAGGACA
6650





7601
UCCUACAC A UGGACGGG
1854
CCCGTCGA GGCTAGCTACAACGA GTGTAGGA
6651





7605
ACACAUGG A CGGGCGCC
1855
GGCGCCCG GGCTAGCTACAACGA CCATGTGT
6652





7609
AUGGACGG G CGCCCUGA
1856
TCAGGGCG GGCTAGCTACAACGA CCGTCCAT
6653





7611
GGACGGGC G CCCUGAUC
1857
GATCAGGG GGCTAGCTACAACGA GCCCGTCC
6654





7617
GCGCCCUG A UCACGCGA
1858
TGGCGTGA GGCTAGCTACAACGA CAGGGCGC
6655





7620
CCCUGAUC A CGCCAUGC
1859
GCATGGCG GGCTAGCTACAACGA GATCAGGG
6656





7622
CUGAUCAC G CCAUGCGC
1860
GCGCATGG GGCTAGCTACAACGA GTGATCAG
6657





7625
AUCACGCC A UGCGCUGC
1861
GCAGCGCA GGCTAGCTACAACGA GGCGTGAT
6658





7627
CACGCCAU G CGCUGCGG
1862
CCGCAGCG GGCTAGCTACAACGA ATGGCGTG
6659





7629
CGCCAUGC G CUGCGGAG
1863
CTCCGCAG GGCTAGCTACAACGA GCATGGCG
6660





7632
CAUGCGCU G CGGAGGAA
1864
TTCCTCCG GGCTAGCTACAACGA AGCGCATG
6661





7642
GGAGGAAA G CAAGUUGC
1865
GCAACTTG GGCTAGCTACAACGA TTTCCTCC
6662





7646
GAAAGCAA G UUGCCCAU
1866
ATGGGCAA GGCTAGCTACAACGA TTGCTTTC
6663





7649
AGCAAGUU G CCCAUCAA
1867
TTGATGGG GGCTAGCTACAACGA AACTTGCT
6664





7653
AGUUGCCC A UCAACGCG
1868
CGCGTTGA GGCTAGCTACAACGA GGGCAACT
6665





7657
GCCCAUCA A CGCGUUGA
1869
TCAACGCG GGCTAGCTACAACGA TGATGGGC
6666





7659
CCAUCAAC G CGUUGAGC
1870
GCTCAACG GGCTAGCTACAACGA CTTGATGC
6667





7661
AUCAACGC G UUGAGCAA
1871
TTGCTCAA GGCTAGCTACAACGA GCGTTGAT
6668





7666
CGCGUUGA G CAACUCUU
1872
AAGAGTTG GGCTAGCTACAACGA TCAACGCG
6669





7669
GUCGAGCA A CUCUUUCC
1873
GCAAACAG GGCTAGCTACAACGA TGCTCAAC
6670





7676
AACUCUUU G CUCCCUCA
1874
TGACCCAG GGCTAGCTACAACGA AAAGAGTT
6671





7679
UCUUUGCU G CGUCACGA
1875
TGCTCACG GGCTAGCTACAACGA AGCAAACA
6672





7681
UUUCCUGC G UCACCACA
1876
TCTGCTCA GGCTAGCTACAACGA GCAGCAAA
6673





7684
CCUCCCUC A CCACAACA
1877
TGTTCTCG GGCTAGCTACAACGA CACCCACC
6674





7687
GCGUCACC A CAACAUGG
1878
CCATGTTG GGCTAGCTACAACGA GGTGACCC
6675





7690
UCACCACA A CAUGGUCU
1879
AGACCATG GGCTAGCTACAACGA TGTGGTGA
6676





7692
ACCACAAC A UGGUCUAC
1880
GTAGACGA GGCTAGCTACAACGA GTTGTGGT
6677





7695
ACAACAUG G UCUACGCU
1881
AGCGTAGA GGCTAGCTACAACGA CATGTTGT
6678





7699
CAUGGUCU A CGCUACAA
1882
TTGTAGCG GGCTAGCTACAACGA AGACCATG
6679





7701
UGGUCUAC G CUACAACA
1883
TGTTGTAG GGCTAGCTACAACGA GTAGACCA
6680





7704
UCUACGCU A CAACAUCU
1884
AGATGTTG GGCTAGCTACAACGA AGCGTAGA
6681





7707
ACGCUACA A CAUCUCGC
1885
GCGAGATG GGCTAGCTACAACGA TGTAGCGT
6682





7709
GCUACAAC A UCUCGCAG
1886
CTGCGAGA GGCTAGCTACAACGA GTTGTAGC
6683





7714
AACAUCUC G CAGCGCAA
1887
TTGCGCTG GGCTAGCTACAACGA GAGATGTT
6684





7717
AUCUCGCA G CGGAAGCC
1888
GGCTTGCG GGCTAGCTACAACGA TGCGAGAT
6685





7719
CUCGCAGC G GAAGCCAG
1889
CTGGCTTG GGCTAGCTACAACGA GCTGCGAG
6686





7723
CAGCGCAA G CCAGCGGC
1890
GCCGCTGG GGCTAGCTACAACGA TTGCGCTG
6687





7727
GCAAGCGA G CGGCAGAA
1891
TTCTGCCG GGCTAGCTACAACGA TGGCTTGC
6688





7730
AGCCAGCG G CAGAAGAA
1892
TTCTTCTG GGCTAGCTACAACGA CGCTGGCT
6689





7740
AGAAGAAG G UCACCUUU
1893
AAAGGTGA GGCTAGCTACAACGA CTTCTTCT
6690





7743
AGAAGGUC A CCUUUGAC
1894
GTCAAAGG GGCTAGCTACAACGA GACCTTCT
6691





7750
CACCUUUG A CAGACUGC
1895
GCAGTCTG GGCTAGCTACAACGA CAAAGGTG
6692





7754
UUUGACAG A CUGCAAGU
1896
ACTTGCAG GGCTAGCTACAACGA CTGTCAAA
6693





7757
GACAGACU G CAAGUCCU
1897
AGGACTTG GGCTAGCTACAACGA AGTCTGTC
6694





7761
GACUGCAA G UCCUGGAC
1898
GTCCAGGA GGCTAGCTACAACGA TTGCAGTC
6695





7768
AGUCCUGG A CGACCACU
1899
AGTGGTCG GGCTAGCTACAACGA CCAGGACT
6696





7771
CCUGGACG A CCACUACC
1900
GGTAGTGG GGCTAGCTACAACGA CGTCCAGG
6697





7774
GGACGACC A CUACCGGG
1901
CCCGGTAG GGCTAGCTACAACGA GGTCGTCC
6698





7777
CGACCACU A CCGGGACG
1902
CGTCCCGG GGCTAGCTACAACGA AGTGGTCG
6699





7783
CUACCGGG A CGUGCUCA
1903
TGAGCACG GGCTAGCTACAACGA CCCGGTAG
6700





7785
ACCGGGAC G UGCUCAAG
1904
CTTGAGCA GGCTAGCTACAACGA GTCCCGGT
6701





7787
CGGGACGU G CUCAAGGA
1905
TCCTTGAG GGCTAGCTACAACGA ACGTCCCG
6702





7797
UCAAGGAG A UGAAGGCG
1906
CGCCTTCA GGCTAGCTACAACGA CTCCTTGA
6703





7803
AGAUGAAG G CGAAGGCG
1907
CGCCTTCG GGCTAGCTACAACGA CTTCATCT
6704





7809
AGGCGAAG G CGUCCACA
1908
TGTGGACG GGCTAGCTACAACGA CTTCGCCT
6705





7811
GCGAAGGC G UCCACAGU
1909
ACTGTGGA GGCTAGCTACAACGA GCCTTCGC
6706





7815
AGGCGUCC A CAGUUAAG
1910
CTTAACTG GGCTAGCTACAACGA GGACGCCT
6707





7818
CGUCCACA G UUAAGGCU
1911
AGCCTTAA GGCTAGCTACAACGA TGTGGACG
6708





7824
CAGUUAAG G CUAAACUU
1912
AAGTTTAG GGCTAGCTACAACGA CTTAACTG
6709





7829
AAGGCUAA A CUUCUAUC
1913
GATAGAAG GGCTAGCTACAACGA TTAGCCTT
6710





7835
AAACUUCU A UCCGUAGA
1914
TCTACGGA GGCTAGCTACAACGA AGAAGTTT
6711





7839
UUCUAUCC G UAGAGGAA
1915
TTCCTCTA GGCTAGCTACAACGA GGATAGAA
6712





7848
UAGAGGAA G CCUGCAGA
1916
TCTGCAGG GGCTAGCTACAACGA TTCCTCTA
6713





7852
GGAAGCCU G CAGACUGA
1917
TCAGTCTG GGCTAGCTACAACGA AGGCTTCC
6714





7856
GCCUGCAG A CUGACGCC
1918
GGCGTCAG GGCTAGCTACAACGA CTGCAGGC
6715





7860
GCAGACUG A CGCCCCGA
1919
TGGGGGCG GGCTAGCTACAACGA CAGTCTGC
6716





7862
AGACUGAC G CCCCCACA
1920
TGTGGGGG GGCTAGCTACAACGA GTCAGTCT
6717





7868
ACGCCCCC A CAUUCGGC
1921
GCCGAATG GGCTAGCTACAACGA GGGGGCGT
6718





7870
GCCCCCAC A UUCGGCGA
1922
TGGCCGAA GGCTAGCTACAACGA GTGGGGGC
6719





7875
CACAUUCG G CCAGGUCC
1923
GGACCTGG GGCTAGCTACAACGA CGAATGTG
6720





7880
UCCGCCAG G UCCAAAUU
1924
AATTTGGA GGCTAGCTACAACGA CTGGCCGA
6721





7886
AGGUCCAA A UUUGGUUA
1925
TAACCAAA GGCTAGCTACAACGA TTGGACCT
6722





7891
CAAAUUUG G UUAUGGGG
1926
CCCCATAA GGCTAGCTACAACGA CAAATTTG
6723





7894
AUUUGGUU A UGGGGCAA
1927
TTGCCCGA GGCTAGCTACAACGA AACCAAAT
6724





7899
GUUAUGGG G CAAAGGAC
1928
GTCCTTTG GGCTAGCTACAACGA CCCATAAC
6725





7906
GGCAAAGG A CGUCCGGA
1929
TCCGGACG GGCTAGCTACAACGA CCTTTGCC
6726





7908
CAAAGGAC G UCCGGAAC
1930
GTTCCGGA GGCTAGCTACAACGA GTCCTTTG
6727





7915
CGUCCGGA A CCUAUCGA
1931
TGGATAGG GGCTAGCTACAACGA TCCGGACG
6728





7919
CGGAACCU A UCCAGCGG
1932
CCGCTGGA GGCTAGCTACAACGA AGGTTCCG
6729





7924
CCUAUCGA G CGGGGCCG
1933
CGGCCCCG GGCTAGCTACAACGA TGGATAGG
6730





7929
CCAGCGGG G CCGUCAAC
1934
GTTGACGG GGCTAGCTACAACGA CCCGCTGG
6731





7932
GCGGGGCC G UCAACCAC
1935
GTGGTTGA GGCTAGCTACAACGA GGCCCCGC
6732





7936
GGCCGUCA A CCACAUCC
1936
GGATGTGG GGCTAGCTACAACGA TGACGGCC
6733





7939
CGUCAACC A CAUCCGCU
1937
AGCGGATG GGCTAGCTACAACGA GGTTGACG
6734





7941
UCAACCAC A UCCGCUCC
1938
GGAGCGGA GGCTAGCTACAACGA GTGGTTGA
6735





7945
CCACAUCC G CUCCGUGU
1939
ACACGGAG GGCTAGCTACAACGA GGATGTGG
6736





7950
UCCGCUCC G UGUGGAAG
1940
CTTCCACA GGCTAGCTACAACGA GGAGCGGA
6737





7952
CGCUCCGU G UGGAAGGA
1941
TCCTTCGA GGCTAGCTACAACGA ACGGAGCG
6738





7960
GUGGAAGG A CUUGCUGG
1942
CCAGCAAG GGCTAGCTACAACGA CCTTCCAC
6739





7964
AAGGACUU G CUGGAAGA
1943
TCTTCCAG GGCTAGCTACAACGA AAGTCCTT
6740





7972
GCUGGAAG A CACUGAGA
1944
TCTCAGTG GGCTAGCTACAACGA CTTCCAGC
6741





7974
UGGAAGAC A CUGAGACA
1945
TGTCTCAG GGCTAGCTACAACGA GTCTTCCA
6742





7980
ACACUGAG A CACCAAUU
1946
AATTGGTG GGCTAGCTACAACGA CTCAGTGT
6743





7982
ACUGAGAC A CCAAUUGA
1947
TCAATTGG GGCTAGCTACAACGA GTCTCAGT
6744





7986
AGACACCA A UUGAUACC
1948
GGTATCAA GGCTAGCTACAACGA TGGTGTCT
6745





7990
ACCAAUUG A UACCACGA
1949
TGGTGGTA GGCTAGCTACAACGA CAATTGGT
6746





7992
CAAUUGAU A CCACCAUC
1950
GATGGTGG GGCTAGCTACAACGA ATCAATTG
6747





7995
UUGAUACC A CCAUCAUG
1951
CATGATGG GGCTAGCTACAACGA GGTATCAA
6748





7998
AUACCACC A UCAUGGCA
1952
TGCCATGA GGCTAGCTACAACGA GGTGGTAT
6749





8001
CCACCAUC A UGGCAAAA
1953
TTTTGCGA GGCTAGCTACAACGA GATGGTGG
6750





8004
CCAUCAUG G CAAAAAAU
1954
ATTTTTTG GGCTAGCTACAACGA CATGATGG
6751





8011
GGCAAAAA A UGAGGUUU
1955
AAACCTCA GGCTAGCTACAACGA TTTTTGCC
6752





8016
AAAAUGAG G UUUUCUGC
1956
GCAGAAAA GGCTAGCTACAACGA CTCATTTT
6753





8023
GGUUUUCU G CGUCCAAC
1957
GTTGGACG GGCTAGCTACAACGA AGAAAACC
6754





8025
UUUUCUGC G UCCAACGA
1958
TGGTTGGA GGCTAGCTACAACGA GCAGAAAA
6755





8030
UGCGUCCA A CCAGAGAA
1959
TTCTCTGG GGCTAGCTACAACGA TGGACGCA
6756





8044
GAAAGGAG G CCGCAAGC
1960
GCTTGCGG GGCTAGCTACAACGA CTCCTTTC
6757





8047
AGGAGGCC G CAAGCCAG
1961
CTGGCTTG GGCTAGCTACAACGA GGCCTCCT
6758





8051
GGCCGCAA G CCAGCUCG
1962
CGAGCTGG GGCTAGCTACAACGA TTGCGGCC
6759





8055
GCAAGCGA G CUCGCCUU
1963
AAGGCGAG GGCTAGCTACAACGA TGGCTTGC
6760





8059
GCCAGCUC G CCUUAUCG
1964
CGATAAGG GGCTAGCTACAACGA GAGCTGGC
6761





8064
CUCGCCUU A UCGUGUUC
1965
GAACACGA GGCTAGCTACAACGA AAGGCGAG
6762





8067
GCCUUAUC G UGUUCCCA
1966
TGGGAACA GGCTAGCTACAACGA GATAAGGC
6763





8069
CUUAUCGU G UUCCCAGA
1967
TCTGGGAA GGCTAGCTACAACGA ACGATAAG
6764





8077
GUUCCCAG A CUUGGGGG
1968
CCCCCAAG GGCTAGCTACAACGA CTGGGAAC
6765





8085
ACUUGGGG G UUCGUGUG
1969
CACACGAA GGCTAGCTACAACGA CCCCAAGT
6766





8089
GGGGGUUC G UGUGUGCG
1970
CGCACACA GGCTAGCTACAACGA GAACCCCC
6767





8091
GGGUUCGU G UGUGCGAG
1971
CTCGCACA GGCTAGCTACAACGA ACGAACCC
6768





8093
GUUCGUGU G UGCGAGAA
1972
TTCTCGCA GGCTAGCTACAACGA ACACGAAC
6769





8095
UCGUGUGU G CGAGAAAA
1973
TTTTCTCG GGCTAGCTACAACGA ACACACCA
6770





8103
GCGAGAAA A UGGCCCUU
1974
AAGGGCGA GGCTAGCTACAACGA TTTCTCGC
6771





8106
AGAAAAUG G CCCUUUAC
1975
GTAAAGGG GGCTAGCTACAACGA CATTTTCT
6772





8113
GGCCCUUU A CGACGUCG
1976
CCACGTCG GGCTAGCTACAACGA AAAGGGCC
6773





8116
CCUUUACG A CGUGGUCU
1977
AGACCACG GGCTAGCTACAACGA CGTAAAGG
6774





8118
UUUACGAC G UGGUCUCC
1978
GGAGACGA GGCTAGCTACAACGA CTCGTAAA
6775





8121
ACCACCUG G UCUCCACC
1979
GGTGGAGA GGCTAGCTACAACGA CACGTCGT
6776





8127
UCGUCUCC A CCCUUCCU
1980
AGGAAGGG GGCTAGCTACAACGA GGAGACCA
6777





8139
UUCCUCAG G CCGUGAUG
1981
CATCACGG GGCTAGCTACAACGA CTGAGGAA
6778





8142
CUCACCCC G UGAUGGCC
1982
CCCCATCA GGCTAGCTACAACGA CCCCTCAC
6779





8148
ACCCCCUC A UCGCCUCU
1983
ACACCCGA GGCTAGCTACAACGA CACCCCCT
6780





8149
CGUCAUGG G CUCUUCAU
1984
ATGAAGAG GGCTAGCTACAACGA CCATCACG
6781





8156
GGCUCUUC A UACGGAUU
1985
AATCCGTA GGCTAGCTACAACGA GAAGAGCC
6782





8158
CUCUUCAU A CGCAUUCC
1986
GCAATCCG GGCTAGCTACAACGA ATCAAGAG
6783





8162
UCAUACGG A UUCCACUA
1987
TACTGGAA GGCTAGCTACAACGA CCGTATGA
6784





8168
GGAUUCGA G UACUCUCC
1988
CCACACTA GGCTAGCTACAACGA TGCAATCC
6785





8170
AUUCCAGU A CUCUCCUC
1989
CAGGAGAC GGCTAGCTACAACGA ACTGGAAT
6786





8180
UCUCCUCG G CAGCCCCU
1990
ACCCCCTC GGCTAGCTACAACGA CCACCAGA
6787





8183
CCUCCCGA G CGGGUUGA
1991
TCAACCCG GGCTAGCTACAACGA TCCCCACC
6788





8187
GGCAGCGG G UUGAGUUC
1992
GAACTCAA GGCTAGCTACAACGA CCGCTGCC
6789





8192
CGGGUUGA G UUCCUGGU
1993
ACCAGGAA GGCTAGCTACAACGA TCAACCCG
6790





8199
AGUUCCUG G UGAAUGCC
1994
GGCATTCA GGCTAGCTACAACGA CAGGAACT
6791





8203
CCUGGUGA A UGCCUGGA
1995
TCCAGGCA GGCTAGCTACAACGA TCACCAGG
6792





8205
UGGUGAAU G CCUGGAAA
1996
TTTCCAGG GGCTAGCTACAACGA ATTCACCA
6793





8213
GCCUGGAA A UCAAAGAA
1997
TTCTTTGA GGCTAGCTACAACGA TTCCAGGC
6794





8222
UCAAAGAA A UGCCCUAU
1998
ATAGGGCA GGCTAGCTACAACGA TTCTTTGA
6795





8224
AAAGAAAU G CCCUAUGG
1999
CCATAGGG GGCTAGCTACAACGA ATTTCTTT
6796





8229
AAUGCCCU A UGGGCUUU
2000
AAAGCCGA GGCTAGCTACAACGA AGGGCATT
6797





8233
CCCUAUGG G CUUUGCAU
2001
ATGCAAAG GGCTAGCTACAACGA CCATAGGG
6798





8238
UGGGCUUU G CAUAUGAC
2002
GTCATATG GGCTAGCTACAACGA AAAGCCCA
6799





8240
GGCUUUGC A UAUGACAC
2003
GTGTCATA GGCTAGCTACAACGA CCAAAGCC
6800





8242
CUUUGCAU A UGACACCC
2004
GGGTGTCA GGCTAGCTACAACGA ATGCAAAG
6801





8245
UGCAUAUG A CACCCGCU
2005
AGCGGGTG GGCTAGCTACAACGA CATATGCA
6802





8247
CAUAUGAC A CCCGCUGU
2006
ACAGCGGG GGCTAGCTACAACGA GTCATATG
6803





8251
UGACACCC G CUGUUUCG
2007
CGAAACAG GGCTAGCTACAACGA GGGTGTCA
6804





8254
CACCCGCU G UUUCGACU
2008
AGTCGAU& GGCTAGCTACAACGA AGCGGGTG
6805





8260
CUGUUUCG A CUCAACAG
2009
CTGTTGAG GGCTAGCTACAACGA CGAAACAG
6806





8265
UCCACUCA A CAGUCACC
2010
GGTGACTG GGCTAGCTACAACGA TGAGTCGA
6807





8268
ACUCAACA G UCACCGAG
2011
CTCGGTGA GGCTAGCTACAACGA TGTTGAGT
6808





8271
CAACAGUC A CCGAGAGU
2012
ACTCTCGG GGCTAGCTACAACGA GACTGTTG
6809





8278
CACCGAGA G UGACAUCC
2013
CGATGTCA GGCTAGCTACAACGA TCTCCGTG
6810





8281
CGAGAGUG A CAUCCGUG
2014
CACGGATG GGCTAGCTACAACGA CACTCTCG
6811





8283
AGAGUGAC A UCCGUGUC
2015
GACACGGA GGCTAGCTACAACGA GTCACTCT
6812





8287
UGACAUCC G UGUCGAGG
2016
CCTCGACA GGCTAGCTACAACGA GGATGTCA
6813





8289
ACAUCCGU G UCGAGGAG
2017
CTCCTCGA GGCTAGCTACAACGA ACGGATGT
6814





8297
GUCGAGGA G UCAAUUUA
2018
TAAATTGA GGCTAGCTACAACGA TCCTCGAC
6815





8301
AGGAGUCA A UUUACCAA
2019
TTGGTAAA GGCTAGCTACAACGA TGACTCCT
6816





8305
GUCAAUUU A CCAAUGUU
2020
AACATTGG GGCTAGCTACAACGA AAATTGAC
6817





8309
AUUUACCA A UGUUGUGA
2021
TCACAACA GGCTAGCTACAACGA TGGTAAAT
6818





8311
UUACCAAU G UUGUGACU
2022
AGTCACAA GGCTAGCTACAACGA ATTGGTAA
6819





8314
CCAAUGUU G UGACUUGG
2023
CCAAGTCA GGCTAGCTACAACGA AACATTGG
6820





8317
AUGUUGUG A CUUGGCCC
2024
GGGCCAAG GGCTAGCTACAACGA CACAACAT
6821





8322
GUGACUUG G CCCCCGAA
2025
TTCGGGGG GGCTAGCTACAACGA CAAGTCAC
6822





8331
CCCCCGAA G CCAGACAG
2026
CTGTCTGG GGCTAGCTACAACGA TTCGGGGG
6823





8336
GAAGCCAG A CAGGCCAU
2027
ATGGCCTG GGCTAGCTACAACGA CTGGCTTC
6824





8340
CCAGACAG G CCAUAAGG
2028
CCTTATCG GGCTAGCTACAACGA CTGTCTGG
6825





8343
GACAGGCC A UAAGGUCG
2029
CGACCTTA GGCTAGCTACAACGA GGCCTGTC
6826





8348
GCCAUAAG G UCGCUCAC
2030
GTGAGCGA GGCTAGCTACAACGA CTTATGGC
6827





8351
AUAAGGUC G CUCACAGA
2031
TCTGTGAG GGCTAGCTACAACGA GACCTTAT
6828





8355
GGUCGCUC A CAGAGCGG
2032
CCGCTCTG GGCTAGCTACAACGA GAGCGACC
6829





8360
CUCACAGA G CGGCUUUA
2033
TAAAGCCG GGCTAGCTACAACGA TCTGTGAG
6830





8363
ACAGACCG G CUUUAUAU
2034
ATATAAAG GGCTAGCTACAACGA CGCTCTGT
6831





8368
GCGGCUUU A UAUCGGGG
2035
CCCCGATA GGCTAGCTACAACGA AAAGCCGC
6832





8370
GGCUUUAU A UCGGGGGU
2036
ACCCCCGA GGCTAGCTACAACGA ATAAAGCC
6833





8377
UAUCGGGG G UCCUCUGA
2037
TCAGACGA GGCTAGCTACAACGA CCCCGATA
6834





8385
GUCCUCUG A CUAAUUCA
2038
TGAATTAG GGCTAGCTACAACGA CAGACCAC
6835





8389
UCUGACUA A UUCAAAAG
2039
CTTTTGAA GGCTAGCTACAACGA TAGTCAGA
6836





8399
UCAAAAGG G CACAACUG
2040
CAGTTCTG GGCTAGCTACAACGA CCTTTTGA
6837





8404
AGGGCAGA A CUGCGGUU
2041
AACCGCAG GGCTAGCTACAACGA TCTGCCCT
6838





8407
GCAGAACU G CGGUUAUC
2042
GATAACCG GGCTAGCTACAACGA AGTTCTGC
6839





8410
GAACUGCG G UUAUCGCC
2043
GGCGATAA GGCTAGCTACAACGA CGCAGTTC
6840





8413
CUGCGGUU A UCGCCGGU
2044
ACCGGCGA GGCTAGCTACAACGA AACCGCAG
6841





8416
CGGUUAUC G CCGGUGCC
2045
GGCACCGG GGCTAGCTACAACGA GATAACCG
6842





8420
UAUCGCCG G UGCCCCGC
2046
GCGCGGCA GGCTAGCTACAACGA CGGCGATA
6843





8422
UCGCCGGU G CCGCGCGA
2047
TCGCGCGG GGCTAGCTACAACGA ACCGGCGA
6844





8425
CCCGUGCC G CGCCACCG
2048
CGCTCGCG GGCTAGCTACAACGA GGCACCGG
6845





8427
GGUGCCGC G CGAGCGGC
2049
GCCGCTCG GGCTAGCTACAACGA GCGGCACC
6846





8431
CCGCGCGA G CGGCGUGC
2050
GCACGCCG GGCTAGCTACAACGA TCGCGCGG
6847





8434
CGCGAGCC G CGUGCUGA
2051
TCAGCACG GGCTAGCTACAACGA CGCTCCCG
6848





8436
CGAGCCCC G UGCUGACG
2052
CGTCAGCA GGCTAGCTACAACGA GCCGCTCG
6849





8438
ACCGGCGU G CUCACCAC
2053
CTCCTCAG GGCTAGCTACAACGA ACCCCGCT
6850





8442
GCGUGCUG A CGACCAGC
2054
CCTGGTCG GGCTAGCTACAACGA CAGCACGC
6851





8445
UGCUGACG A CCAGCUGU
2055A
CAGCTGG GGCTAGCTACAACGA CCTCACCA
6852





8449
GACCACGA G CUCUCCUA
2056
TACCACAG GGCTAGCTACAACGA TGGTCGTC
6853





8452
CACCACCU G UCGUAAUA
2057
TATTACGA GGCTAGCTACAACGA AGCTGGTC
6854





8455
CAGCUGUG G UAAUACCC
2058
GGGTATTA GGCTAGCTACAACGA CACAGCTC
6855





8458
CUGUGGUA A UACCCUCA
2059
TGAGGGTA GGCTAGCTACAACGA TACCACAC
6856





8460
GUGGUAAU A CCCUCACA
2060
TGTGAGGC GGCTAGCTACAACGA ATTACCAC
6857





8466
AUACCCUC A CAUGUUAC
2061
GTAACATG GGCTAGCTACAACGA GAGGGTAT
6858





8468
ACCCUCAC A UGUUACUU
2062
AAGTAACA GGCTAGCTACAACGA GTGAGGGT
6859





8470
CCUCACAU G UUACUUGA
2063
TCAAGTAA GGCTAGCTACAACGA ATGTGACG
6860





8473
CACAUGUU A CUUGAAAG
2064
CTTTCAAC GGCTAGCTACAACGA AACATGTG
6861





8481
ACUUGAAA G CCUCUGCG
2065
CGCAGAGG GGCTAGCTACAACGA TTTCAACT
6862





8487
AAGCCUCU G CGGCCUGU
2066
ACAGGCCG GGCTAGCTACAACGA AGAGGCTT
6863





8490
CCUCUGCG G CCUGUCGA
2067
TCGACAGG GGCTAGCTACAACGA CGCACAGC
6864





8494
UGCCGCCU G UCGAGCUG
2068
CAGCTCGA GGCTAGCTACAACGA AGGCCGCA
6865





8499
CCUGUCGA G CUGCGAAG
2069
CTTCGCAG GGCTAGCTACAACGA TCGACAGG
6866





8502
CUCCACCU G CCAACCUC
2070
CACCTTCC GGCTAGCTACAACGA ACCTCCAC
6867





8507
CCUGCGAA G CUCCAGGA
2071
TCCTGGAG GGCTAGCTACAACGA TTCCCAGC
6868





8515
GCUCCAGG A CUGCACGA
2072
TCGTGCAC GGCTAGCTACAACGA CCTCGAGC
6869





8518
CCACGACU G CACGAUGC
2073
GCATCGTC GGCTAGCTACAACGA AGTCCTGG
6870





8520
AGGACUGC A CGAUGCUC
2074
GAGCATCG GGCTAGCTACAACGA GCAGTCCT
6871





8523
ACUCCACG A UGCUCCUC
2075
CACGACGA GGCTAGCTACAACGA CCTCCACT
6872





8525
UCCACCAU G CUCCUGUG
2076
CACACCAC GGCTAGCTACAACGA ATCCTGCA
6873





8529
CCAUCCUC G UCUCUGGA
2077
TCCACACA GGCTAGCTACAACGA GAGCATCG
6874





8531
AUGCUCCU G UGUCCAGA
2078
TCTCCACA GGCTAGCTACAACGA ACCACCAT
6875





8533
GCUCCUGU G UGGAGACG
2079
CGTCTCGA GGCTAGCTACAACGA ACACGAGC
6876





8539
CUGUCCAC A CCACCUGC
2080
CCAGCTCC GGCTAGCTACAACGA CTCCACAC
6877





8542
UGGAGACC A CCUGGUCC
2081
CGACCAGG GGCTAGCTACAACGA CGTCTCCA
6878





8547
ACCACCUC G UCCUUAUC
2082
CATAACGA GGCTAGCTACAACGA CACGTCGT
6879





8550
ACCUGGUC G UUAUCUGU
2083
ACAGATAA GGCTAGCTACAACGA GACCACCT
6880





8553
UGGUCCUC A UCUGUGAA
2084
TTCACAGA GGCTAGCTACAACGA AACCACCA
6881





8557
CCUUAUCU G UGAAACUC
2085
CACTTTCA GGCTAGCTACAACGA AGATAACG
6882





8563
CUCUGAAA G UGCGGCGA
2086
TCCCCGCA GGCTAGCTACAACGA TTTCACAG
6883





8565
CUGAAACU G CCGCGACC
2087
CCTCCCCG GGCTAGCTACAACGA ACTTTCAC
6884





8571
CUCCCCCC A CCCAACAC
2088
CTCTTCCG GGCTAGCTACAACGA CCCCGCAC
6885





8581
CCAAGAGG A CGCGGCGA
2089
TCGCCGCG GGCTAGCTACAACGA CCTCTTGG
6886





8583
AAGAGGAC G CCCCGAGC
2090
CCTCCCCC GGCTAGCTACAACGA GTCCTCTT
6887





8586
ACGACGCG G CCAGCCUA
2091
TACGCTCG GGCTAGCTACAACGA CCCCTCCT
6888





8590
CGCGGCGA G CCUACGAG
2092
CTCGTACG GGCTAGCTACAACGA TCGCCGCG
6889





8594
CCCACCCU A CGACUCUU
2093
AACACTCC GGCTAGCTACAACGA ACCCTCCC
6890





8598
CCCUACGA G UCUUCACC
2094
CCTCAACA GGCTAGCTACAACGA TCCTACCC
6891





8604
GAGUCUUC A CCGACGCU
2095
AGCCTCCC GGCTAGCTACAACGA GAACACTC
6892





8610
UCACGGAG G CUAUGACU
2096
AGTCATAG GGCTAGCTACAACGA CTCCGTGA
6893





8613
CCCACGCU A UCACUAGG
2097
CCTACTCA GGCTAGCTACAACGA AGCCTCCC
6894





8616
ACGCUAUG A CUAGGUAC
2098
GTACCTAG GGCTAGCTACAACGA CATAGCCT
6895





8621
AUCACUAC G UACUCUCC
2099
CCACACTA GGCTAGCTACAACGA CTACTCAT
6896





8623
GACUAGGU A CUCUGCCC
2100
GGGCAGAG GGCTAGCTACAACGA ACCTAGTC
6897





8628
GGUACUCU G CCCCCCCC
2101
GGGGGGGG GGCTAGCTACAACGA AGACTACC
6898





8641
CCCCCCGC A CCCCCCCC
2102
GGCGCGGG GGCTAGCTACAACGA CCCCGGGG
6899





8645
CCCCACCC G CCCCAACC
2103
CCTTGGGC GGCTAGCTACAACGA GGCTCCCC
6900





8651
CCGCCCCA A CCGGAAUA
2104
TATTCCGG GGCTAGCTACAACGA TGGGGCGG
6901





8657
CAACCGGA A UACGACUU
2105
AAGTCGTA GGCTAGCTACAACGA TCCGGTTG
6902





8659
ACCGGAAU A CGACUUGG
2106
CCAAGTCG GGCTAGCTACAACGA ATTCCGGT
6903





8662
GGAAUACG A CUUGGAGU
2107
ACTCCAAG GGCTAGCTACAACGA CGTATTCC
6904





8669
GACUUGGA G UUGAUAAC
2108
GTTATCAA GGCTAGCTACAACGA TCCAAGTC
6905





8673
UGGAGUUG A UAACAUCA
2109
TGATGTTA GGCTAGCTACAACGA CAACTCCA
6906





8676
AGUUGAUA A CAUCAUGC
2110
GCATGATG GGCTAGCTACAACGA TATCAACT
6907





8678
UUGAUAAC A UCAUGCUC
2111
GAGCATGA GGCTAGCTACAACGA GTTATCAA
6908





8681
AUAACAUC A UGCUCCUC
2112
GAGGAGCA GGCTAGCTACAACGA GATGTTAT
6909





8683
AACAUCAU G CUCCUCGA
2113
TGGAGGAG GGCTAGCTACAACGA ATGATGTT
6910





8692
CUCCUCCA A CGUAUCAG
2114
CTGATACG GGCTAGCTACAACGA TGGAGGAG
6911





8694
CCUCCAAC G UAUCAGUU
2115
AACTGATA GGCTAGCTACAACGA GTTGGAGG
6912





8696
UCCAACGU A UCAGUUGC
2116
GCAACTGA GGCTAGCTACAACGA ACGTTGGA
6913





8700
ACCUAUCA G UUGCACAC
2117
GTGTGCAA GGCTAGCTACAACGA TGATACGT
6914





8703
UAUCAGUU G CACACGAU
2118
ATCGTGTG GGCTAGCTACAACGA AACTGATA
6915





8705
UCAGUUGC A CACGAUGC
2119
GCATCGTG GGCTAGCTACAACGA GCAACTGA
6916





8707
AGUUGCAC A CGAUGCAU
2120
ATGCATCG GGCTAGCTACAACGA GTGCAACT
6917





8710
UGCACACG A UGCAUCUG
2121
CAGATGCA GGCTAGCTACAACGA CGTGTGCA
6918





8712
CACACGAU G CAUCUGGC
2122
GCCAGATG GGCTAGCTACAACGA ATCGTGTG
6919





8714
CACGAUGC A UCUGGCAA
2123
TTGCCAGA GGCTAGCTACAACGA GCATCGTG
6920





8719
UCCAUCUG G CAAAAGGG
2124
CCCTTTTG GGCTAGCTACAACGA CAGATGCA
6921





8727
GCAAAAGG G UGUACUAC
2125
GTAGTACA GGCTAGCTACAACGA CCTTTTGC
6922





8729
AAAAGGGU G UACUACCU
2126
AGGTAGTA GGCTAGCTACAACGA ACCCTTTT
6923





8731
AAGGGUGU A CUACCUCA
2127
TGAGGTAG GGCTAGCTACAACGA ACACCCTT
6924





8734
GGUGUACU A CCUCACCC
2128
GGGTGAGG GGCTAGCTACAACGA AGTACACC
6925





8739
ACUACCUC A CCCGUGAC
2129
GTCACGGG GGCTAGCTACAACGA GAGGTAGT
6926





8743
CCUCACCC G UGACCCGA
2130
TGGGGTCA GGCTAGCTACAACGA GGGTGAGG
6927





8746
CACCCGUG A CCCCACGA
2131
TGGTGGGG GGCTAGCTACAACGA CACGGGTG
6928





8751
GUGACCCC A CCACCCCC
2132
GGGGGTGG GGCTAGCTACAACGA GGGGTCAC
6929





8754
ACCCCACC A CCCCCCUU
2133
AAGGGGGG GGCTAGCTACAACGA GGTGGGGT
6930





8763
CCCCCCUU G CGCGGGCU
2134
AGCCCGCG GGCTAGCTACAACGA AAGGGGGG
6931





8765
CCCCUUGC G CGGGCUGC
2135
GCAGCCCG GGCTAGCTACAACGA GCAAGGGG
6932





8769
UUGCGCGG G CUGCGUGG
2136
CCACGCAG GGCTAGCTACAACGA CCGCGCAA
6933





8772
CGCGGGCU G CGUGGGAG
2137
CTCCCACG GGCTAGCTACAACGA AGCCCGCG
6934





8774
CGGGCUGC G UGGGAGAC
2138
GTCTCCGA GGCTAGCTACAACGA GCAGCCCG
6935





8781
CGUGGGAG A CAGCUAGA
2139
TCTAGCTG GGCTAGCTACAACGA CTCCCACG
6936





8784
GGGAGACA G CUAGAAGC
2140
GCTTCTAG GGCTAGCTACAACGA TGTCTCCC
6937





8791
AGCUAGAA G CACUCCAG
2141
CTGGAGTG GGCTAGCTACAACGA TTCTAGCT
6938





8793
CUAGAAGC A CUCCAGUC
2142
GACTGGAG GGCTAGCTACAACGA GCTTCTAG
6939





8799
GCACUCGA G UCAACUCC
2143
GGAGTTGA GGCTAGCTACAACGA TGGAGTGC
6940





8803
UCCAGUCA A CUCCUGGC
2144
GCCAGGAG GGCTAGCTACAACGA TGACTGGA
6941





8810
AACUCCUG G CUAGGCAA
2145
TTGCCTAG GGCTAGCTACAACGA CAGGAGTT
6942





8815
CUGGCUAG G CAACAUCA
2146
TGATGTTG GGCTAGCTACAACGA CTAGCCAG
6943





8818
GCUAGGCA A CAUCAUCA
2147
TGATGATG GGCTAGCTACAACGA TGGCTAGC
6944





8820
UAGGCAAC A UCAUCAUG
2148
CATGATGA GGCTAGCTACAACGA GTTGCCTA
6945





8823
GCAACAUC A UCAUGUUU
2149
AAACATGA GGCTAGCTACAACGA GATGTTGC
6946





8826
ACAUCAUC A UGUUUGCA
2150
TGCAAACA GGCTAGCTACAACGA GATGATGT
6947





8828
AUCAUCAU G UUUGCACC
2151
GGTGCAAA GGCTAGCTACAACGA ATGATGAT
6948





8832
UCAUGUUU G CACCCACU
2152
AGTGGGTG GGCTAGCTACAACGA AAACATGA
6949





8834
AUGUUUGC A CCCACUCU
2153
AGAGTGGG GGCTAGCTACAACGA GCAAACAT
6950





8838
UUGCACCC A CUCUAUGG
2154
CCATAGAG GGCTAGCTACAACGA GGGTGCAA
6951





8843
CCCACUCU A UGGGUAAG
2155
CTTACCGA GGCTAGCTACAACGA AGAGTGGG
6952





8847
CUCUAUGG G UAAGGAUG
2156
CATCCTTA GGCTAGCTACAACGA CCATAGAG
6953





8853
GGGUAAGG A UGAUUCUG
2157
CAGAATCA GGCTAGCTACAACGA CCTTACCC
6954





8856
UAAGGAUG A UUCUGAUG
2158
CATCAGAA GGCTAGCTACAACGA CATCCTTA
6955





8862
UGAUUCUG A UGACUCAC
2159
GTGAGTCA GGCTAGCTACAACGA CAGAATCA
6956





8865
UUCUGAUG A CUCACUUC
2160
GAAGTGAG GGCTAGCTACAACGA CATCAGAA
6957





8869
GAUGACUC A CUUCUUCU
2161
AGAAGAAG GGCTAGCTACAACGA GAGTCATC
6958





8880
UCUUCUCC A UCCUUCUA
2162
TAGAAGGA GGCTAGCTACAACGA GGAGAAGA
6959





8889
UCCUUCUA G CCCAGGAG
2163
CTCCTGGG GGCTAGCTACAACGA TAGAAGGA
6960





8897
GCCCAGGA G CAACUUGA
2164
TCAAGTTG GGCTAGCTACAACGA TCCTGGGC
6961





8900
CAGGAGCA A CUUGAGAA
2165
TTCTCAAG GGCTAGCTACAACGA TGCTCCTG
6962





8910
UUGAGAAA G CCCUAGAC
2166
GTCTAGGG GGCTAGCTACAACGA TTTCTCAA
6963





8917
AGCCCUAG A CUGCCAGA
2167
TCTCGCAG GGCTAGCTACAACGA CTAGGGCT
6964





8920
CCUAGACU G CCAGAUCU
2168
AGATCTGG GGCTAGCTACAACGA AGTCTAGG
6965





8925
ACUGCCAG A UCUACGGG
2169
CCCGTAGA GGCTAGCTACAACGA CTGGCAGT
6966





8929
CCAGAUCU A CGGGGCUU
2170
AAGCCCCG GGCTAGCTACAACGA AGATCTGG
6967





8934
UCUACGGG G CUUGUUAC
2171
GTAACAAG GGCTAGCTACAACGA CCCGTAGA
6968





8938
CGGGGCUU G UUACUCGA
2172
TGGAGTAA GGCTAGCTACAACGA AAGCCCCG
6969





8941
GGCUUGUU A CUCCAUUG
2173
CAATGGAG GGCTAGCTACAACGA AACAAGCC
6970





8946
GUUACUCC A UUGAGCGA
2174
TGGCTCAA GGCTAGCTACAACGA GGAGTAAC
6971





8951
UCCAUUGA G CCACUUGA
2175
TCAAGTGG GGCTAGCTACAACGA TCAATGGA
6972





8954
AUUGAGCC A CUUGACCU
2176
AGGTCAAG GGCTAGCTACAACGA GGCTCAAT
6973





8959
GCCACUUG A CCUACCUC
2177
GAGGTAGG GGCTAGCTACAACGA CAAGTGGC
6974





8963
CUUGACCU A CCUCAGAU
2178
ATCTGAGG GGCTAGCTACAACGA AGGTCAAG
6975





8970
UACCUCAG A UCAUUCAG
2179
CTGAATGA GGCTAGCTACAACGA CTGAGGTA
6976





8973
CUCAGAUC A UUCAGCGA
2180
TCGCTGAA GGCTAGCTACAACGA GATCTGAG
6977





8978
AUCAUUCA G CGACUCCA
2181
TGGAGTCG GGCTAGCTACAACGA TGAATGAT
6978





8981
AUUCAGCG A CUCCAUGG
2182
CCATGGAG GGCTAGCTACAACGA CGCTGAAT
6979





8986
GCGACUCC A UGGUCUUA
2183
TAAGACGA GGCTAGCTACAACGA GGAGTCGC
6980





8989
ACUCCAUG G UCUUAGCG
2184
CGCTAAGA GGCTAGCTACAACGA CATGGAGT
6981





8995
UGGUCUUA G CGCAUUUU
2185
AAAATGCG GGCTAGCTACAACGA TAAGACCA
6982





8997
CUCUUAGC G CAUUUUCA
2186
TGAAAATG GGCTAGCTACAACGA GCTAAGAC
6983





8999
CUUAGCGC A UUUUCACU
2187
AGTGAAAA GGCTAGCTACAACGA GCGCTAAG
6984





9005
GCAUUUUC A CUCCAUAG
2188
CTATGGAG GGCTAGCTACAACGA GAAAATGC
6985





9010
UUCACUCC A UAGUUACU
2189
AGTAACTA GGCTAGCTACAACGA GGAGTGAA
6986





9013
ACUCCAUA G UUACUCCC
2190
GGGAGTAA GGCTAGCTACAACGA TATGGAGT
6987





9016
CCAUAGUU A CUCCCCAG
2191
CTGGGGAG GGCTAGCTACAACGA AACTATGG
6988





9025
CUCCCCAG G UGAAAUCA
2192
TGATTTCA GGCTAGCTACAACGA CTGGGGAG
6989





9030
CAGGUGAA A UCAAUAGG
2193
CCTATTGA GGCTAGCTACAACGA TTCACCTG
6990





9034
UGAAAUCA A UAGGGUGG
2194
CCACCCTA GGCTAGCTACAACGA TGATTTCA
6991





9039
UCAAUAGG G UGGCAUCA
2195
TGATGCGA GGCTAGCTACAACGA CCTATTGA
6992





9042
AUAGGGUG G CAUCAUGC
2196
GCATGATG GGCTAGCTACAACGA CACCCTAT
6993





9044
AGGGUGGC A UCAUGCCU
2197
AGGCATGA GGCTAGCTACAACGA GCCACCCT
6994





9047
GUGGCAUC A UGCCUCAG
2198
CTGAGGCA GGCTAGCTACAACGA GATGCCAC
6995





9049
GGCAUCAU G CCUCAGGA
2199
TCCTGAGG GGCTAGCTACAACGA ATGATGCC
6996





9059
CUCAGGAA A CUUGGGGU
2200
ACCCCAAG GGCTAGCTACAACGA TTCCTGAG
6997





9066
AACUUGGG G UACCACCC
2201
GGGTGGTA GGCTAGCTACAACGA CCCAAGTT
6998





9068
CUUGGGGU A CCACCCUU
2202
AAGGGTGG GGCTAGCTACAACGA ACCCCAAG
6999





9071
GGGGUACC A CCCUUGCG
2203
CGCAAGGG GGCTAGCTACAACGA GGTACCCC
7000





9077
CCACCCUU G CGAACCUG
2204
CAGGTTCG GGCTAGCTACAACGA AAGGGTGG
7001





9081
CCUUGCCA A CCUGGAGA
2205
TCTCCAGG GGCTAGCTACAACGA TCGCAAGG
7002





9089
ACCUGGAG A CAUCGGGC
2206
GCCCGATG GGCTAGCTACAACGA CTCCAGGT
7003





9091
CUGGAGAC A UCGGGCCA
2207
TGGCCCGA GGCTAGCTACAACGA GTCTCCAG
7004





9096
GACAUCGG G CCAGAAGU
2208
ACTTCTGG GGCTAGCTACAACGA CCGATGTC
7005





9103
GGCCAGAA G UGUUCCCC
2209
CGCCAACA GGCTAGCTACAACGA TTCTCCCC
7006





9105
CCAGAACU G UUCGCGCU
2210
AGCGCGAA GGCTAGCTACAACGA ACTTCTGG
7007





9109
AACUGUUC G CGCUAAGC
2211
CCTTACCG GGCTAGCTACAACGA CAACACTT
7008





9111
GUGUUCGC G CUAAGCUA
2212
TAGCTTAG GGCTAGCTACAACGA GCCAACAC
7009





9116
CCCCCUAA G CUACUGUC
2213
CACACTAC GGCTAGCTACAACGA TTACCCCG
7010





9119
GCUAAGCU A CUGUCCCA
2214
TGGGACAG GGCTAGCTACAACGA AGCTTAGC
7011





9122
AAGCUACU G UCCCACCG
2215
CCCTGCGA GGCTAGCTACAACGA AGTAGCTT
7012





9138
GCGGGAGG G CCGCCACC
2216
GGTGGCGG GGCTAGCTACAACGA CCTCCCCC
7013





9141
CCAGGGCC G CCACCUGU
2217
ACAGCTGG GGCTAGCTACAACGA GGCCCTCC
7014





9144
GGGCCGCC A CCUGUGGC
2218
GCCACAGG GGCTAGCTACAACGA GGCGGCCC
7015





9148
CGCCACCU G UGGCAGGU
2219
ACCTGCGA GGCTAGCTACAACGA ACCTCGCG
7016





9151
CACCUGUG G CAGGUACC
2220
GGTACCTG GGCTAGCTACAACGA CACAGGTG
7017





9155
UGUGGCAG G UACCUCUU
2221
AAGAGGTA GGCTAGCTACAACGA CTGCCACA
7018





9157
UGGCAGGU A CCUCUUCA
2222
TGAAGAGG GGCTAGCTACAACGA ACCTGCCA
7019





9166
CCUCUUCA A CUGGGCAG
2223
CTGCCCAG GGCTAGCTACAACGA TGAAGAGG
7020





9171
UCAACUGG G CAGUAAAG
2224
CTTTACTG GGCTAGCTACAACGA CCAGTTGA
7021





9174
ACUGGGCA G UAAAGACC
2225
GGTCTTTA GGCTAGCTACAACGA TGCCCAGT
7022





9180
CAGUAAAG A CCAAACUC
2226
GAGTTTGG GGCTAGCTACAACGA CTTTACTG
7023





9185
AAGACCAA A CUCAAACU
2227
AGTTTGAG GGCTAGCTACAACGA TTGGTCTT
7024





9191
AAACUCAA A CUCACUCC
2228
GGAGTGAG GGCTAGCTACAACGA TTGAGTTT
7025





9195
UCAAACUC A CUCCAAUC
2229
GATTGGAG GGCTAGCTACAACGA GAGTTTGA
7026





9201
UCACUCCA A UCCCAGCU
2230
AGCTGGGA GGCTAGCTACAACGA TGGAGTGA
7027





9207
CAAUCCGA G CUGCGUCU
2231
AGACGCAG GGCTAGCTACAACGA TGGGATTG
7028





9210
UCCCAGCU G CGUCUCAG
2232
CTGAGACG GGCTAGCTACAACGA AGCTGGGA
7029





9212
CCAGCUGC G UCUCAGUU
2233
AACTGAGA GGCTAGCTACAACGA GCAGCTGG
7030





9218
GCGUCUCA G UUGGACUU
2234
AAGTCCAA GGCTAGCTACAACGA TGAGACGC
7031





9223
UCAGUUGG A CUUGUCCA
2235
TGGACAAG GGCTAGCTACAACGA CCAACTGA
7032





9227
UUGGACUU G UCCAACUG
2236
CAGTTGGA GGCTAGCTACAACGA AAGTCCAA
7033





9232
CUUGUCCA A CUGGUUCG
2237
CGAACCAG GGCTAGCTACAACGA TGGACAAG
7034





9236
UCCAACUG G UUCGUUGC
2238
GCAACGAA GGCTAGCTACAACGA CAGTTGGA
7035





9240
ACUGGUUC G UUGCUGGC
2239
GCCAGCAA GGCTAGCTACAACGA GAACCAGT
7036





9243
GGUUCGUU G CUGGCUAC
2240
GTAGCCAG GGCTAGCTACAACGA AACGAACC
7037





9247
CGUUGCUG G CUACAGCG
2241
CGCTGTAG GGCTAGCTACAACGA CAGCAACG
7038





9250
UGCUGGCU A CAGCGGGG
2242
CCCCGCTG GGCTAGCTACAACGA AGCCAGCA
7039





9253
UGGCUACA G CGGGGGAG
2243
CTCCCCCG GGCTAGCTACAACGA TGTAGCCA
7040





9262
CGGGGGAG A CGUGUAUC
2244
GATACACG GGCTAGCTACAACGA CTCCCCCG
7041





9264
GGGGAGAC G UGUAUCAC
2245
GTGATACA GGCTAGCTACAACGA GTCTCCCC
7042





9266
GGAGACGU G UAUCACAG
2246
CTGTGATA GGCTAGCTACAACGA ACGTCTCC
7043





9268
AGACGUGU A UCACAGCC
2247
GGCTGTGA GGCTAGCTACAACGA ACACGTCT
7044





9271
CGUGUAUC A CAGCCUGU
2248
ACAGGCTG GGCTAGCTACAACGA GATACACG
7045





9274
GUAUCACA G CCUGUCUC
2249
GAGACAGG GGCTAGCTACAACGA TGTGATAC
7046





9278
CACAGCCU G UCUCGUGC
2250
GCACGAGA GGCTAGCTACAACGA AGGCTGTG
7047





9283
CCUGUCUC G UGCCCGAC
2251
GTCGGGCA GGCTAGCTACAACGA GAGACAGG
7048





9285
UGUCUCGU G CCCGACCC
2252
GGGTCGGG GGCTAGCTACAACGA ACGAGACA
7049





9290
CGUGCCCG A CCCCGCUG
2253
CAGCGGGG GGCTAGCTACAACGA CGGGCACG
7050





9295
CCGACCCC G CUGGUUCA
2254
TGAACCAG GGCTAGCTACAACGA GGGGTCGG
7051





9299
CCCCGCUG G UUCAUGCU
2255
AGCATGAA GGCTAGCTACAACGA CAGCGGGG
7052





9303
GCUGGUUC A UGCUUUGC
2256
GCAAAGCA GGCTAGCTACAACGA GAACCAGC
7053





9305
UGGUUCAU G CUUUGCCU
2257
AGGCAAAG GGCTAGCTACAACGA ATGAACCA
7054





9310
CAUGCUUU G CCUACUCC
2258
GGAGTAGG GGCTAGCTACAACGA AAAGCATG
7055





9314
CUUUGCCU A CUCCUACU
2259
AGTAGGAG GGCTAGCTACAACGA AGGCAAAG
7056





9320
CUACUCCU A CUCUCCGU
2260
ACGGAGAG GGCTAGCTACAACGA AGGAGTAG
7057





9327
UACUCUCC G UAGGGGUA
2261
TACCCCTA GGCTAGCTACAACGA GGAGAGTA
7058





9333
CCGUAGGG G UAGGCAUC
2262
GATGCCTA GGCTAGCTACAACGA CCCTACGG
7059





9337
AGGGGUAG G CAUCUACC
2263
GGTAGATG GGCTAGCTACAACGA CTACCCCT
7060





9339
GGGUAGGC A UCUACCUG
2264
CAGGTAGA GGCTAGCTACAACGA GGCTACCC
7061





9343
AGGCAUCU A CCUGCUCC
2265
GGAGCAGG GGCTAGCTACAACGA AGATGCCT
7062





9347
AUCUACCU G CUCCCCAA
2266
TTGGGGAG GGCTAGCTACAACGA AGGTAGAT
7063





9355
GCUCCCCA A CCGAUGAA
2267
TTCATCGG GGCTAGCTACAACGA TGGGGAGC
7064





9359
CCCAACCG A UGAACAGG
2268
CCTGTTCA GGCTAGCTACAACGA CGGTTGGG
7065





9363
ACCGAUGA A CAGGGAGC
2269
GCTCCCTG GGCTAGCTACAACGA TCATCGGT
7066





9370
AACAGGGA G CUAAACAC
2270
GTGTTTAG GGCTAGCTACAACGA TCCCTGTT
7067





9375
GGAGCUAA A CACUCCAG
2271
CTGGAGTG GGCTAGCTACAACGA TTAGCTCC
7068





9377
AGCUAAAC A CUCCAGGC
2272
GCCTGGAG GGCTAGCTACAACGA GTTTAGCT
7069





9384
CACUCCAG G CCAAUAGG
2273
CCTATTGG GGCTAGCTACAACGA CTGGAGTG
7070





9388
CCAGGCCA A UAGGCCAU
2274
ATGGCCTA GGCTAGCTACAACGA TGGCCTGG
7071





9392
GCCAAUAG G CCAUCCCG
2275
CGGGATGG GGCTAGCTACAACGA CTATTGGC
7072





9395
AAUAGGCC A UCCCGUUU
2276
AAACGGGA GGCTAGCTACAACGA GGCCTATT
7073





9400
GCCAUCCC G UUUUUUUU
2277
AAAAAAAA GGCTAGCTACAACGA GGGATGGC
7074






Input Sequence = HPCK1S1. Cut Site = R/Y




Arm Length = 8. Core Sequence=GGCTAGCTACAACGA




HPCK1S1 Hepatitis G virus (strain HCV-1b, Clone HCV-K1-S1), Complete genome; acc#




gi|1030702|dbj|D50483.1; 9410 nt








[0390]

3






TABLE IV










HCV minus strand DNAzyme and Substrate Sequence













Pos
Substrate
Seq ID
DNAzyzne
Seq ID















9413
AAAAAAAA A CGGGAUGG
2278
CCATCCCG GGCTAGCTACAACGA TTTTTTTT
7075



9408
AAAACGGG A UGGCCUAU
2279
ATAGGCCA GGCTAGCTACAACGA CCCGTTTT
7076


9405
ACGGGAUG G CCUAUUGG
2280
CCAATAGG GGCTAGCTACAACGA CATCCCGT
7077


9401
GAUGGCCU A UUGGCCUG
2281
CAGGCCAA GGCTAGCTACAACGA AGGCCATC
7078


9397
GCCUAUUG G CCUGGAGU
2282
ACTCCAGG GGCTAGCTACAACGA CAATAGGC
7079


9390
GGCCUGGA G UGUUUAGC
2283
GCTAAACA GGCTAGCTACAACGA TCCAGGCC
7080


9388
CCUGGAGU G UUUAGCUC
2284
GAGCTAAA GGCTAGCTACAACGA ACTCCAGG
7081


9383
AGUGUUUA G CUCCCUGU
2285
ACAGGGAG GGCTAGCTACAACGA TAAACACT
7082


9376
AGCUCCCU G UUCAUCGG
2286
CCAACCGA GGCTAGCTACAACGA AGGGAGCT
7083


9372
CCCUGUUC A UCGGUUGG
2287
CCAACCGA GGCTAGCTACAACGA GAACAGGG
7084


9368
GUUCAUCG G UUGGGGAG
2288
CTCCCCAA GGCTAGCTACAACGA CGATGAAC
7085


9360
GUUGGGGA G CAGGUAGA
2289
TCTACCTG GGCTAGCTACAACGA TCCCCAAC
7086


9356
GGGAGCAG G UAGAUGCC
2290
GGCATCTA GGCTAGCTACAACGA CTGCTCCC
7087


9352
GCAGGUAG A UGCCUACC
2291
GGTAGGCA GGCTAGCTACAACGA CTACCTGC
7088


9350
AGGUAGAU G CCUACCCC
2292
GGGGTAGG GGCTAGCTACAACGA ATCTACCT
7089


9346
AGAUGCCU A CCCCAUCG
2293
CGTAGGGG GGCTAGCTACAACGA AGGCATCT
7090


9340
CUACCCCU A CGGAGAGU
2294
ACTCTCCG GGCTAGCTACAACGA AGGGGTAG
7091


9333
UACGGAGA G UAGGAGUA
2295
TACTCCTA GGCTAGCTACAACGA TCTCCGTA
7092


9327
GAGUAGGA G UAGGCAAA
2296
TTTGCCTA GGCTAGCTACAACGA TCCTACTC
7093


9323
AGGAGUAG G CAAAGCAU
2297
ATGCTTTG GGCTAGCTACAACGA CTACTCCT
7094


9318
UAGGCAAA G CAUGAACC
2298
GGTTCATG GGCTAGCTACAACGA TTTGCCTA
7095


9316
GGCAAAGC A UGAACCAG
2299
CTGGTTCA GGCTAGCTACAACGA GCTTTGCC
7096


9312
AAGCAUGA A CCAGCGGG
2300
CCCGCTGG GGCTAGCTACAACGA TCATGCTT
7097


9308
AUGAACCA G CGGGGUCG
2301
CGACCCCG GGCTAGCTACAACGA TGGTTCAT
7098


9303
CCAGCGGG G UCGGGCAC
2302
GTGCCCGA GGCTAGCTACAACGA CCCGCTGG
7099


9298
GGGGUCGG G CACGAGAC
2303
GTCTCGTG GGCTAGCTACAACGA CCGACCCC
7100


9296
GGUCGGGC A CGAGACAG
2304
CTGTCTCG GGCTAGCTACAACGA GCCCGACC
7101


9291
GGCACGAG A CAGGCUGU
2305
ACAGCCTG GGCTAGCTACAACGA CTCGTGCC
7102


9287
CGAGACAG G CUGUGAUA
2306
TATCACAG GGCTAGCTACAACGA CTGTCTCG
7103


9284
GACAGGCU G UGAUACAC
2307
GTGTATCA GGCTAGCTACAACGA AGCCTGTC
7104


9281
AGGCUGUG A UACACGUC
2308
GACGTGTA GGCTAGCTACAACGA CACAGCCT
7105


9279
GCUGUGAU A CACGUCUC
2309
GAGACGTG GGCTAGCTACAACGA ATCACAGC
7106


9277
UGUGAUAC A CGUCUCCC
2310
GGGAGACG GGCTAGCTACAACGA GTATCACA
7107


9275
UGAUACAC G UCUCCCCC
2311
GGGGGAGA GGCTAGCTACAACGA GTGTATCA
7108


9266
UCUCCCCC G CUGUAGCC
2312
GGCTACAG GGCTAGCTACAACGA GGGGGAGA
7109


9263
CCCCCGCU G UAGCCAGC
2313
GCTGGCTA GGCTAGCTACAACGA AGCGGGGG
7110


9260
CCGCUGUA G CCAGCAAC
2314
GTTGCTGG GGCTAGCTACAACGA TACAGCGG
7111


9256
UGUAGCCA G CAACGAAC
2315
GTTCGTTG GGCTAGCTACAACGA TGGCTACA
7112


9253
AGCCAGCA A CGAACCAG
2316
CTGGTTCG GGCTAGCTACAACGA TGCTGGCT
7113


9249
AGCAACGA A CCAGUUGG
2317
CCAACTGG GGCTAGCTACAACGA TCGTTGCT
7114


9245
ACGAACCA G UUGGACAA
2318
TTGTCCAA GGCTAGCTACAACGA TGGTTCGT
7115


9240
CCAGUUGG A CAAGUCCA
2319
TGGACTTG GGCTAGCTACAACGA CCAACTGG
7116


9236
UUGGACAA G UCCAACUG
2320
CAGTTGGA GGCTAGCTACAACGA TTGTCCAA
7117


9231
CAAGUCCA A CUGAGACG
2321
CGTCTCAG GGCTAGCTACAACGA TGGACTTG
7118


9225
CAACUGAG A CGCAGCUG
2322
CAGCTGCG GGCTAGCTACAACGA CTCAGTTG
7119


9223
ACUGAGAC G CAGCUGGG
2323
CCCAGCTG GGCTAGCTACAACGA GTCTCAGT
7120


9220
GAGACGCA G CUGGGAUU
2324
AATCCCAG GGCTAGCTACAACGA TGCGTCTC
7121


9214
GGAUUGGA G UGAGUUUG
2325
CACTCCAA GGCTAGCTACAACGA CCCAGCTG
7122


9208
GGAUUGGA G UGAGUUUG
2326
CAAACTCA GGCTAGCTACAACGA TCCAATCC
7123


9204
UGGAGUGA G UUUGAGUU
2327
AACTCAAA GGCTAGCTACAACGA TCACTCCA
7124


9198
GAGUUUGA G UUUGGUCU
2328
AGACCAAA GGCTAGCTACAACGA TCAAACTC
7125


9193
UGAGUUUG G UCUUUACU
2329
AGTAAAGA GGCTAGCTACAACGA CAAACTCA
7126


9187
UGGUCUUU A CUGCCCAG
2330
CTGGGCAG GGCTAGCTACAACGA AAAGACCA
7127


9184
CAAGCCCA G CCCAGUUG
2331
CAACTGGG GGCTAGCTACAACGA AGTAAAGA
7128


9179
ACUGCCCA G UUGAAGAG
2332
CTCTTCAA GGCTAGCTACAACGA TGGGCAGT
7129


9170
UUGAAGAG G UACCUGCC
2333
GGCAGGTA GGCTAGCTACAACGA CTCTTCAA
7130


9168
GAAGAGGU A CCUGCCAC
2334
GTGGCAGG GGCTAGCTACAACGA ACCTCTTC
7131


9164
AGGUACCU G CCACAGGU
2335
ACCTGTGG GGCTAGCTACAACGA AGGTACCT
7132


9161
UACCUGCC A CAGGUGGC
2336
GCCACCTG GGCTAGCTACAACGA GGCAGGTA
7133


9157
UGCCACAG G UGGCGGCC
2337
GGCCGCCA GGCTAGCTACAACGA CTGTGGCA
7134


9154
CACAGGUG G CGGCCCUC
2338
GAGGGCCG GGCTAGCTACAACGA CACCTGTG
7135


9151
AGGUGGCG G CCCUCCCC
2339
GGGGAGGG GGCTAGCTACAACGA CGCCACCT
7136


9135
CCCCUGGG A CAGUAGCU
2340
AGCTACTG GGCTAGCTACAACGA CCCAGGGG
7137


9132
CUGGGACA G UAGCUUAG
2341
CTAAGCTA GGCTAGCTACAACGA TGTCCCAG
7138


9129
GGACAGUA G CUUAGCGC
2342
GCGCTAAG GGCTAGCTACAACGA TACTGTCC
7139


9124
GUAGCUUA G CGCGAACA
2343
TGTTCGCG GGCTAGCTACAACGA TAAGCTAC
7140


9122
AGCUUAGC G CGAACACU
2344
AGTGTTCG GGCTAGCTACAACGA GCTAAGCT
7141


9118
UAGCGCGA A CACUUCUG
2345
CAGAAGTG GGCTAGCTACAACGA TCGCGCTA
7142


9116
GCGCGAAC A CUUCUGGC
2346
GCCAGAAG GGCTAGCTACAACGA GTTCGCGC
7143


9109
CACUUCUG G CCCGAUGU
2347
ACATCGGG GGCTAGCTACAACGA CAGAAGTG
7144


9104
CUGGCCCG A UGUCUCCA
2348
TGGAGACA GGCTAGCTACAACGA CGGGCCAG
7145


9102
GGCCCGAU G UCUCCAGG
2349
CCTGGAGA GGCTAGCTACAACGA ATCGGGCC
7146


9094
GUCUCCAG G UUCGCAAG
2350
CTTGCGAA GGCTAGCTACAACGA CTGGAGAC
7147


9090
CCAGGUUC G CAAGGGUG
2351
CACCCTTG GGCTAGCTACAACGA GAACCTGG
7148


9084
UCGCAAGG G UGGUACCC
2352
GGGTACCA GGCTAGCTACAACGA CCTTGCGA
7149


9081
CAAGGGUG G UACCCCAA
2353
TTGGGGTA GGCTAGCTACAACGA CACCCTTG
7150


9079
AGGGUGGU A CCCCAAGU
2354
ACTTGGGG GGCTAGCTACAACGA ACCACCCT
7151


9072
UACCCCAA G UUUCCUGA
2355
TCAGGAAA GGCTAGCTACAACGA TTGGGGTA
7152


9062
UUCCUGAG G CAUGAUGC
2356
GCATCATG GGCTAGCTACAACGA CTCAGGAA
7153


9060
CCUGAGGC A UGAUGCCA
2357
TGGCATCA GGCTAGCTACAACGA GCCTCAGG
7154


9057
GAGGCAUG A UGCCACCC
2358
GGGTGGCA GGCTAGCTACAACGA CATGCCTC
7155


9055
GGCAUGAU G CCACCCUA
2359
TAGGGTGG GGCTAGCTACAACGA ATCATGCC
7156


9052
AUGAUGCC A CCCUAUUG
2360
CAATAGGG GGCTAGCTACAACGA GGCATCAT
7157


9047
GCCACCCU A UUGAUUUC
2361
GAAATCAA GGCTAGCTACAACGA AGGGTGGC
7158


9043
CCCUAUUG A UUUCACCU
2362
AGGTGAAA GGCTAGCTACAACGA CAATAGGG
7159


9038
UUGAUUUC A CCUGGGGA
2363
TCCCCAGG GGCTAGCTACAACGA GAAATCAA
7160


9029
CCUGGGGA G UAACUAUG
2364
CATAGTTA GGCTAGCTACAACGA TCCCCAGG
7161


9026
GGGGAGUA A CUAUGGAG
2365
CTCCATAG GGCTAGCTACAACGA TACTCCCC
7162


9023
GAGUAACU A UGGAGUGA
2366
TCACTCCA GGCTAGCTACAACGA AGTTACTC
7163


9018
ACUAUGGA G UGAAAAUG
2367
CATTTTCA GGCTAGCTACAACGA TCCATAGT
7164


9012
GAGUGAAA A UGCGCUAA
2368
TTAGCGCA GGCTAGCTACAACGA TTTCACTC
7165


9010
GUGAAAAU G CGCUAAGA
2369
TCTTAGCG GGCTAGCTACAACGA ATTTTCAC
7166


9008
GAAAAUGC G CUAAGACC
2370
GGTCTTAG GGCTAGCTACAACGA GCATTTTC
7167


9002
GCGCUAAG A CCAUGGAG
2371
CTCCATGG GGCTAGCTACAACGA CTTAGCGC
7168


8999
CUAAGACC A UGGAGUCG
2372
CGACTCCA GGCTAGCTACAACGA GGTCTTAG
7169


8994
ACCAUGGA G UCGCUGAA
2373
TTCAGCGA GGCTAGCTACAACGA TCCATGGT
7170


8991
AUGGAGUC G CUGAAUGA
2374
TCATTCAG GGCTAGCTACAACGA GACTCCAT
7171


8986
GUCGCUGA A UGAUCUGA
2375
TCAGATCA GGCTAGCTACAACGA TCAGCGAC
7172


8983
GCUGAAUG A UCUGAGGU
2376
ACCTCAGA GGCTAGCTACAACGA CATTCAGC
7173


8976
GAUCUGAG G UAGGUCAA
2377
TTGACCTA GGCTAGCTACAACGA CTCAGATC
7174


8972
UGAGGUAG G UCAAGUGG
2378
CCACTTGA GGCTAGCTACAACGA CTACCTCA
7175


8967
UAGGUCAA G UGGCUCAA
2379
TTGAGCCA GGCTAGCTACAACGA TTGACCTA
7176


8964
GUCAAGUG G CUCAAUGG
2380
CCATTGAG GGCTAGCTACAACGA CACTTGAC
7177


8959
GUGGCUCA A UGGAGUAA
2381
TTACTCCA GGCTAGCTACAACGA TGAGCCAC
7178


8954
UCAAUGGA G UAACAAGC
2382
GCTTGTTA GGCTAGCTACAACGA TCCATTGA
7179


8951
AUGGAGUA A CAAGCCCC
2383
GGGGCTTG GGCTAGCTACAACGA TACTCCAT
7180


8947
AGUAACAA G CCCCGUAG
2384
CTACGGGG GGCTAGCTACAACGA TTGTTACT
7181


8942
CAAGCCCC G UAGAUCUG
2385
CAGATCTA GGCTAGCTACAACGA GGGGCTTG
7182


8938
CCCCGUAG A UCUGGCAG
2386
CTGCCAGA GGCTAGCTACAACGA CTACGGGG
7183


8933
UAGAUCUG G CAGUCUAG
2387
CTAGACTG GGCTAGCTACAACGA CAGATCTA
7184


8930
AUCUGGCA G UCUAGGGC
2388
GCCCTAGA GGCTAGCTACAACGA TGCCAGAT
7185


8923
AGUCUAGG G CUUUCUCA
2389
TGAGAAAG GGCTAGCTACAACGA CCTAGACT
7186


8913
UUUCUCAA G UUGCUCCU
2390
AGGAGCAA GGCTAGCTACAACGA TTGAGAAA
7187


8910
CUCAAGUU G CUCCUGGG
2381
CCCAGGAG GGCTAGCTACAACGA AACTTGAG
7188


8902
GCUCCUGG G CUAGAAGG
2392
CCTTCTAG GGCTAGCTACAACGA CCAGGAGC
7189


8893
CUAGAAGG A UGGAGAAG
2393
CTTCTCCA GGCTAGCTACAACGA TTCTTCTC
7190


8882
GAGAAGAA G UGAGUCAU
2394
ATGACTCA GGCTAGCTACAACGA TTCTTCTC
7191


8878
AGAAGUGA G UCAUCAGA
2395
TCTGATGA GGCTAGCTACAACGA TCACTTCT
7192


8875
AGUGAGUC A UCAGAAUC
2396
GATTCTGA GGCTAGCTACAACGA GACTCACT
7193


8869
UCAUCAGA A UCAUCCUU
2397
AAGGATGA GGCTAGCTACAACGA TCTGATGA
7194


8866
UCAGAAUC A UCCUUACC
2398
GGTAAGGA GGCTAGCTACAACGA GATTCTGA
7195


8860
UCAUCCUU A CCCAUAGA
2399
TCTATGGG GGCTAGCTACAACGA AAGGATGA
7196


8856
CCUUACCC A UAGAGUGG
2400
CCACTCTA GGCTAGCTACAACGA GGGTAAGG
7197


8851
CCCAUAGA G UGGGUGCA
2401
TGCACCCA GGCTAGCTACAACGA TCTATGGG
7198


8847
UAGAGUGG G UGCAAACA
2402
TCATCATG GGCTAGCTACAACGA TTGCACCC
7199


8845
GAGUGGGU G CAAACAUG
2403
CATGTTTG GGCTAGCTACAACGA ACCCACTC
7200


8841
GGGUGCAA A CAUGAUGA
2404
TCATCATG GGCTAGCTACAACGA TTGCACCC
7201


8839
GUGCAAAC A UGAUGAUG
2405
CATCATCA GGCTAGCTACAACGA GTTTGCAC
7202


8836
CAAACAUG A UGAUGUUG
2406
CAACATCA GGCTAGCTACAACGA CATGTTTG
7203


8833
ACAUGAUG A UGUUGCCU
2407
AGGCAACA GGCTAGCTACAACGA CATCATGT
7204


8831
AUGAUGAU G UUGCCUAG
2408
CTAGGCAA GGCTAGCTACAACGA ATCATCAT
7205


8828
AUGAUGUU G CUUAGCCA
2409
TGGCTAGG GGCTAGCTACAACGA AACATCAT
7206


8823
GUUGCCAU G UUGACUGG
2410
ACTCCTGG GGCTAGCTACAACGA TAGGCAAC
7207


8816
AGCCAGGA G UUGACUGG
2411
CCAGTCAA GGCTAGCTACAACGA TCCTGGCT
7208


8812
AGGAGUUG A CUGGAGUG
2412
CACTCCAG GGCTAGCTACAACGA CAACTCCT
7209


8806
UGACUGGA G UGCUUCUA
2413
TAGAAGCA GGCTAGCTACAACGA TCCAGTCA
7210


8804
ACUGGAGU G CUUCUAGC
2414
GCTAGAAG GGCTAGCTACAACGA ACTCCAGT
7211


8797
UGCUUCUA G CUGUCUCC
2415
GGAGACAG GGCTAGCTACAACGA TAGAAGCA
7212


8794
UUCUAGCU G UCUCCCAC
2416
GTGGGAGA GGCTAGCTACAACGA AGCTAGAA
7213


8787
UGUCUCCC A CGCAGCCC
2417
GGGCTGCG GGCTAGCTACAACGA GGGAGACA
7214


8785
UCUCCCAC G CAGCCCGC
2418
GCGGGCTG GGCTAGCTACAACGA GTGGGAGA
7215


8782
CCCACGCA G CCCGCGCA
2419
TGCGCGGG GGCTAGCTACAACGA TGCGTGGG
7216


8778
CGCAGCCC G CGCAAGGG
2420
CCCTTGCG GGCTAGCTACAACGA GGGCTGCG
7217


8776
CAGCCCGC G CAAGGGGG
2421
CCCCCTTG GGCTAGCTACAACGA GCGGGCTG
7218


8767
CAAGGGGG G UGGUGGGG
2422
CCCCACCA GGCTAGCTACAACGA CCCCCTTG
7219


8764
GGGGGGUG G UGGGGUCA
2423
TGACCCCA GGCTAGCTACAACGA CACCCCCC
7220


8759
GUGGUGGG G UCACGGGU
2424
ACCCGTGA GGCTAGCTACAACGA CCCACCAC
7221


8756
GUGGGGUC A CGGGUGAG
2425
CTCACCCG GGCTAGCTACAACGA GACCCCAC
7222


8752
GGUCACGG G UGAGGUAG
2426
CTACCTCA GGCTAGCTACAACGA CCGTGACC
7223


8747
CGGGUGAG G UAGUACAC
2427
GTGTACTA GGCTAGCTACAACGA CTCACCCG
7224


8744
GUGAGGUA G UACACCCU
2428
AGGGTGTA GGCTAGCTACAACGA TACCTCAC
7225


8742
GAGGUAGU A CACCCUUU
2429
AAAGGGTG GGCTAGCTACAACGA ACTACCTC
7226


8740
GGUAGUAC A CCCUUUUG
2430
CAAAAGGG GGCTAGCTACAACGA GTACTACC
7227


8732
ACCCUUUU G CCAGAUGC
2431
GCATCTGG GGCTAGCTACAACGA AAAAGGGT
7228


8727
UUUGCCAG A UGCAUCGU
2432
ACGATGCA GGCTAGCTACAACGA CTGGCAAA
7229


8725
UGCCAGAU G CAUCGUGU
2433
ACACGATG GGCTAGCTACAACGA ATCTGGCA
7230


8723
CCAGAUGC A UCGUGUGC
2434
GCACACGA GGCTAGCTACAACGA GCATCTGG
7231


8720
GAUGCAUC G UGUGCAAC
2435
GTTGCACA GGCTAGCTACAACGA GATGCATC
7232


8718
UGCAUCGU G UGCAACUG
2436
CAGTTGCA GGCTAGCTACAACGA ACGATGCA
7233


8716
CAUCGUGU G CAACUGAU
2437
ATCAGTTG GGCTAGCTACAACGA ACACGATG
7234


8713
CGUGUGCA A CUGAUACG
2438
CGTATCAG GGCTAGCTACAACGA TGCACACG
7235


8709
UGCAACUG A UACGUUGG
2439
CCAACGTA GGCTAGCTACAACGA CAGTTGCA
7236


8707
CAACUGAU A CGUUGGAG
2440
CTCCAACG GGCTAGCTACAACGA ATCAGTTG
7237


8705
ACUGAUAC G UUGGAGGA
2441
TCCTCCAA GGCTAGCTACAACGA GTATCAGT
7238


8696
UUGGAGGA G CAUGAUGU
2442
ACATCATG GGCTAGCTACAACGA TCCTCCAA
7239


8694
GGAGGAGC A UGAUGUUA
2443
TAACATCA GGCTAGCTACAACGA GCTCCTCC
7240


8691
GGAGCAUG A UGUUAUCA
2444
TGATAACA GGCTAGCTACAACGA CATGCTCC
7241


8689
AGCAUGAU G UUAUCAAC
2445
GTTGATAA GGCTAGCTACAACGA ATCATGCT
7242


8686
AUGAUGUU A UCAACUCC
2446
GGAGTTGA GGCTAGCTACAACGA AACATCAT
7243


8682
UGUUAUCA A CUCCAAGU
2447
ACTTGGAG GGCTAGCTACAACGA TGATAACA
7244


8675
AACUCCAA G UCGUAUUC
2448
GAATACGA GGCTAGCTACAACGA TTGGAGTT
7245


8672
UCCAAGUC G UAUUCCGG
2449
CCGGAATA GGCTAGCTACAACGA GACTTGGA
7246


8670
CAAGUCGU A UUCCGGUU
2450
AACCGGAA GGCTAGCTACAACGA ACGACTTG
7247


8664
GUAUUCCG G UUGGGGCG
2451
CGCCCCAA GGCTAGCTACAACGA CGGAATAC
7248


8658
CGGUUGGG G CGGGUCCC
2452
GGGACCCG GGCTAGCTACAACGA CCCAACCG
7249


8654
UGGGGCGG G UCCCCGGG
2453
CCCGGGGA GGCTAGCTACAACGA CCGCCCCA
7250


8641
CGGGGGGG G CAGAGUAC
2454
GTACTCTG GGCTAGCTACAACGA CCCCCCCG
7251


8636
GGGGCAGA G UACCUAGU
2455
ACTAGGTA GGCTAGCTACAACGA TCTGCCCC
7252


8634
GGCAGAGU A CCUAGUCA
2456
TGACTAGG GGCTAGCTACAACGA ACTCTGCC
7253


8629
AGUACCUA G UCAUAGCC
2457
GGCTATGA GGCTAGCTACAACGA TAGGTACT
7254


8626
ACCAUGUC A UAGCCUCC
2458
GGAGGCTA GGCTAGCTACAACGA GACTAGGT
7255


8623
UAGUCAUA G CCUCCGUG
2459
CACGGAGG GGCTAGCTACAACGA TATGACTA
7256


8617
UAGCCUCC G UGAAGACU
2460
AGTCTTCA GGCTAGCTACAACGA GGAGGCTA
7257


8611
CCGUGAAG A CUCGUAGG
2461
CCTACGAG GGCTAGCTACAACGA CTTCACGG
7258


8607
GAAGACUC G UAGGCUCG
2462
CGAGCCTA GGCTAGCTACAACGA GAGTCTTC
7259


8603
ACUCGUAG G CUCGCCGC
2463
GCGGCGAG GGCTAGCTACAACGA CTACGAGT
7260


8599
GUAGGCUC G CCGCGUCC
2464
GGACGCGG GGCTAGCTACAACGA GAGCCTAC
7261


8596
GGCUCGCC G CGUCCUCU
2465
AGAGGACG GGCTAGCTACAACGA GGCGAGCC
7262


8594
CUCGCCGC G UCCUCUUG
2466
CAAGAGGA GGCTAGCTACAACGA GCGGCGAG
7263


8584
CCUCUUGG G UCCCCGCA
2467
TGCGGGGA GGCTAGCTACAACGA CCAAGAGG
7264


8578
GGGUCCCC G CACUUUCA
2468
TGAAAGTG GGCTAGCTACAACGA GGGGACCC
7265


8576
GUCCCCGC A CUUUCACA
2469
TGTGAAAG GGCTAGCTACAACGA GCGGGGAC
7266


8570
GCACUUUC A CAGAUAAC
2470
GTTATCTG GGCTAGCTACAACGA GAAAGTGC
7267


8566
UUUCACAG A UAACGACC
2471
GGTCGTTA GGCTAGCTACAACGA CTGTGAAA
7268


8563
CACAGAUA A CGACCAGG
2472
CCTGGTCG GGCTAGCTACAACGA TATCTGTG
7269


8560
AGAUAACG A CCAGGUCG
2473
CGACCTGG GGCTAGCTACAACGA CGTTATCT
7270


8555
ACGACCAG G UCGUCUCC
2474
GGAGACGA GGCTAGCTACAACGA CTGGTCGT
7271


8552
ACCAGGUC G UCUCCACA
2475
TGTGGAGA GGCTAGCTACAACGA GACCTGGT
7272


8546
UCGUCUCC A CACACGAG
2476
CTCGTGTG GGCTAGCTACAACGA GGAGACGA
7273


8544
GUCUCCAC A CACGAGCA
2477
TGCTCGTG GGCTAGCTACAACGA GTGGAGAC
7274


8542
CUCCACAC A CGAGCAUC
2478
GATGCTCG GGCTAGCTACAACGA GTGTGGAG
7275


8538
ACACACGA G CAUCGUGC
2479
GCACGATG GGCTAGCTACAACGA TCGTGTGT
7276


8536
ACACGAGC A UCGUGCAG
2480
CTGCACGA GGCTAGCTACAACGA GCTCGTGT
7277


8533
CGAGCAUC G UGCAGUCC
2481
GGACTGCA GGCTAGCTACAACGA GATGCTCG
7278


8531
AGCAUCGU G CAGUCCUG
2482
CAGGACTG GGCTAGCTACAACGA ACGATGCT
7279


8528
AUCGUGCA G UCCUGGAG
2483
CTCCAGGA GGCTAGCTACAACGA TGCACGAT
7280


8520
GUCCUGGA G CUUCGCAG
2484
CTGCGAAG GGCTAGCTACAACGA TCCAGGAC
7281


8515
GGAGCUUC G CAGCUCGA
2485
TCGAGCTG GGCTAGCTACAACGA GAAGCTCC
7282


8512
GCUUCGCA G CUCGACAG
2486
CTGTCGAG GGCTAGCTACAACGA TGCGAAGC
7283


8507
GCAGCUCG A CAGGCCGC
2487
GCGGCCTG GGCTAGCTACAACGA CGAGCTGC
7284


8503
CUCGACAG G CCGCAGAG
2488
CTCTGCGG GGCTAGCTACAACGA CTGTCGAG
7285


8500
GACAGGCC G CAGAGGCU
2489
AGCCTCTG GGCTAGCTACAACGA GGCCTGTC
7286


8494
CCGCAGAG G CUUUCAAG
2490
CTTGAAAG GGCTAGCTACAACGA CTCTGCGG
7287


8486
GCUUUCAA G UAACAUGU
2491
ACATGTTA GGCTAGCTACAACGA TTGAAAGC
7288


8483
UUCAAGUA A CAUGUGAG
2492
CTCACATG GGCTAGCTACAACGA TACTTGAA
7289


8481
CAAGUAAC A UGUGAGGG
2493
CCCTCACA GGCTAGCTACAACGA GTTACTTG
7290


8479
AGUAACAU G UGAGGGUA
2494
TACCCTCA GGCTAGCTACAACGA ATGTTACT
7291


8473
AUGUGAGG G UAUUACCA
2495
TGGTAATA GGCTAGCTACAACGA CCTCACAT
7292


8471
GUGAGGGU A UUACCACA
2496
TGTGGTAA GGCTAGCTACAACGA ACCCTCAC
7293


8468
AGGGUAUU A CCACAGCU
2497
AGCTGTGG GGCTAGCTACAACGA AATACCCT
7294


8465
GUAUUACC A CAGCUGGU
2498
ACCAGCTG GGCTAGCTACAACGA GGTAATAC
7295


8462
UUACCACA G CUGGUCGU
2499
ACGACCAG GGCTAGCTACAACGA TGTGGTAA
7296


8458
CACAGCUG G UCGUCAGC
2500
GCTGACGA GGCTAGCTACAACGA CAGCTGTG
7297


8455
AGCUGGUC G UCAGCACG
2501
CGTGCTGA GGCTAGCTACAACGA GACCAGCT
7298


8451
GGUCGUCA G CACGCCGC
2502
GCGGCGTG GGCTAGCTACAACGA TGACGACC
7299


8449
UCGUCAGC A CGCCGCUC
2503
GAGCGGCG GGCTAGCTACAACGA GCTGACGA
7300


8447
GUCAGCAC G CCGCUCGC
2504
GCGAGCGG GGCTAGCTACAACGA GTGCTGAC
7301


8444
AGCACGCC G CUCGCGCG
2505
CGCGCGAG GGCTAGCTACAACGA GGCGTGCT
7302


8440
CGCCGCUC G CGCGGCAC
2506
GTGCCGCG GGCTAGCTACAACGA GAGCGGCG
7303


8438
CCGCUCGC G CGGCACCG
2507
CGGTGCCG GGCTAGCTACAACGA GCGAGCGG
7304


8435
CUCGCGCG G CACCGGCG
2508
CGCCGGTG GGCTAGCTACAACGA CGCGCGAG
7305


8433
CGCGCGGC A CCGGCGAU
2509
ATCGCCGG GGCTAGCTACAACGA GCCGCGCG
7306


8429
CGGCACCG G CGAUAACC
2510
GGTTATCG GGCTAGCTACAACGA CGGTGCCG
7307


8426
CACCGGCG A UAACCGCA
2511
TGCGGTTA GGCTAGCTACAACGA CGCCGGTG
7308


8423
CGGCGAUA A CCGCAGUU
2512
AACTGCGG GGCTAGCTACAACGA TATCGCCG
7309


8420
CGAUAACC G CAGUUCUG
2513
CAGAACTG GGCTAGCTACAACGA GGTTATCG
7310


8417
UAACCGCA G UUCUGCCC
2514
GGGCAGAA GGCTAGCTACAACGA TGCGGTTA
7311


8412
GCAGUUCU G CCCUUUUG
2515
CAAAAGGG GGCTAGCTACAACGA AGAACTGC
7312


8402
CCUUUUGA A UUAGUCAG
2516
CTGACTAA GGCTAGCTACAACGA TCAAAAGG
7313


8398
UUGAAUUA G UCAGAGGA
2517
TCCTCTGA GGCTAGCTACAACGA TAATTCAA
7314


8390
GUCAGAGG A CCCCCGAU
2518
ATCGGGGG GGCTAGCTACAACGA CCTCTGAC
7315


8383
GACCCCCG A UAUAAAGC
2519
GCTTTATA GGCTAGCTACAACGA CGGGGGTC
7316


8381
CCCCCGAU A UAAAGCCG
2520
CGGCTTTA GGCTAGCTACAACGA ATCGGGGG
7317


8376
GAUAUAAA G CCGCUCUG
2521
CAGAGCGG GGCTAGCTACAACGA TTTATATC
7318


8373
AUAAAGCC G CUCUGUGA
2522
TCACAGAG GGCTAGCTACAACGA GGCTTTAT
7319


8368
GCCGCUCU G UGAGCGAC
2523
GTCGCTCA GGCTAGCTACAACGA AGAGCGGC
7320


8364
CUCUGUGA G CGACCUUA
2524
TAAGGTCG GGCTAGCTACAACGA TCACAGAG
7321


8361
UGUGAGCG A CCUUAUGG
2525
CCATAAGG GGCTAGCTACAACGA CGCTCACA
7322


8356
GCGACCUU A UGGCCUGU
2526
ACAGGCCA GGCTAGCTACAACGA AAGGTCGC
7323


8353
ACCUUAUG G CCUGUCUG
2527
CAGACAGG GGCTAGCTACAACGA CATAAGGT
7324


8349
UAUGGCCU G UCUGGCUU
2528
AAGCCAGA GGCTAGCTACAACGA AGGCCATA
7325


8344
CCUGUCUG G CUUCGGGG
2529
CCCCGAAG GGCTAGCTACAACGA CAGACAGG
7326


8335
CUUCGGGG G CCAAGUCA
2530
TGACTTGG GGCTAGCTACAACGA CCCCGAAG
7327


8330
GGGGCCAA G UCACAACA
2531
TGTTGTGA GGCTAGCTACAACGA TTGGCCCC
7328


8327
GCCAAGUC A CAACAUUG
2532
CAATGTTG GGCTAGCTACAACGA GACTTGGC
7329


8324
AAGUCACA A CAUUGGUA
2533
TACCAATG GGCTAGCTACAACGA TGTGACTT
7330


8322
GUCACAAC A UUGGUAAA
2534
TTTACCAA GGCTAGCTACAACGA GTTGTGAC
7331


8318
CAACAUUG G UAAAUUGA
2535
TCAATTTA GGCTAGCTACAACGA CAATGTTG
7332


8314
AUUGGUAA A UUGACUCC
2536
GGAGTCAA GGCTAGCTACAACGA TTACCAAT
7333


8310
GUAAAUUG A CUCCUCGA
2537
TCGAGGAG GGCTAGCTACAACGA CAATTTAC
7334


8302
ACUCCUCG A CACGGAUG
2538
CATCCGTG GGCTAGCTACAACGA CGAGGAGT
7335


8300
UCCUCGAC A CGGAUGUC
2539
GACATCCG GGCTAGCTACAACGA GTCGAGGA
7336


8296
CGACACGG A UGUCACUC
2540
GAGTGACA GGCTAGCTACAACGA CCGTGTCG
7337


8294
ACACGGAU G UCACUCUC
2541
GAGAGTGA GGCTAGCTACAACGA ATCCGTGT
7338


8291
CGGAUGUC A CUCUCGGU
2542
ACCGAGAG GGCTAGCTACAACGA GACATCCG
7339


8284
CACUCUCG G UGACUGUU
2543
AACAGTCA GGCTAGCTACAACGA CGAGAGTG
7340


8281
UCUCGGUG A CUGUUGAG
2544
CTCAACAG GGCTAGCTACAACGA CACCGAGA
7341


8278
CGGUGACU G UUGAGUCG
2545
CGACTCAA GGCTAGCTACAACGA AGTCACCG
7342


8273
ACUGUUGA G UCGAAACA
2546
TGTTTCGA GGCTAGCTACAACGA TCAACAGT
7343


8267
GAGUCGAA A CAGCGGGU
2547
ACCCGCTG GGCTAGCTACAACGA TTCGACTC
7344


8264
UCGAAACA G CGGGUGUC
2548
GACACCCG GGCTAGCTACAACGA TGTTTCGA
7345


8260
AACAGCGG G UGUCAUAU
2549
ATATGACA GGCTAGCTACAACGA CCGCTGTT
7346


8258
CAGCGGGU G UCAUAUGC
2550
GCATATGA GGCTAGCTACAACGA ACCCGCTG
7347


8255
CGGGUGUC A UAUGCAAA
2551
TTTGCATA GGCTAGCTACAACGA GACACCCG
7348


8253
GGUGUCAU A UGCAAAGC
2552
GCTTTGCA GGCTAGCTACAACGA ATGACACC
7349


8251
UGUCAUAU G CAAAGCCC
2553
GGGCTTTG GGCTAGCTACAACGA ATATGACA
7350


8246
UAUGCAAA G CCCAUAGG
2554
CCTATGGG GGCTAGCTACAACGA TTTGCATA
7351


8242
CAAAGCCC A UAGGGCAU
2555
ATGCCCTA GGCTAGCTACAACGA GGGCTTTG
7352


8237
CCCAUAGG G CAUUUCUU
2556
AAGAAATG GGCTAGCTACAACGA CCTATGGG
7353


8235
CAUAGGGC A UUUCUUUG
2557
CAAAGAAA GGCTAGCTACAACGA GCCCTATG
7354


8226
UUUCUUUG A UUUCCAGG
2558
CCTGGAAA GGCTAGCTACAACGA CAAAGAAA
7355


8218
AUUUCCAG G CAUUCACC
2559
GGTGAATG GGCTAGCTACAACGA CTGGAAAT
7356


8216
UUCCAGGC A UUCACCAG
2560
CTGGTGAA GGCTAGCTACAACGA GCCTGGAA
7357


8212
AGGCAUUC A CCAGGAAC
2561
GTTCCTGG GGCTAGCTACAACGA GAATGCCT
7358


8205
CACCAGGA A CUCAACCC
2562
GGGTTGAG GGCTAGCTACAACGA TCCTGGTG
7359


8200
GGAACUCA A CCCGCUGC
2563
GCAGCGGG GGCTAGCTACAACGA TGAGTTCC
7360


8196
CUCAACCC G CUGCCCAG
2564
CTGGGCAG GGCTAGCTACAACGA GGGTTGAG
7361


8193
AACCCGCU G CCCAGGAG
2565
CTCCTGGG GGCTAGCTACAACGA AGCGGGTT
7362


8183
CCAGGAGA G UACUGGAA
2566
TTCCAGTA GGCTAGCTACAACGA TCTCCTGG
7363


8181
AGGAGAGU A CUGGAAUC
2567
GATTCCAG GGCTAGCTACAACGA ACTCTCCT
7364


8175
GUACUGGA A UCCGUAUG
2568
CATACGGA GGCTAGCTACAACGA TCCAGTAC
7365


8171
UGGAAUCC G UAUGAAGA
2569
TCTTCATA GGCTAGCTACAACGA GGATTCCA
7366


8169
GAAUCCGU A UGAAGAGC
2570
GCTCTTCA GGCTAGCTACAACGA ACGGATTC
7367


8162
UAUGAAGA G CCCAUCAC
2571
GTGATGGG GGCTAGCTACAACGA TCTTCATA
7368


8158
AAGAGCCC A UCACGGCC
2572
GGCCGTGA GGCTAGCTACAACGA GGGCTCTT
7369


8155
AGCCCAUC A CGGCCUGA
2573
TCAGGCCG GGCTAGCTACAACGA GATGGGCT
7370


8152
CCAUCACG G CCUGAGGA
2574
TCCTCAGG GGCTAGCTACAACGA CGTGATGG
7371


8140
GAGGAAGG G UGGAGACC
2575
GGTCTCCA GGCTAGCTACAACGA CCTTCCTC
7372


8134
GGGUGGAG A CCACGUCG
2576
CGACGTGG GGCTAGCTACAACGA CTCCACCC
7373


8131
UGGAGACC A CGUCGUAA
2577
TTACGACG GGCTAGCTACAACGA GGTCTCCA
7374


8129
GAGACCAC G UCGUAAAG
2578
CTTTACGA GGCTAGCTACAACGA GTGGTCTC
7375


8126
ACCACGUC G UAAAGGGC
2579
GCCCTTTA GGCTAGCTACAACGA GACGTGGT
7376


8119
CGUAAAGG G CCAUUUUC
2580
CGTGTGTG GGCTAGCTACAACGA GAGAAAAT
7377


8116
AAAGGGCC A UUUUCUCG
2581
CGAGAAAA GGCTAGCTACAACGA GGCCCTTT
7378


8108
AUUUUCUC G CACACACG
2582
CGTGTGTG GGCTAGCTACAACGA GAGAAAAT
7379


8106
UUUCUCGC A CACACGAA
2583
TTCGTGTG GGCTAGCTACAACGA GCGAGAAA
7380


8104
UCUCGCAC A CACGAACC
2584
GGTTCGTG GGCTAGCTACAACGA GTGCGAGA
7381


8102
UCGCACAC A CGAACCCC
2585
GGGGTTCG GGCTAGCTACAACGA GTGTGCGA
7382


8098
ACACACGA A CCCCCAAG
2586
CTTGGGGG GGCTAGCTACAACGA TCGTGTGT
7383


8090
ACCCCCAA G UCUGGGAA
2587
TTCCCAGA GGCTAGCTACAACGA TTGGGGGT
7384


8082
GUCUGGGA A CACGAUAA
2588
TTATCGTG GGCTAGCTACAACGA TCCCAGAC
7385


8080
CUGGGAAC A CGAUAAGG
2589
CCTTATCG GGCTAGCTACAACGA GTTCCCAG
7386


8077
GGAACACG A UAAGGCGA
2590
TCGCCTTA GGCTAGCTACAACGA CGTGTTCC
7387


8072
ACGAUAAG G CGAGCUGG
2591
CCAGCTCG GGCTAGCTACAACGA CTTATCGT
7388


8068
UAAGGCGA G CUGGCUUG
2592
CAAGCCAG GGCTAGCTACAACGA TCGCCTTA
7389


8064
GCGAGCUG G CUUGCGGC
2593
GCCGCAAG GGCTAGCTACAACGA CAGCTCGC
7390


8060
GCUGGCUU G CGGCCUCC
2594
GGAGGCCG GGCTAGCTACAACGA AAGCCAGC
7391


8057
GGCUUGCG G CCUCCUUU
2595
AAAGGAGG GGCTAGCTACAACGA CGCAAGCC
7392


8043
UUUCUCUG G UUGGACGC
2596
GCGTCCAA GGCTAGCTACAACGA CAGAGAAA
7393


8038
CUGGUUGG A CGCAGAAA
2597
TTTCTGCG GGCTAGCTACAACGA CCAACCAG
7394


8036
GGUUGGAC G CAGAAAAC
2598
GTTTTCTG GGCTAGCTACAACGA GTCCAACC
7395


8029
CGCAGAAA A CCUCAUUU
2599
AAATGAGG GGCTAGCTACAACGA TTTCTGCG
7396


8024
AAAACCUC A UUUUUUGC
2600
GCAAAAAA GGCTAGCTACAACGA GAGGTTTT
7397


8017
CAUUUUUU G CCAUGAUG
2601
CATCATGG GGCTAGCTACAACGA AAAAAATG
7398


8014
UUUUUGCC A UGAUGGUG
2602
CACCATCA GGCTAGCTACAACGA GGCAAAAA
7399


8011
UUGCCAUG A UGGUGGUA
2603
TACCACCA GGCTAGCTACAACGA CATGGCAA
7400


8008
CCAUGAUG G UGGUAUCA
2604
TGATACCA GGCTAGCTACAACGA CATCATGG
7401


8005
UGAUGGUG G UAUCAAUU
2605
AATTGATA GGCTAGCTACAACGA CACCATCA
7402


8003
AUGGUGGU A UCAAUUGG
2606
CCAATTGA GGCTAGCTACAACGA ACCACCAT
7403


7999
UGGUAUCA A UUGGUGUC
2607
GACACCAA GGCTAGCTACAACGA TGATACCA
7404


7995
AUCAAUUG G UGUCUCAG
2608
CTGAGACA GGCTAGCTACAACGA CAATTGAT
7405


7993
CAAUUGGU G UCUCAGUG
2609
CACTGAGA GGCTAGCTACAACGA ACCAATTG
7406


7987
GUGUCUCA G UGUCUUCC
2610
GGAAGACA GGCTAGCTACAACGA TGAGACAC
7407


7985
GUCUCAGU G UCUUCCAG
2611
CTGGAAGA GGCTAGCTACAACGA ACTGAGAC
7408


7977
GUCUUCCA G CAAGUCCU
2612
AGGACTTG GGCTAGCTACAACGA TGGAAGAC
7409


7973
UCCAGCAA G UCCUUCCA
2613
TGGAAGGA GGCTAGCTACAACGA TTGCTGGA
7410


7965
GUCCUUCC A CACGGAGC
2614
GCTCCGTG GGCTAGCTACAACGA GGAAGGAC
7411


7963
CCUUCCAC A CGGAGCGG
2615
CCGCTCCG GGCTAGCTACAACGA GTGGAAGG
7412


7958
CACACGGA G CGGAUGUG
2616
CACATCCG GGCTAGCTACAACGA TCCGTGTG
7413


7954
CGGAGCGG A UGUGGUUG
2617
CAACCACA GGCTAGCTACAACGA CCGCTCCG
7414


7952
GAGCGGAU G UGGUUGAC
2618
GTCAACCA GGCTAGCTACAACGA ATCCGCTC
7415


7949
CGGAUGUG G UUGACGGC
2619
GCCGTCAA GGCTAGCTACAACGA CACATCCG
7416


7945
UGUGGUUG A CGGCCCCG
2620
CGGGGCCG GGCTAGCTACAACGA CAACCACA
7417


7942
GGUUGACG G CCCCGCUG
2621
CAGCGGGG GGCTAGCTACAACGA CGTCAACC
7418


7937
ACGGCCCC G CUGGAUAG
2622
CTATCCAG GGCTAGCTACAACGA GGGGCCGT
7419


7932
CCCGCUGG A UAGGUUCC
2623
GGAACCTA GGCTAGCTACAACGA CCAGCGGG
7420


7928
CUGGAUAG G UUCCGGAC
2624
GTCCGGAA GGCTAGCTACAACGA CTATCCAG
7421


7921
GGUUCCGG A CGUCCUUU
2625
AAAGGACG GGCTAGCTACAACGA CCGGAACC
7422


7919
UUCCGGAC G UCCUUUGC
2626
GCAAAGGA GGCTAGCTACAACGA GTCCGGAA
7423


7912
CGUCCUUU G CCCCAUAA
2627
TTATGGGG GGCTAGCTACAACGA AAAGGACG
7424


7907
UUUGCCCC A UAACCAAA
2628
TTTGGTTA GGCTAGCTACAACGA GGGGCAAA
7425


7904
GCCCCAUA A CCAAAUUU
2629
AAATTTGG GGCTAGCTACAACGA TATGGGGC
7426


7899
AUAACCAA A UUUGGACC
2630
GGTCCAAA GGCTAGCTACAACGA TTGGTTAT
7427


7893
AAAUUUGG A CCUGGCCG
2631
CGGCCAGG GGCTAGCTACAACGA CCAAATTT
7428


7888
UGGACCUG G CCGAAUGU
2632
ACATTCGG GGCTAGCTACAACGA CAGGTCCA
7429


7883
CUGGCCGA A UGUGGGGG
2633
CCCCCACA GGCTAGCTACAACGA TCGGCCAG
7430


7881
GGCCGAAU G UGGGGGCG
2634
CGCCCCCA GGCTAGCTACAACGA ATTCGGCC
7431


7875
AUGUGGGG G CGUCAGUC
2635
GACTGACG GGCTAGCTACAACGA CCCCACAT
7432


7873
GUGGGGGC G UCAGUCUG
2636
CAGACTGA GGCTAGCTACAACGA GCCCCCAC
7433


7869
GGGCGUCA G UCUGCAGG
2637
CCTGCAGA GGCTAGCTACAACGA TGACGCCC
7434


7865
GUCAGUCU G CAGGCUUC
2638
GAAGCCTG GGCTAGCTACAACGA AGACTGAC
7435


7861
GUCUGCAG G CUUCCUCU
2639
AGAGGAAG GGCTAGCTACAACGA CTGCAGAC
7436


7852
CUUCCUCU A CGGAUAGA
2640
TCTATCCG GGCTAGCTACAACGA AGAGGAAG
7437


7848
CUCUACGG A UAGAAGUU
2641
AACTTCTA GGCTAGCTACAACGA CCGTAGAG
7438


7842
GGAUAGAA G UUUAGCCU
2642
AGGCTAAA GGCTAGCTACAACGA TTCTATCC
7439


7837
GAAGUUUA G CCUUAACU
2643
AGTTAAGG GGCTAGCTACAACGA TAAACTTC
7440


7831
UAGCCUUA A CUGUGGAC
2644
GTCCACAG GGCTAGCTACAACGA TAAGGCTA
7441


7828
CCUUAACU G UGGACGCC
2645
GGCGTCCA GGCTAGCTACAACGA AGTTAAGG
7442


7824
AACUGUGG A CGCCUUCG
2646
CGAAGGCG GGCTAGCTACAACGA CCACAGTT
7443


7822
CUGUGGAC G CCUUCGCC
2647
GGCGAAGG GGCTAGCTACAACGA GTCCACAG
7444


7816
ACGCCUUC G CCUUCAUC
2648
GATGAAGG GGCTAGCTACAACGA GAAGGCGT
7445


7810
UCGCCUUC A UCUCCUUG
2649
CAAGGAGA GGCTAGCTACAACGA GAAGGCGA
7446


7800
CUCCUUGA G CACGUCCC
2650
GGGACGTG GGCTAGCTACAACGA TCAAGGAG
7447


7798
CCUUGAGC A CGUCCCGG
2651
CCGGGACG GGCTAGCTACAACGA GCTCAAGG
7448


7796
UUGAGCAC G UCCCGGUA
2652
TACCGGGA GGCTAGCTACAACGA GTGCTCAA
7449


7790
ACGUCCCG G UAGUGGUC
2653
GACCACTA GGCTAGCTACAACGA CGGGACGT
7450


7787
UCCCGGUA G UGGUCGUC
2654
GACGACCA GGCTAGCTACAACGA TACCGGGA
7451


7784
CGGUAGUG G UCGUCCAG
2655
CTGGACGA GGCTAGCTACAACGA CACTACCG
7452


7781
UAGUGGUC G UCCAGGAC
2656
GTCCTGGA GGCTAGCTACAACGA GACCACTA
7453


7774
CGUCCAGG A CUUGCAGU
2657
ACTGCAAG GGCTAGCTACAACGA CCTGGACG
7454


7770
CAGGACUU G CAGUCUGU
2658
ACAGACTG GGCTAGCTACAACGA AAGTCCTG
7455


7767
GACUUGCA G UCUGUCAA
2659
TTGACAGA GGCTAGCTACAACGA TGCAAGTC
7456


7763
UGCAGUCU G UCAAAGGU
2660
ACCTTTGA GGCTAGCTACAACGA AGACTGCA
7457


7756
UGUCAAAG G UGACCUUC
2661
GAAGGTCA GGCTAGCTACAACGA CTTTGACA
7458


7753
CAAAGGUG A CCUUCUUC
2662
GAAGAAGG GGCTAGCTACAACGA CACCTTTG
7459


7743
CUUCUUCU G CCGCUGGC
2663
GCCAGCGG GGCTAGCTACAACGA AGAAGAAG
7460


7740
CUUCUGCC G CUGGCUUG
2664
CAAGCCAG GGCTAGCTACAACGA GGCAGAAG
7461


7736
UGCCGCUG G CUUGCGCU
2665
AGCGCAAG GGCTAGCTACAACGA CAGCGGCA
7462


7732
GCUGGCUU G CGCUGCGA
2666
TCGCAGCG GGCTAGCTACAACGA AAGCCAGC
7463


7730
UGGCUUGC G CUGCGAGA
2667
TCTCGCAG GGCTAGCTACAACGA GCAAGCCA
7464


7727
CUUGCGCU G CGAGAUGU
2668
ACATCTCG GGCTAGCTACAACGA AGCGCAAG
7465


7722
GCUGCGAG A UGUUGUAG
2669
CTACAACA GGCTAGCTACAACGA CTCGCAGC
7466


7720
UGCGAGAU G UUGUAGCG
2670
CGCTACAA GGCTAGCTACAACGA ATCTCGCA
7467


7717
GAGAUGUU G UAGCGUAG
2671
CTACGCTA GGCTAGCTACAACGA AACATCTC
7468


7714
AUGUUGUA G CGUAGACC
2672
GGTCTACG GGCTAGCTACAACGA TACAACAT
7469


7712
GUUGUAGC G UAGACCAU
2673
ATGGTCTA GGCTAGCTACAACGA GCTACAAC
7470


7708
UAGCGUAG A CCAUGUUG
2674
CAACATGG GGCTAGCTACAACGA CTACGCTA
7471


7705
CGAUGACC A UGUUGUGG
2675
CCACAACA GGCTAGCTACAACGA GGTCTACG
7472


7703
UAGACCAU G UUGUGGUG
2676
CACCACAA GGCTAGCTACAACGA ATGGTCTA
7473


7700
ACCAUGUU G UGGUGACG
2677
CGTCACCA GGCTAGCTACAACGA AACATGGT
7474


7697
AUGUUGUG G UGACGCAG
2678
CTGCGTCA GGCTAGCTACAACGA CACAACAT
7475


7694
GUUGCUCA A CGCGUUGA
2679
TTGCTGCG GGCTAGCTACAACGA CACCACAA
7476


7692
GUGGUGAC G CAGCAAAG
2680
CTTTGCTG GGCTAGCTACAACGA GTCACCAC
7477


7689
GUGACGCA G CAAAGAGU
2681
ACTCTTTG GGCTAGCTACAACGA TGCGTCAC
7478


7682
AGCAAAGA G UUGCUCAA
2682
TTGAGCAA GGCTAGCTACAACGA TCTTTGCT
7479


7679
AAAGAGUU G CUCAACGC
2683
GCGTTGAG GGCTAGCTACAACGA AACTCTTT
7480


7674
GUUGCUCA A CGCGUUGA
2684
TCAACGCG GGCTAGCTACAACGA TGAGCAAC
7481


7672
UGCUCAAC G CGUUGAUG
2685
CATCAACG GGCTAGCTACAACGA GTTGAGCA
7482


7670
CUCAACGC G UUGAUGGG
2686
CCCATCAA GGCTAGCTACAACGA GCGTTGAG
7483


7666
ACGCGUUG A UGGGCAAC
2687
GTTGCCCA GGCTAGCTACAACGA CAACGCGT
7484


7662
GUUGAUGG G CAACUUGC
2688
GCAAGTTG GGCTAGCTACAACGA CCATCAAC
7485


7659
GAUGGGCA A CUUGCUUU
2689
AAAGCAAG GGCTAGCTACAACGA TGCCCATC
7486


7655
GGCAACUU G CUUUCCUC
2690
GAGGAAAG GGCTAGCTACAACGA AAGTTGCC
7487


7645
UUUCCUCC G CAGCGCAU
2691
ATGCGCTG GGCTAGCTACAACGA GGAGGAAA
7488


7642
CCUCCGCA G CGCAUGGC
2692
GCCATGCG GGCTAGCTACAACGA TGCGGAGG
7489


7640
UCCGCAGC G CAUGGCGU
2693
ACGCCATG GGCTAGCTACAACGA GCTGCGGA
7490


7638
CGCAGCGC A UGGCGUGA
2694
TCACGCCA GGCTAGCTACAACGA GCGCTGCG
7491


7635
AGCGCAUG G CGUGAUCA
2695
TGATCACG GGCTAGCTACAACGA CATGCGCT
7492


7633
CGCAUGGC G UGAUCAGG
2696
CCTGATCA GGCTAGCTACAACGA GCCATGCG
7493


7630
AUGGCGUG A UCAGGGCG
2697
CGCCCTGA GGCTAGCTACAACGA CACGCCAT
7494


7624
UGAUCAGG G CGCCCGUC
2698
GACGGGCG GGCTAGCTACAACGA CCTGATCA
7495


7622
AUCAGGGC G CCCGUCCA
2699
TGGACGGG GGCTAGCTACAACGA GCCCTGAT
7496


7618
GGGCGCCC G UCCAUGUG
2700
CACATGGA GGCTAGCTACAACGA GGGCGCCC
7497


7614
GCCCGUCC A UGUGUAGG
2701
CCTACACA GGCTAGCTACAACGA GGACGGGC
7498


7612
CCGUCCAU G UGUAGGAC
2702
GTCCTACA GGCTAGCTACAACGA ATGGACGG
7499


7610
GUCCAUGU G UAGGACAU
2703
ATGTCCTA GGCTAGCTACAACGA ACATGGAC
7500


7605
UGUGUAGG A CAUCGAGC
2704
GCTCGATG GGCTAGCTACAACGA CCTACACA
7501


7603
UGUAGGAC A UCGAGCAG
2705
CTGCTCGA GGCTAGCTACAACGA GTCCTACA
7502


7598
GACAUCGA G CAGCAGAC
2706
GTCTGCTG GGCTAGCTACAACGA TCGATGTC
7503


7595
AUCGAGCA G CAGACGAC
2707
GTCGTCTG GGCTAGCTACAACGA TGCTCGAT
7504


7591
AGCAGCAG A CGACAUCC
2708
GGATGTCG GGCTAGCTACAACGA CTGCTGCT
7505


7588
AGCAGACG A CAUCCUCG
2709
CGAGGATG GGCTAGCTACAACGA CGTCTGCT
7506


7586
CAGACGAC A UCCUCGCC
2710
GGCGAGGA GGCTAGCTACAACGA GTCGTCTG
7507


7580
ACAUCCUC G CCAGCCUC
2711
GAGGCTGG GGCTAGCTACAACGA GAGGATGT
7508


7576
CCUCGCCA G CCUCUUCG
2712
CGAAGAGG GGCTAGCTACAACGA TGGCGAGG
7509


7568
GCCUCUUC G CUCACGGU
2713
ACCGTGAG GGCTAGCTACAACGA GAAGAGGC
7510


7564
CUUCGCUC A CGGUAGAC
2714
GTCTACCG GGCTAGCTACAACGA GAGCGAAG
7511


7561
CGCUCACG G UAGACCAA
2715
TTGGTCTA GGCTAGCTACAACGA CGTGAGCG
7512


7557
CACGGUAG A CCAAGACC
2716
GGTCTTGG GGCTAGCTACAACGA CTACCGTG
7513


7551
AGACCAAG A CCCGUCGC
2717
GCGACGGG GGCTAGCTACAACGA CTTGGTCT
7514


7547
GACCCGUC G CUGAGAUC
2718
CTCAGCGA GGCTAGCTACAACGA GGGTCTTG
7515


7544
GACCCGUC G CUGAGAUC
2719
GATCTCAG GGCTAGCTACAACGA GACGGGTC
7516


7538
UCGCUGAG A UCGGGAUC
2720
GATCCCGA GGCTAGCTACAACGA CTCAGCGA
7517


7532
AGAUCGGG A UCCCCCGG
2721
CCGGGGGA GGCTAGCTACAACGA CCCGATCT
7518


7524
AUCCCCCG G CUCCCCCU
2722
AGGGGGAG GGCTAGCTACAACGA CGGGGGAT
7519


7506
AAGGGGGG G CAUAGAGG
2723
CCTCTATG GGCTAGCTACAACGA CCCCCCTT
7520


7504
GGGGGGGC A UAGAGGAG
2724
CTCCTCTA GGCTAGCTACAACGA GCCCCCCC
7521


7496
AUAGAGGA G UACGACUC
2725
GAGTCGTA GGCTAGCTACAACGA TCCTCTAT
7522


7494
AGAGGAGU A CGACUCAA
2726
TTGAGTCG GGCTAGCTACAACGA ACTCCTCT
7523


7491
GGAGUACG A CUCAACGU
2727
ACGTTGAG GGCTAGCTACAACGA CGTACTCC
7524


7486
ACGACUCA A CGUCGGAU
2728
ATCCGACG GGCTAGCTACAACGA TGAGTCGT
7525


7484
GACUCAAC G UCGGAUCC
2729
GGATCCGA GGCTAGCTACAACGA GTTGAGTC
7526


7479
AACGUCGG A UCCUGCGU
2730
ACGCAGGA GGCTAGCTACAACGA CCGACGTT
7527


7474
CGGAUCCU G CGUCACCG
2731
CGGTGACG GGCTAGCTACAACGA AGGATCCG
7528


7472
GAUCCUGC G UCACCGUC
2732
GACGGTGA GGCTAGCTACAACGA GCAGGATC
7529


7469
CCUGCGUC A CCGUCAUU
2733
AATGACGG GGCTAGCTACAACGA GACGCAGG
7530


7466
GCGUCACC G UCAUUGGA
2734
TCCAATGA GGCTAGCTACAACGA GGTGACGC
7531


7463
UCACCGUC A UUGGAGGU
2735
ACCTCCAA GGCTAGCTACAACGA GACGGTGA
7532


7456
CAUUGGAG G UCUGGUCG
2736
CGACCAGA GGCTAGCTACAACGA CTCCAATG
7533


7451
GAGGUCUG G UCGGGGGG
2737
CCCCCCCA GGCTAGCTACAACGA GGTGACGC
7534


7441
CGGGGGGG G CGGUUGCC
2738
GGCAACCG GGCTAGCTACAACGA CCCCCCCG
7535


7438
GGGGGGCG G UUGCCGUA
2739
TACGGCAA GGCTAGCTACAACGA CGCCCCCC
7536


7435
GGGCGGUU G CCGUACCU
2740
AGGTACGG GGCTAGCTACAACGA AACCGCCC
7537


7432
CGGUUGCC G UACCUCUA
2741
TAGAGGTA GGCTAGCTACAACGA GGCAACCG
7538


7430
GUUGCCGU A CCUCUAUC
2742
GATAGAGG GGCTAGCTACAACGA ACGGCAAC
7539


7424
GUACCUCU A UCAGCGGC
2743
GCCGCTGA GGCTAGCTACAACGA AGAGGTAC
7540


7420
CUCUAUCA G CGGCCGAU
2744
ATCGGCCG GGCTAGCTACAACGA TGATAGAG
7541


7417
UAUCAGCG G CCGAUGAU
2745
ATCATCGG GGCTAGCTACAACGA CGCTGATA
7542


7413
AGCGGCCG A UGAUUCAG
2746
CTGAATCA GGCTAGCTACAACGA CGGCCGCT
7543


7410
GGCCGAUG A UUCAGAGC
2747
GCTCTGAA GGCTAGCTACAACGA CATCGGCC
7544


7403
GAUUCAGA G CUGCCGAA
2748
TTCGGCAG GGCTAGCTACAACGA TCTGAATC
7545


7400
UCAGAGCU G CCGAAGGU
2749
ACCTTCGG GGCTAGCTACAACGA AGCTCTGA
7546


7393
UGCCGAAG G UCUUUGUG
2750
CACAAAGA GGCTAGCTACAACGA CTTCGGCA
7547


7387
AGGUCUUU G UGGCGAGC
2751
GCTCGCCA GGCTAGCTACAACGA AAAGACCT
7548


7384
UCUUUGUG G CGAGCUCC
2752
GGAGCTCG GGCTAGCTACAACGA CACAAAGA
7549


7380
UGUGGCGA G CUCCGCCA
2753
CCACCGTG GGCTAGCTACAACGA CTTCTGCC
7550


7375
CGAGCUCC G CCAAGGCA
2754
TGCCTTGG GGCTAGCTACAACGA GGAGCTCG
7551


7369
CCGCCAAG G CAGAAGAC
2755
GTCTTCTG GGCTAGCTACAACGA CTTGGCGG
7552


7362
GGCAGAAG A CACGGUGG
2756
CCACCGTG GGCTAGCTACAACGA CTTCTGCC
7553


7360
CAGAAGAC A CGGUGGAC
2757
GTCCACCG GGCTAGCTACAACGA GTCTTCTG
7554


7357
AAGACACG G UGGACUCU
2758
AGAGTCCA GGCTAGCTACAACGA CGTGTCTT
7555


7353
CACGGUGG A CUCUGUCA
2759
TGACAGAG GGCTAGCTACAACGA CCACCGTG
7556


7348
UGGACUCU G UCAGAACA
2760
TGTTCTGA GGCTAGCTACAACGA AGAGTCCA
7557


7342
CUGUCAGA A CAACCGUC
2761
GACGGTTG GGCTAGCTACAACGA TCTGACAG
7558


7339
UCAGAACA A CCGUCCUC
2762
GAGGACGG GGCTAGCTACAACGA TGTTCTGA
7559


7336
GAACAACC G UCCUCUUC
2763
GAAGAGGA GGCTAGCTACAACGA GGTTGTTC
7560


7323
CUUCCUCC G UGGAGGUG
2764
CACCTCCA GGCTAGCTACAACGA GGAGGAGG
7561


7317
CCGUGGAG G UGGUAUUG
2765
CAATACCA GGCTAGCTACAACGA CTCCACGG
7562


7314
UGGAGGUG G UAUUGGAG
2766
CTCCAATA GGCTAGCTACAACGA CACCTCCA
7563


7312
GAGGUGGU A UUGGAGGG
2767
CCCTCCAA GGCTAGCTACAACGA ACCACCTC
7564


7303
UUGGAGGG G CCUUGGCA
2768
TGCCAAGG GGCTAGCTACAACGA CCCTCCAA
7565


7297
GGGCCUUG G CAGGUGGC
2769
GCCACCTG GGCTAGCTACAACGA CAAGGCCC
7566


7293
CUUGGCAG G UGGCAAUG
2770
CATTGCCA GGCTAGCTACAACGA CTGCCAAG
7567


7290
GGCAGGUG G CAAUGGGC
2771
GCCCATTG GGCTAGCTACAACGA CACCTGCC
7568


7287
AGGUGGCA A UGGGCACC
2772
GGTGCCCA GGCTAGCTACAACGA TGCCACCT
7569


7283
GGCAAUGG G CACCCGUG
2773
CACGGGTG GGCTAGCTACAACGA CCATTGCC
7570


7281
CAAUGGGC A CCCGUGUA
2774
TACACGGG GGCTAGCTACAACGA GCCCATTG
7571


7277
GGGCACCC G UGUACCAC
2775
GTGGTACA GGCTAGCTACAACGA GGGTGCCC
7572


7275
GCACCCGU G UACCACCG
2776
CGGTGGTA GGCTAGCTACAACGA ACGGGTGC
7573


7273
ACCCGUGU A CCACCGGA
2777
TCCGGTGG GGCTAGCTACAACGA ACACGGGT
7574


7270
CGUGUACC A CCGGAGGG
2778
CCCTCCGG GGCTAGCTACAACGA GGTACACG
7575


7261
CCGGAGGG A CGUAGUCU
2779
AGACTACG GGCTAGCTACAACGA CCCTCCGG
7576


7259
GGAGGGAC G UAGUCUGG
2780
CCAGACTA GGCTAGCTACAACGA GTCCCTCC
7577


7256
GGGACGUA G UCUGGGUC
2781
GACCCAGA GGCTAGCTACAACGA TACGTCCC
7578


7250
UAGUCUGG G UCUUUCCA
2782
TGGAAAGA GGCTAGCTACAACGA CCAGACTA
7579


7239
UUUCCAGG G CUCUAGUA
2783
TACTAGAG GGCTAGCTACAACGA CCTGGAAA
7580


7233
GGGCUCUA G UAGUGGAG
2784
CTCCACTA GGCTAGCTACAACGA TAGAGCCC
7581


7230
CUCUAGUA G UGGAGGGU
2785
ACCCTCCA GGCTAGCTACAACGA TACTAGAG
7582


7223
AGUGGAGG G UUGUAAUC
2786
GATTACAA GGCTAGCTACAACGA CCTCCACT
7583


7220
GGAGGGUU G UAAUCCGG
2787
CCGGATTA GGCTAGCTACAACGA AACCCTCC
7584


7217
GGGUUGUA A UCCGGGCG
2788
CGCCCGGA GGCTAGCTACAACGA TACAACCC
7585


7211
UAAUCCGG G CGUGCCCA
2789
TGGGCACG GGCTAGCTACAACGA CCGGATTA
7586


7209
AUCCGGGC G UGCCCAUA
2790
TATGGGCA GGCTAGCTACAACGA GCCCGGAT
7587


7207
CCGGGCGU G CCCAUAUG
2791
CATATGGG GGCTAGCTACAACGA ACGCCCGG
7588


7203
GCGUGCCC A UAUGGGUA
2792
TACCCATA GGCTAGCTACAACGA GGGCACGC
7589


7201
GUGCCCAU A UGGGUAAC
2793
GTTACCCA GGCTAGCTACAACGA ATGGGCAC
7590


7197
CCAUAUGG G UAACGCUG
2794
CAGCGTTA GGCTAGCTACAACGA CCATATGG
7591


7194
UAUGGGUA A CGCUGAAG
2795
CTTCAGCG GGCTAGCTACAACGA TACCCATA
7592


7192
UGGGUAAC G CUGAAGGA
2796
TCCTTCAG GGCTAGCTACAACGA GTTACCCA
7593


7182
UGAAGGAA A CUUCUUGG
2797
CCAAGAAG GGCTAGCTACAACGA TTCCTTCA
7594


7173
CUUCUUGG A UUUCCGCA
2798
TGCGGAAA GGCTAGCTACAACGA CCAAGAAG
7595


7167
GGAUUUCC G CAGGAUCU
2799
AGATCCTG GGCTAGCTACAACGA GGAAATCC
7596


7162
UCCGCAGG A UCUCCGCC
2800
GGCGGAGA GGCTAGCTACAACGA CCTGCGGA
7597


7156
GGAUCUCC G CCGGAAUG
2801
CATTCCGG GGCTAGCTACAACGA GGAGATCC
7598


7150
CCGCCGGA A UGGACACC
2802
GGTGTCCA GGCTAGCTACAACGA TCCGGCGG
7599


7146
CGGAAUGG A CACCUCUC
2803
GAGAGGTG GGCTAGCTACAACGA CCATTCCG
7600


7144
GAAUGGAC A CCUCUCUC
2804
GAGAGAGG GGCTAGCTACAACGA GTCCATTC
7601


7133
UCUCUCUC A UCCUCCUC
2805
GAGGAGGA GGCTAGCTACAACGA GAGAGAGA
7602


7123
CCUCCUCC G CUCGAAGC
2806
GCTTCGAG GGCTAGCTACAACGA GGAGGAGG
7603


7116
CGCUCGAA G CGGGUCAA
2807
TTGACCCG GGCTAGCTACAACGA TTCGAGCG
7604


7112
CGAAGCGG G UCAAAAGA
2808
TCTTTTGA GGCTAGCTACAACGA CCGCTTCG
7605


7103
UCAAAAGA G UCCAGGGU
2809
ACCCTGGA GGCTAGCTACAACGA TCTTTTGA
7606


7096
AGUCCAGG G UAACUACC
2810
GGTAGTTA GGCTAGCTACAACGA CCTGGACT
7607


7093
CCAGGGUA A CUACCUUA
2811
TAAGGTAG GGCTAGCTACAACGA TACCCTGG
7608


7090
GGGUAACU A CCUUAUUC
2812
GAATAAGG GGCTAGCTACAACGA AGTTACCC
7609


7085
ACUACCUU A UUCUCUGA
2813
TCAGAGAA GGCTAGCTACAACGA AAGGTAGT
7610


7077
AUUCUCUG A CUCCACGC
2814
GCGTGGAG GGCTAGCTACAACGA CAGAGAAT
7611


7072
CUGACUCC A CGCGAGUG
2815
CACTCGCG GGCTAGCTACAACGA GGAGTCAG
7612


7070
GACUCCAC G CGAGUGAU
2816
ATCACTCG GGCTAGCTACAACGA GTGGAGTC
7613


7066
CCACGCGA G UGAUGUUA
2817
TAACATCA GGCTAGCTACAACGA TCGCGTGG
7614


7063
CGCGAGUG A UGUUACCG
2818
CGGTAACA GGCTAGCTACAACGA CACTCGCG
7615


7061
CGAGUGAU G UUACCGCC
2819
GGCGGTAA GGCTAGCTACAACGA ATCACTCG
7616


7058
GUGAUGUU A CCGCCCAU
2820
ATGGGCGG GGCTAGCTACAACGA AACATCAC
7617


7055
AUGUUACC G CCCAUCUC
2821
GAGATGGG GGCTAGCTACAACGA GGTAACAT
7618


7051
UACCGCCC A UCUCCUGC
2822
GCAGGAGA GGCTAGCTACAACGA GGGCGGTA
7619


7044
CAUCUCCU G CCGCCACA
2823
TGTGGCGG GGCTAGCTACAACGA AGGAGATG
7620


7041
CUCCUGCC G CCACAGGA
2824
TCCTGTGG GGCTAGCTACAACGA GGCAGGAG
7621


7038
CUGCCGCC A CAGGAGGU
2825
ACCTCCTG GGCTAGCTACAACGA GGCGGCAG
7622


7031
CACAGGAG G UUGGCCUC
2826
GAGGCCAA GGCTAGCTACAACGA CTCCTGTG
7623


7027
GGAGGUUG G CCUCGAUG
2827
CATCGAGG GGCTAGCTACAACGA CAACCTCC
7624


7021
UGGCCUCG A UGAGGUCA
2828
TGACCTCA GGCTAGCTACAACGA CGAGGCCA
7625


7016
UCGAUGAG G UCAAAGUC
2829
GACTTTGA GGCTAGCTACAACGA CTCATCGA
7626


7010
AGGUCAAA G UCUGGGGA
2830
TCCCCAGA GGCTAGCTACAACGA TTTGACCT
7627


7001
UCUGGGGA G UCAUAUUG
2831
CAATATGA GGCTAGCTACAACGA TCCCCAGA
7628


6998
GGGGAGUC A UAUUGGGU
2832
ACCCAATA GGCTAGCTACAACGA GACTCCCC
7629


6996
GGAGUCAU A UUGGGUAA
2833
TTACCCAA GGCTAGCTACAACGA ATGACTCC
7630


6991
CAUAUUGG G UAAUGUAU
2834
ATACATTA GGCTAGCTACAACGA CCAATATG
7631


6988
GGGGAGUC A UAUUGGGU
2835
GACATACA GGCTAGCTACAACGA TACCCAAT
7632


6986
UGGGUAAU G UAUGUCGC
2836
GCGACATA GGCTAGCTACAACGA ATTACCCA
7633


6984
GGUAAUGU A UGUCGCCU
2837
AGGCGACA GGCTAGCTACAACGA ACATTACC
7634


6982
UAAUGUAU G UCGCCUUC
2838
GAAGGCGA GGCTAGCTACAACGA ATACATTA
7635


6979
UGUAUGUC G CCUUCGAA
2839
TTCGAAGG GGCTAGCTACAACGA CACATACA
7836


6966
CGAAGAAG G CGCAGACA
2840
TGTCTGCG GGCTAGCTACAACGA CTTCTTCG
7637


6964
AAGAAGGC G CAGACAGC
2841
GCTGTCTG GGCTAGCTACAACGA GCCTTCTT
7638


6960
AGGCGCAG A CAGCUGGC
2842
GCCAGCTG GGCTAGCTACAACGA CTGCGCCT
7639


6957
CGCAGACA G CUGGCUAG
2843
CTAGCCAG GGCTAGCTACAACGA TGTCTGCG
7640


6953
GACAGCUG G CUAGCUGA
2844
TCAGCTAG GGCTAGCTACAACGA CAGCTGTC
7641


6949
GCUGGCUA G CUGAGGAG
2845
CTCCTCAG GGCTAGCTACAACGA TAGCCAGC
7642


6941
GCUGAGGA G CUGGCCAA
2846
TTGGCCAG GGCTAGCTACAACGA TCCTCAGC
7643


6937
AGGAGCUG G CCAAGGAG
2847
CTCCTTGG GGCTAGCTACAACGA CAGCTCCT
7644


6921
GGGGGGAG A CCCCCUGG
2848
CCAGGGGG GGCTAGCTACAACGA CTCCCCCC
7645


6913
ACCCCCUG G CCAGCCUA
2849
TAGGCTGG GGCTAGCTACAACGA CAGGGGGT
7646


6909
CCUGGCCA G CCUACGCU
2850
AGCGTAGG GGCTAGCTACAACGA TGGCCAGG
7647


6905
GCCAGCCU A CGCUUAGC
2851
GCTAAGCG GGCTAGCTACAACGA AGGCTGGC
7648


6903
CAGCCUAC G CUUAGCCG
2852
CGGCTAAG GGCTAGCTACAACGA GTAGGCTG
7649


6898
UACGCUUA G CCGUCUCU
2853
AGAGACGG GGCTAGCTACAACGA TAAGCGTA
7650


6895
GCUUAGCC G UCUCUCCU
2854
AGGAGAGA GGCTAGCTACAACGA GGCTAAGC
7651


6886
UCUCUCCU G UAAUGUGG
2855
CCACATTA GGCTAGCTACAACGA AGGAGAGA
7652


6883
CUCCUGUA A UGUGGGAG
2856
CTCCCACA GGCTAGCTACAACGA TACAGGAG
7653


6881
CCUGUAAU G UGGGAGGG
2857
CCCTCCCA GGCTAGCTACAACGA ATTACAGG
7654


6872
UGGGAGGG G UCGGUGAG
2858
CTCACCGA GGCTAGCTACAACGA CCCTCCCA
7655


6868
AGGGGUCG G UGAGCAUG
2859
CATGCTCA GGCTAGCTACAACGA CGACCCCT
7656


6864
GUCGGUGA G CAUGGACG
2860
CGTCCATG GGCTAGCTACAACGA TCACCGAC
7657


6862
CGGUGAGC A UGGACGUG
2861
CACGTCCA GGCTAGCTACAACGA GCTCACCG
7658


6858
GAGCAUGG A CGUGAGCA
2862
TGCTCACG GGCTAGCTACAACGA CCATGCTC
7659


6856
GCAUGGAC G UGAGCACU
2863
AGTGCTCA GGCTAGCTACAACGA GTCCATGC
7660


6852
GGACGUGA G CACUGCUA
2864
TAGCAGTG GGCTAGCTACAACGA TCACGTCC
7661


6850
ACGUGAGC A CUGCUACA
2865
TGTAGCAG GGCTAGCTACAACGA GCTCACGT
7662


6847
UGAGCACU G CUACAUCC
2866
GGATGTAG GGCTAGCTACAACGA AGTGCTCA
7663


6844
GCACUGCU A CAUCCGGU
2867
ACCGGATG GGCTAGCTACAACGA AGCAGTGC
7664


6842
ACUGCUAC A UCCGGUUC
2868
GAACCGGA GGCTAGCTACAACGA GTAGCAGT
7665


6837
UACAUCCG G UUCGGGCU
2869
AGCCCGAA GGCTAGCTACAACGA CGGATGTA
7666


6831
CGGUUCGG G CUCGCAUG
2870
CATGCGAG GGCTAGCTACAACGA CCGAACCG
7667


6827
UCGGGCUC G CAUGGGAG
2871
CTCCCATG GGCTAGCTACAACGA GAGCCCGA
7668


6825
GGGCUCGC A UGGGAGCU
2872
AGCTCCCA GGCTAGCTACAACGA GCGAGCCC
7669


6819
GCAUGGGA G CUGUGACC
2873
GGTCACAG GGCTAGCTACAACGA TCCCATGC
7670


6816
UGGGAGCU G UGACCCAA
2874
TTGGGTCA GGCTAGCTACAACGA AGCTCCCA
7671


6813
GAGCUGUG A CCCAACCA
2875
TGGTTGGG GGCTAGCTACAACGA CACAGCTC
7672


6808
GUGACCCA A CCAGGUAU
2876
ATACCTGG GGCTAGCTACAACGA TGGGTCAC
7673


6803
CCAACCAG G UAUUGGUU
2877
AACCAATA GGCTAGCTACAACGA CTGGTTGG
7674


6801
AACCAGGU A UUGGUUGA
2878
TCAACCAA GGCTAGCTACAACGA ACCTGGTT
7675


6797
AGGUAUUG G UUGAGCCC
2879
GGGCTCAA GGCTAGCTACAACGA CAATACCT
7676


6792
UUGGUUGA G CCCGACCU
2880
AGGTCGGG GGCTAGCTACAACGA TCAACCAA
7677


6787
UGAGCCCG A CCUGGAAU
2881
ATTCCAGG GGCTAGCTACAACGA CGGGCTCA
7678


6780
GACCUGGA A UGUGACCU
2882
AGGTCACA GGCTAGCTACAACGA TCCAGGTC
7679


6778
CCUGGAAU G UGACCUCC
2883
GGAGGTCA GGCTAGCTACAACGA ATTCCAGG
7680


6775
GGAAUGUG A CCUCCUCC
2884
GGAGGAGG GGCTAGCTACAACGA CACATTCC
7681


6765
CUCCUCCC G UAGGAGAG
2885
CTCTCCTA GGCTAGCTACAACGA GGGAGGAG
7682


6756
UAGGAGAG G UCCACACG
2886
CGTGTGGA GGCTAGCTACAACGA CTCTCCTA
7683


6752
AGAGGUCC A CACGCCGG
2887
CCGGCGTG GGCTAGCTACAACGA GGACCTCT
7684


6750
AGGUCCAC A CGCCGGAG
2888
CTCCGGCG GGCTAGCTACAACGA GTGGACCT
7685


6748
GUCCACAC G CCGGAGCG
2889
CGCTCCGG GGCTAGCTACAACGA GTGTGGAC
7686


6742
ACGCCGGA G CGUUUCUG
2890
CAGAAACG GGCTAGCTACAACGA TCCGGCGT
7687


6740
GCCGGAGC G UUUCUGUG
2891
CACAGAAA GGCTAGCTACAACGA GCTCCGGC
7688


6734
CGCUUUCU G UGCAGGCG
2892
CGCCTGCA GGCTAGCTACAACGA AGAAACGC
7689


6732
GUUUCUGU G CAGGCGUA
2893
TACGCCTG GGCTAGCTACAACGA ACAGAAAC
7690


6728
CUGUGCAG G CGUACCCC
2894
GGGGTACG GGCTAGCTACAACGA CTGCACAG
7691


6726
GUGCAGGC G UACCCCAU
2895
ATGGGGTA GGCTAGCTACAACGA GCCTGCAC
7692


6724
GCAGGCGU A CCCCAUCC
2896
GGATGGGG GGCTAGCTACAACGA ACGCCTGC
7693


6719
CGUACCCC A UCCACUUC
2897
GAAGTGGA GGCTAGCTACAACGA GGGGTACG
7694


6715
CCCCAUCC A CUUCCGUG
2898
CACGGAAG GGCTAGCTACAACGA GGATGGGG
7695


6709
CCACUUCC G UGAAGAAU
2899
ATTCTTCA GGCTAGCTACAACGA GGAAGTGG
7696


6702
CGUGAAGA A UUCGGGGG
2900
CCCCCGAA GGCTAGCTACAACGA CCCCCGAA
7697


6693
UUCGGGGG G CGGAACCU
2901
AGGTTCCG GGCTAGCTACAACGA CCCCCGAA
7698


6688
GGGGCGGA A CCUGGCAC
2902
GTGCCAGG GGCTAGCTACAACGA TCCGCCCC
7699


6683
GGAACCUG G CACGGGCA
2903
TGCCCGTG GGCTAGCTACAACGA CAGGTTCC
7700


6681
AACCUGGC A CGGGCAUU
2904
AATGCCCG GGCTAGCTACAACGA GCCAGGTT
7701


6677
UGGCACGG G CAUUUUAC
2905
GTAAAATG GGCTAGCTACAACGA CCGTGCCA
7702


6675
GCACGGGC A UUUUACGU
2906
ACGTAAAA GGCTAGCTACAACGA GCCCGTGC
7703


6670
GGCAUUUU A CGUUGUCA
2907
TGACAACG GGCTAGCTACAACGA AAAATGCC
7704


6668
CAUUUUAC G UUGUCAGU
2908
ACTGACAA GGCTAGCTACAACGA GTAAAATG
7705


6665
UUUACGUU G UCAGUGGU
2909
ACCACTGA GGCTAGCTACAACGA AACGTAAA
7706


6661
CGUUGUCA G UGGUCAUG
2910
CATCACCA GGCTAGCTACAACGA TGACAACG
7707


6658
UGUCAGUG G UCAUGCCC
2911
GGGCATGA GGCTAGCTACAACGA CACTGACA
7708


6655
CAGUGGUC A UGCCCGUC
2912
GACGGGCA GGCTAGCTACAACGA GACCACTG
7709


6653
GUGGUCAU G CCCGUCAC
2913
GTGACGGG GGCTAGCTACAACGA ATGACCAC
7710


6649
UCAUGCCC G UCACGUAG
2914
CTACGTGA GGCTAGCTACAACGA GGGCATGA
7711


6646
UGCCCGUC A CGUAGUGG
2915
CCACTACG GGCTAGCTACAACGA GACGGGCA
7712


6644
CCCGUCAC G UAGUGGAA
2916
TTCCACTA GGCTAGCTACAACGA GTGACGGG
7713


6641
GUCACGUA G UGGAAAUC
2917
GATTTCCA GGCTAGCTACAACGA TACGTGAC
7714


6635
UAGUGGAA A UCCCCCAC
2918
GTGGGGGA GGCTAGCTACAACGA TTCCACTA
7715


6628
AAUCCCCC A CCCGCGUA
2919
TACGCGGG GGCTAGCTACAACGA GGGGGATT
7716


6624
CCCCACCC G CGUAACCU
2920
AGGTTACG GGCTAGCTACAACGA GGGTGGGG
7717


6622
CCACCCGC G UAACCUCC
2921
GGAGGTTA GGCTAGCTACAACGA GCGGGTGG
7718


6619
CCCGCGUA A CCUCCACG
2922
CGTGGAGG GGCTAGCTACAACGA TACGCGGG
7719


6613
UAACCUCC A CGUACUCC
2923
GGAGTACG GGCTAGCTACAACGA GGAGGTTA
7720


6611
ACCUCCAC G UACUCCUC
2924
GAGGAGTA GGCTAGCTACAACGA GTGGAGGT
7721


6609
CUCCACGU A CUCCUCAG
2925
CTGAGGAG GGCTAGCTACAACGA ACGTGGAG
7722


6601
ACUCCUCA G CGGCCACC
2926
GGTGGCCG GGCTAGCTACAACGA TGAGGAGT
7723


6598
CCUCAGCG G CCACCCGC
2927
GCGGGTGG GGCTAGCTACAACGA CGCTGAGG
7724


6595
CAGCGGCC A CCCGCCAU
2928
ATGGCGGG GGCTAGCTACAACGA GGCCGCTG
7725


6591
GGCCACCC G CCAUAGCG
2929
CGCTATGG GGCTAGCTACAACGA GGGTGGCC
7726


6588
CACCCGCC A UAGCGCCC
2930
GGGCGCTA GGCTAGCTACAACGA GGCGGGTG
7727


6585
CCGCCAUA G CGCCCAUG
2931
CTAGGGCG GGCTAGCTACAACGA TATGGCGG
7728


6583
GCCAUAGC G CCCUAGAA
2932
TTCTAGGG GGCTAGCTACAACGA GCTATGGC
7729


6575
GCCCUAGA A UAGUUUGG
2933
CCAAACTA GGCTAGCTACAACGA TCTAGGGC
7730


6572
CUAGAAUA G UUUGGCGC
2934
GCGCCAAA GGCTAGCTACAACGA TATTCTAG
7731


6567
AUAGUUUG G CGCCGGGG
2935
CCCCGGCG GGCTAGCTACAACGA CAAACTAT
7732


6565
AGUUUGGC G CCGGGGAG
2936
CTCCCCGG GGCTAGCTACAACGA GCCAAACT
7733


6555
CGGGGAGG G UGUGCAGG
2937
CTCCCCGG GGCTAGCTACAACGA GCCAAACT
7734


6553
GGGAGGGU G UGCAGGGG
2938
CCCCTGCA GGCTAGCTACAACGA ACCCTCCC
7735


6551
GAGGGUGU G CAGGGGCC
2939
GGCCCCTG GGCTAGCTACAACGA ACACCCTC
7736


6545
GUGCAGGG G CCCGUGGU
2940
ACCACGGG GGCTAGCTACAACGA CCCTGCAC
7737


6541
AGGGGCCC G UGGUGUAU
2941
ATACACCA GGCTAGCTACAACGA GGGCCCCT
7738


6538
GGCCCGUG G UGUAUGCG
2942
CGCATACA GGCTAGCTACAACGA CACGGGCC
7739


6536
CCCGUGGU G UAUGCGUU
2943
AACGCATA GGCTAGCTACAACGA ACCACGGG
7740


6534
CGUGGUGU A UGCGUUGA
2944
TCAACGCA GGCTAGCTACAACGA ACACCACG
7741


6532
UGGUGUAU G CGUUGAUG
2945
CATCAACG GGCTAGCTACAACGA ATACACCA
7742


6530
GUGUAUGC G UUGAUGGG
2946
CCCATCAA GGCTAGCTACAACGA GCATACAC
7743


6526
AUGCGUUG A UGGGGAAU
2947
ATTCCCCA GGCTAGCTACAACGA CAACGCAT
7744


6519
GAUGGGGA A UGUUCCAU
2948
ATGGAACA GGCTAGCTACAACGA TCCCCATC
7745


6517
UGGGGAAU G UUCCAUGC
2949
GCATGGAA GGCTAGCTACAACGA ATTCCCCA
7746


6512
AAUGUUCC A UGCCACGU
2950
ACGTGGCA GGCTAGCTACAACGA GGAACATT
7747


6510
UGUUCCAU G CCACGUGU
2951
ACACGTGG GGCTAGCTACAACGA ATGGAACA
7748


6507
UCCAUGCC A CGUGUUGC
2952
GCAACACG GGCTAGCTACAACGA GGCATGGA
7749


6505
CAUGCCAC G UGUUGCUA
2953
TAGCAACA GGCTAGCTACAACGA GTGGCATG
7750


6503
UGCCACGU G UUGCUACA
2954
TGTAGCAA GGCTAGCTACAACGA ACGTGGCA
7751


6500
CACGUGUU G CUACAGGU
2955
ACCTGTAG GGCTAGCTACAACGA AACACGTG
7752


6497
GUGUUGCU A CAGGUCUU
2956
AAGACCTG GGCTAGCTACAACGA AGCAACAC
7753


6493
UGCUACAG G UCUUAGGC
2957
GCCTAAGA GGCTAGCTACAACGA CTGTAGCA
7754


6486
GGUCUUAG G CCCGACGA
2958
TCGTCGGG GGCTAGCTACAACGA CTAAGACC
7755


6481
UAGGCCCG A CGAUCCUC
2959
GAGGATCG GGCTAGCTACAACGA CGGGCCTA
7756


6478
GCCCGACG A UCCUCAUG
2960
CATGAGGA GGCTAGCTACAACGA CGTCGGGC
7757


6472
CGAUCCUC A UGGAACCG
2961
CGGTTCCA GGCTAGCTACAACGA GAGGATCG
7758


6467
CUCAUGGA A CCGUUCUU
2962
AAGAACGG GGCTAGCTACAACGA TCCATGAG
7759


6464
AUGGAACC G UUCUUGAC
2963
GTCAAGAA GGCTAGCTACAACGA GGTTCCAT
7760


6457
CGUUCUUG A CAUGUCCA
2964
TGGACATG GGCTAGCTACAACGA CAAGAACG
7761


6455
UUCUUGAC A UGUCCAGU
2965
ACTGGACA GGCTAGCTACAACGA GTCAAGAA
7762


6453
CUUGACAU G UCCAGUGA
2966
TCACTGGA GGCTAGCTACAACGA ATGTCAAG
7763


6448
CAUGUCCA G UGAUCUGC
2967
GCAGATCA GGCTAGCTACAACGA TGGACATG
7764


6445
GUCCAGUG A UCUGCGCU
2968
AGCGCAGA GGCTAGCTACAACGA CACTGGAC
7765


6441
AGUGAUCU G CGCUCCGC
2969
GCGGAGCG GGCTAGCTACAACGA AGATCACT
7766


6439
UGAUCUGC G CUCCGCAU
2970
ATGCGGAG GGCTAGCTACAACGA GCAGATCA
7767


6434
UGCGCUCC G CAUGGGCA
2971
TGCCCATG GGCTAGCTACAACGA GGAGCGCA
7768


6432
CGCUCCGC A UGGGCAGG
2972
CCTGCCCA GGCTAGCTACAACGA GCGGAGCG
7769


6428
CCGCAUGG G CAGGUGGU
2973
ACCACCTG GGCTAGCTACAACGA CCATGCGG
7770


6424
AUGGGCAG G UGGUUUGC
2974
GCAAACCA GGCTAGCTACAACGA CTGCCCAT
7771


6421
GGCAGGUG G UUUGCAUG
2975
CATGCAAA GGCTAGCTACAACGA CACCTGCC
7772


6417
GGUGGUUU G CAUGAUAC
2976
GTATCATG GGCTAGCTACAACGA AAACCAAC
7773


6415
UGGUUUGC A UGAUACCG
2977
CGGTATCA GGCTAGCTACAACGA GCAAACCA
7774


6412
UUUGCAUG A UACCGUCU
2978
AGACGGTA GGCTAGCTACAACGA CATGCAAA
7775


6410
UGCAUGAU A CCGUCUCC
2979
GGAGACGG GGCTAGCTACAACGA ATCATGCA
7776


6407
AUGAUACC G UCUCCCCG
2980
CGGGGAGA GGCTAGCTACAACGA GGTATCAT
7777


6399
GUCUCCCC G CCAGACCC
2981
GGGTCTGG GGCTAGCTACAACGA GGGGAGAC
7778


6394
CCCGCCAG A CCCCCCUG
2982
CAGGGGGG GGCTAGCTACAACGA CTGGCGGG
7779


6386
ACCCCCCU G UACCCACG
2983
CGTGGGTA GGCTAGCTACAACGA AGGGGGGT
7780


6384
CCCCCUGU A CCCACGUU
2984
AACGTGGG GGCTAGCTACAACGA ACAGGGGG
7781


6380
CUGUACCC A CGUUGGCA
2985
TGCCAACG GGCTAGCTACAACGA GGGTACAG
7782


6378
GUACCCAC G UUGGCAUG
2986
CATGCCAA GGCTAGCTACAACGA GTGGGTAC
7783


6374
CCACGUUG G CAUGAGAA
2987
TTCTCATG GGCTAGCTACAACGA CAACGTGG
7784


6372
ACGUUGGC A UGAGAAGA
2988
TCTTCTCA GGCTAGCTACAACGA GCCAACGT
7785


6358
AGAAAGGG A CUCCCGGC
2989
GCCGGGAG GGCTAGCTACAACGA CCCTTTCT
7786


6351
GACUCCCG G CAACCGCG
2990
CGCGGTTG GGCTAGCTACAACGA CGGGAGTC
7787


6348
UCCCGGCA A CCGCGGCA
2991
TGCCGCGG GGCTAGCTACAACGA TGCCGGGA
7788


6345
CGGCAACC G CGGCAGGA
2992
TCCTGCCG GGCTAGCTACAACGA GGTTGCCG
7789


6342
CAACCGCG G CAGGAGCU
2993
AGCTCCTG GGCTAGCTACAACGA CGCGGTTG
7790


6336
CGGCAGGA G CUUGGACU
2994
AGTCCAAG GGCTAGCTACAACGA TCCTGCCG
7791


6330
GAGCUUGG A CUGAAGCC
2995
GGCTTCAG GGCTAGCTACAACGA CCAAGCTC
7792


6324
GGACUGAA G CCAGGUCU
2996
AGACCTGG GGCTAGCTACAACGA TTCAGTCC
7793


6319
GAAGCCAG G UCUUGAAG
2997
CTTCAAGA GGCTAGCTACAACGA CTGGCTTC
7794


6311
GUCUUGAA G UCAGUCAA
2998
TTGACTGA GGCTAGCTACAACGA TTCAAGAC
7795


6307
UGAAGUCA G UCAACACC
2999
GGTGTTGA GGCTAGCTACAACGA TGACTTCA
7796


6303
GUCAGUCA A CACCGUGC
3000
GCACGGTG GGCTAGCTACAACGA TGACTGAC
7797


6301
CAGUCAAC A CCGUGCAU
3001
ATGCACGG GGCTAGCTACAACGA GTTGACTG
7798


6298
UCAACACC G UGCAUAUC
3002
GATATGCA GGCTAGCTACAACGA GGTGTTGA
7799


6296
AACACCGU G CAUAUCCA
3003
TGGATATG GGCTAGCTACAACGA ACGGTGTT
7800


6294
CACCGUGC A UAUCCAGU
3004
ACTGGATA GGCTAGCTACAACGA GCACGGTG
7801


6292
CCGUGCAU A UCCAGUCC
3005
GGACTGGA GGCTAGCTACAACGA ATGCACGG
7802


6287
CAUAUCCA G UCCCAAAC
3006
GTTTGGGA GGCTAGCTACAACGA TGGATATG
7803


6280
AGUCCCAA A CAUCCCUU
3007
AAGGGATG GGCTAGCTACAACGA TTGGGACT
7804


6278
UCCCAAAC A UCCCUUAG
3008
CTAAGGGA GGCTAGCTACAACGA GTTTGGGA
7805


6270
AUCCCUUA G CCACGAGC
3009
GCTCGTGG GGCTAGCTACAACGA TAAGGGAT
7806


6267
CCUUAGCC A CGAGCCGG
3010
CCGGCTCG GGCTAGCTACAACGA GGCTAAGG
7807


6263
AGCCACGA G CCGGAACA
3011
TGTTCCGG GGCTAGCTACAACGA TCGTGGCT
7808


6257
GAGCCGGA A CAUGGCGU
3012
ACGCCATG GGCTAGCTACAACGA TCCGGCTC
7809


6255
GCCGGAAC A UGGCGUGG
3013
CCACGCCA GGCTAGCTACAACGA GTTCCGGC
7810


6252
GGAACAUG G CGUGGAGC
3014
GCTCCAGG GGCTAGCTACAACGA CATGTTCC
7811


6250
AACAUGGC G UGGAGCAG
3015
CTGCTCCA GGCTAGCTACAACGA GCCATGTT
7812


6245
GGCGUGGA G CAGUCCUC
3016
GAGGACTG GGCTAGCTACAACGA TCCACGCC
7813


6242
GUGGAGCA G UCCUCAUU
3017
AATGAGGA GGCTAGCTACAACGA TGCTCCAC
7814


6236
CAGUCCUC A UUGAUCCA
3018
TGGATCAA GGCTAGCTACAACGA GAGGACTG
7815


6232
CCUCAUUG A UCCACUGA
3019
TCAGTGGA GGCTAGCTACAACGA CAATGAGG
7816


6228
AUUGAUCC A CUGAUGGA
3020
TCCATCAG GGCTAGCTACAACGA GGATCAAT
7817


6224
AUCCACUG A UGGAGCCU
3021
AGGCTCCA GGCTAGCTACAACGA CAGTGGAT
7818


6219
CUGAUGGA G CCUCCUCA
3022
TGAGGAGG GGCTAGCTACAACGA TCCATCAG
7819


6210
CCUCCUCA G CAGCUGAG
3023
CTCAGCTG GGCTAGCTACAACGA TGAGGAGG
7820


6207
CCUCAGCA G CUGAGUGA
3024
TCACTCAG GGCTAGCTACAACGA TGCTGAGG
7821


6202
GCAGCUGA G UGAUGGUG
3025
CACCATCA GGCTAGCTACAACGA TCAGCTGC
7822


6199
GCUGAGUG A UGGUGAGG
3026
CCTCACCA GGCTAGCTACAACGA CACTCAGC
7823


6196
GAGUGAUG G UGAGGCUG
3027
CAGCCTCA GGCTAGCTACAACGA CATCACTC
7824


6191
AUGGUGAG G CUGGAGAG
3028
CTCTCCAG GGCTAGCTACAACGA CTCACCAT
7825


6181
UGGAGAGG A UUUGUGUG
3029
CACACAAA GGCTAGCTACAACGA CCTCTCCA
7826


6177
GAGGAUUU G UGUGACGC
3030
GCGTCACA GGCTAGCTACAACGA AAATCCTC
7827


6175
GGAUUUGU G UGACGCGC
3031
GCGCGTCA GGCTAGCTACAACGA ACAAATCC
7828


6172
UUUGUGUG A CGCGCGCC
3032
GGCGCGCG GGCTAGCTACAACGA CACACAAA
7829


6170
UGUGUGAC G CGCGCCGC
3033
GCGGCGCG GGCTAGCTACAACGA GTCACACA
7830


6168
UGUGACGC G CGCCGCUG
3034
CAGCGGCG GGCTAGCTACAACGA GCGTCACA
7831


6166
UGACGCGC G CCGCUGCG
3035
CGCAGCGG GGCTAGCTACAACGA GCGCGTCA
7832


6163
CGCGCGCC G CUGCGUCG
3036
CGACGCAG GGCTAGCTACAACGA GGCGCGCG
7833


6160
GCGCCGCU G CGUCGCUC
3037
GAGCGACG GGCTAGCTACAACGA AGCGGCGC
7834


6158
GCCGCUGC G UCGCUCUC
3038
GAGAGCGA GGCTAGCTACAACGA GCAGCGGC
7835


6155
GCUGCGUC G CUCUCAGG
3039
CCTGAGAG GGCTAGCTACAACGA GACGCAGC
7836


6147
GCUCUCAG G CACAUAGU
3040
ACTATGTG GGCTAGCTACAACGA CTGAGAGC
7837


6145
UCUCAGGC A CAUAGUGC
3041
GCACTATG GGCTAGCTACAACGA GCCTGAGA
7838


6143
UCAGGCAC A UAGUGCGU
3042
ACGCACTA GGCTAGCTACAACGA GTGCCTGA
7839


6140
GGCACAUA G UGCGUGGG
3043
CCCACGCA GGCTAGCTACAACGA TATGTGCC
7840


6138
CACAUAGU G CGUGGGGG
3044
CCCCCACG GGCTAGCTACAACGA ACTATGTG
7841


6136
CAUAGUGC G UGGGGGAG
3045
CTCCCCCA GGCTAGCTACAACGA GCACTATG
7842


6127
UGGGGGAG A CAUGGUUG
3046
CAACCATG GGCTAGCTACAACGA CTCCCCCA
7843


6125
GGGGAGAC A UGGUUGCC
3047
GGCAACCA GGCTAGCTACAACGA GTCTCCCC
7844


6122
GAGACAUG G UUGCCCCG
3048
CGGGGCAA GGCTAGCTACAACGA CATGTCTC
7845


6119
ACAUGGUU G CCCCGCGA
3049
TCGCGGGG GGCTAGCTACAACGA AACCATGT
7846


6114
GUUGCCCC G CGAAGCGA
3050
TCGCTTCG GGCTAGCTACAACGA GGGGCAAC
7847


6109
CCCGCGAA G CGAACGCU
3051
AGCGTTCG GGCTAGCTACAACGA TTCGCGGG
7848


6105
CGAAGCGA A CGCUAUCA
3052
TGATAGCG GGCTAGCTACAACGA TCGCTTCG
7849


6103
AAGCGAAC G CUAUCAGC
3053
GCTGATAG GGCTAGCTACAACGA GTTCGCTT
7850


6100
CGAACGCU A UCAGCCGA
3054
TCGGCTGA GGCTAGCTACAACGA AGCGTTCG
7851


6096
CGCUAUCA G CCGAUUCA
3055
TGAATCGG GGCTAGCTACAACGA TGATAGCG
7852


6092
AUCAGCCG A UUCAUCCA
3056
TGGATGAA GGCTAGCTACAACGA CGGCTGAT
7853


6088
GCCGAUUC A UCCACUGC
3057
GCAGTGGA GGCTAGCTACAACGA GAATCGGC
7854


6084
AUUCAUCC A CUGCACAG
3058
CTGTGCAG GGCTAGCTACAACGA GGATGAAT
7855


6081
CAUCCACU G CACAGCGC
3059
GCGCTGTG GGCTAGCTACAACGA AGTGGATG
7856


6079
UCCACUGC A CAGCGCCC
3060
GGGCGCTG GGCTAGCTACAACGA GCAGTGGA
7857


6076
ACUGCACA G CGCCCUCU
3061
AGAGGGCG GGCTAGCTACAACGA TGTGCAGT
7858


6074
UGCACAGC G CCCUCUCC
3062
GGAGAGGG GGCTAGCTACAACGA GCTGTGCA
7859


6062
UCUCCUGG G CCCACAUG
3063
CATGTGGG GGCTAGCTACAACGA CCAGGAGA
7860


6058
CUGGGCCC A CAUGCCGA
3064
TCGGCATG GGCTAGCTACAACGA GGGCCCAG
7861


6056
GGGCCCAC A UGCCGACG
3065
CGTCGGCA GGCTAGCTACAACGA GTGGGCCC
7862


6054
GCCCACAU G CCGACGCA
3066
TGCGTCGG GGCTAGCTACAACGA ATGTGGGC
7863


6050
ACAUGCCG A CGCAGUAU
3067
ATACTGCG GGCTAGCTACAACGA CGGCATGT
7864


6048
AUGCCGAC G CAGUAUCG
3068
CGATACTG GGCTAGCTACAACGA GTCGGCAT
7865


6045
CCGACGCA G UAUCGCUG
3069
CAGCGATA GGCTAGCTACAACGA TGCGTCGG
7866


6043
GACGCAGU A UCGCUGCG
3070
CGCAGCGA GGCTAGCTACAACGA ACTGCGTC
7867


6040
GCAGUAUC G CUGCGCAC
3071
GTGCGCAG GGCTAGCTACAACGA GATACTGC
7868


6037
GUAUCGCU G CGCACACC
3072
GGTGTGCG GGCTAGCTACAACGA AGCGATAC
7869


6035
AUCGCUGC G CACACCAC
3073
GTGGTGTG GGCTAGCTACAACGA GCAGCGAT
7870


6033
CGCUGCGC A CACCACCC
3074
GGGTGGTG GGCTAGCTACAACGA GCGCAGCG
7871


6031
CUGCGCAC A CCACCCCG
3075
CGGGGTGG GGCTAGCTACAACGA GTGCGCAG
7872


6028
CGCACACC A CCCCGACG
3076
CGTCGGGG GGCTAGCTACAACGA GGTGTGCG
7873


6022
CCACCCCG A CGACCAGG
3077
CCTGGTCG GGCTAGCTACAACGA CGGGGTGG
7874


6019
CCCCGACG A CCAGGGCG
3078
CGCCCTGG GGCTAGCTACAACGA CGTCGGGG
7875


6013
CGACCAGG G CGCCAGGA
3079
TCCTGGCG GGCTAGCTACAACGA CCTGGTCG
7876


6011
ACCAGGGC G CCAGGAGA
3080
TCTCCTGG GGCTAGCTACAACGA GCCCTGGT
7877


5998
GAGAGAGG A UGGCAGGG
3081
CCCTGCCA GGCTAGCTACAACGA CCTCTCTC
7878


5995
AGAGGUAG G CAGGGAGU
3082
ACTCCCTG GGCTAGCTACAACGA CATCCTCT
7879


5988
GGCAGGGA G UAAGUUGA
3083
TCAACTTA GGCTAGCTACAACGA TCCCTGCC
7880


5984
GGGAGUAA G UUGACCAG
3084
CTGGTCAA GGCTAGCTACAACGA TTACTCCC
7881


5980
GUAAGUUG A CCAGGUCC
3085
GGACCTGG GGCTAGCTACAACGA CAACTTAC
7882


5975
UUGACCAG G UCCUCGGU
3086
ACCGAGGA GGCTAGCTACAACGA CTGGTCAA
7883


5968
GGUCCUCG G UAGAAGGC
3087
GCCTTCTA GGCTAGCTACAACGA CGAGGACC
7884


5961
GGUAGAAG G CAUCUCCC
3088
GGGAGATG GGCTAGCTACAACGA CTTCTACC
7885


5959
UAGAAGGC A UCUCCCCG
3089
CGGGGAGA GGCTAGCTACAACGA GCCTTCTA
7886


5951
AUCUCCCC G CUCAUGAC
3090
GTCATGAG GGCTAGCTACAACGA GGGGAGAT
7887


5947
CCCCGCUC A UGACCUUG
3091
CAAGGTCA GGCTAGCTACAACGA GAGCGGGG
7888


5944
CGCUCAUG A CCUUGAAG
3092
CTTCAAGG GGCTAGCTACAACGA CATGAGCG
7889


5935
CCUUGAAG G CCACGAGA
3093
TCTCGTGG GGCTAGCTACAACGA CTTCAAGG
7890


5932
UGAAGGCC A CGAGAGCA
3094
TGCTCTCG GGCTAGCTACAACGA GGCCTTCA
7891


5926
CCACGAGA G CACCCGCC
3095
GGCGGGTG GGCTAGCTACAACGA TCTCGTGG
7892


5924
ACGAGAGC A CCCGCCAC
3096
GTGGCGGG GGCTAGCTACAACGA GCTCTCGT
7893


5920
GAGCACCC G CCACUCCU
3097
AGGAGTGG GGCTAGCTACAACGA GGGTGCTC
7894


5917
CACCCGCC A CUCCUGCU
3098
AGCAGGAG GGCTAGCTACAACGA GGCGGGTG
7895


5911
CCACUCCU G CUCCAUAG
3099
CTATGGAG GGCTAGCTACAACGA AGGAGTGG
7896


5906
CCUGCUCC A UAGCCCGC
3100
GCGGGCTA GGCTAGCTACAACGA GGAGCAGG
7897


5903
GCUCCAUA G CCCGCCAG
3101
CTGGCGGG GGCTAGCTACAACGA TATGGAGC
7898


5899
CAUAGCCC G CCAGAAUG
3102
CATTCTGG GGCTAGCTACAACGA GGGCTATG
7899


5893
CCGCCAGA A UGUCUACA
3103
TGTAGACA GGCTAGCTACAACGA TCTGGCGG
7900


5891
GCCAGAAU G UCUACAAG
3104
CTTGTAGA GGCTAGCTACAACGA ATTCTGGC
7901


5887
GAAUGUCU A CAAGCACC
3105
GGTGCTTG GGCTAGCTACAACGA AGACATTC
7902


5883
GUCUACAA G CACCUUCC
3106
GGAAGGTG GGCTAGCTACAACGA TTGTAGAC
7903


5881
CUACAAGC A CCUUCCCA
3107
TGGGAAGG GGCTAGCTACAACGA GCTTGTAG
7904


5870
UUCCCAAG G CCUAUGCU
3108
AGCATAGG GGCTAGCTACAACGA CTTGGGAA
7905


5866
CAAGGCCU A UGCUGCCA
3109
TGGCAGCA GGCTAGCTACAACGA AGGCCTTG
7906


5864
AGGCCUAU G CUGCCAAC
3110
GTTGGCAG GGCTAGCTACAACGA ATAGGCCT
7907


5861
CCUAUGCU G CCAACAGC
3111
GCTGTTGG GGCTAGCTACAACGA AGCATAGG
7908


5857
UGCUGCCA A CAGCCGCG
3112
CGCGGCTG GGCTAGCTACAACGA TGGCAGCA
7909


5854
UGCCAACA G CCGCGCCA
3113
TGGCGCGG GGCTAGCTACAACGA TGTTGGCA
7910


5851
CAACAGCC G CGCCAGCG
3114
CGCTGGCG GGCTAGCTACAACGA GGCTGTTG
7911


5849
ACAGCCGC G CCAGCGAU
3115
ATCGCTGG GGCTAGCTACAACGA GCGGCTGT
7912


5845
CCGCGCCA G CGAUGCCG
3116
CGGCATCG GGCTAGCTACAACGA TGGCGCGG
7913


5842
CGCCAGCG A UGCCGGCG
3117
CGCCGGCA GGCTAGCTACAACGA CGCTGGCG
7914


5840
CCAGCGAU G CCGGCGCC
3118
GGCGCCGG GGCTAGCTACAACGA ATCGCTGG
7915


5836
CGAUGCCG G CGCCCACG
3119
CGTGGGCG GGCTAGCTACAACGA CGGCATCG
7916


5834
AUGCCGGC G CCCACGAA
3120
TTCGTGGG GGCTAGCTACAACGA GCCGGCAT
7917


5830
CGGCGCCC A CGAAGGCC
3121
GGCCTTCG GGCTAGCTACAACGA GGGCGCCG
7918


5824
CCACGAAG G CCGAAACG
3122
CGTTTCGG GGCTAGCTACAACGA CTTCGTGG
7919


5818
AGGCCGAA A CGGCUCUG
3123
CAGAGCCG GGCTAGCTACAACGA TTCGGCCT
7920


5815
CCGAAACG G CUCUGGGG
3124
CCCCAGAG GGCTAGCTACAACGA CGTTTCGG
7921


5803
UGGGGGGA G CGAGUUGG
3125
CCAACTCG GGCTAGCTACAACGA TCCCCCCA
7922


5799
GGGAGCGA G UUGGGCGG
3126
CCGCCCAA GGCTAGCTACAACGA TCGCTCCC
7923


5794
CGAGUUGG G CGGCCACC
3127
GGTGGCCG GGCTAGCTACAACGA CCAACTCG
7924


5791
GUUGGGCG G CCACCCAC
3128
GTGGGTGG GGCTAGCTACAACGA CGCCCAAC
7925


5788
GGGCGGCC A CCCACCCU
3129
AGGGTGGG GGCTAGCTACAACGA GGCCGCCC
7926


5784
GGCCACCC A CCCUCCCA
3130
TGGGAGGG GGCTAGCTACAACGA GGGTGGCC
7927


5773
CUCCCAAG A UGUUGAAC
3131
GTTCAACA GGCTAGCTACAACGA CTTGGGAG
7928


5771
CCCAAGAU G UUGAACAG
3132
CTGTTCAA GGCTAGCTACAACGA ATCTTGGG
7929


5766
GAUGUUGA A CAGGAGGG
3133
CCCTCCTG GGCTAGCTACAACGA TCAACATC
7930


5758
ACAGGAGG G UGCUUUGG
3134
CCAAAGCA GGCTAGCTACAACGA CCTCCTGT
7931


5756
AGGAGGGU G CUUUGGGU
3135
ACCCAAAG GGCTAGCTACAACGA ACCCTCCT
7932


5749
UGCUUUGG G UGGUGAGC
3136
GCTCACCA GGCTAGCTACAACGA CCAAAGCA
7933


5746
UUUGGGUG G UGAGCGGG
3137
CCCGCTCA GGCTAGCTACAACGA CACCCAAA
7934


5742
GGUGGUGA G CGGGCUGG
3138
CCAGCCCG GGCTAGCTACAACGA TCACCACC
7935


5738
GUGAGCGG G CUGGUGAU
3139
ATCACCAG GGCTAGCTACAACGA CCGCTCAC
7936


5734
GCGGGCUG G UGAUGGAG
3140
CTCCATCA GGCTAGCTACAACGA CAGCCCGC
7937


5731
GGCUGGUG A UGGAGGCU
3141
AGCCTCCA GGCTAGCTACAACGA CACCAGCC
7938


5725
UGAUGGAG G CUGUGAAU
3142
ATTCACAG GGCTAGCTACAACGA CTCCATCA
7939


5722
UGGAGGCU G UGAAUGCC
3143
GGCATTCA GGCTAGCTACAACGA AGCCTCCA
7940


5718
GGCUGUGA A UGCCAUCA
3144
TGATGGCA GGCTAGCTACAACGA TCACAGCC
7941


5716
CUGUGAAU G CCAUCAAU
3145
ATTGATGG GGCTAGCTACAACGA ATTCACAG
7942


5713
UGAAUGCC A UCAAUGAU
3146
ATCATTGA GGCTAGCTACAACGA GGCATTCA
7943


5709
UGCCAUCA A UGAUGCUA
3147
TAGCATCA GGCTAGCTACAACGA TGATGGCA
7944


5706
CAUCAAUG A UGCUAUCG
3148
CGATAGCA GGCTAGCTACAACGA CATTGATG
7945


5704
UCAACGAU G CUAUCGCG
3149
CGCGATAG GGCTAGCTACAACGA ATCATTGA
7946


5701
AUGAUGCU A UCGCGGGG
3150
CCCCGCGA GGCTAGCTACAACGA AGCATCAT
7947


5698
AUGCUAUC G CGGGGUUC
3151
GAACCCCG GGCTAGCTACAACGA GATAGCAT
7948


5693
AUCGCGGG G UUCCCAGG
3152
CCTGGGAA GGCTAGCTACAACGA CCCGCGAT
7949


5685
GUUCCCAG G CAGAGUGG
3153
CCACTCTG GGCTAGCTACAACGA CTGGGAAC
7950


5680
CAGGCAGA G UGGACAAG
3154
CTTGTCCA GGCTAGCTACAACGA TCTGCCTG
7951


5676
CAGAGUGG A CAAGCCUG
3155
CAGGCTTG GGCTAGCTACAACGA CCACTCTG
7952


5672
GUGGACAA G CCUGCUAG
3156
CTAGCAGG GGCTAGCTACAACGA TTGTCCAC
7953


5668
ACAAGCCU G CUAGGUAC
3157
GTACCTAG GGCTAGCTACAACGA AGGCTTGT
7954


5663
CCUGCUAG G UACUGUAU
3158
ATACAGTA GGCTAGCTACAACGA CTAGCAGG
7955


5661
UGCUAGGU A CUGUAUCC
3159
GGATACAG GGCTAGCTACAACGA ACCTAGCA
7956


5658
UAGGUACU G UAUCCCGC
3160
GCGGGATA GGCTAGCTACAACGA AGTACCTA
7957


5656
GGUACUGU A UCCCGCUG
3161
CAGCGGGA GGCTAGCTACAACGA ACAGTACC
7958


5651
UGUAUCCC G CUGAUGAA
3162
TTCATCAG GGCTAGCTACAACGA GGGATACA
7959


5647
UCCCGCUG A UGAAAUUC
3163
GAATTTCA GGCTAGCTACAACGA CAGCGGGA
7960


5642
CUGAUGAA A UUCCACAU
3164
ATGTGGAA GGCTAGCTACAACGA TTCATCAG
7961


5637
GAAAUUCC A CAUGUGCU
3165
AGCACATG GGCTAGCTACAACGA GGAATTTC
7962


5635
AAUUCCAC A UGUGCUUC
3166
GAAGCACA GGCTAGCTACAACGA GTGGAATT
7963


5633
UUCCACAU G UGCUUCGC
3167
GCGAAGCA GGCTAGCTACAACGA ATGTGGAA
7964


5631
CCACAUGU G CUUCGCCC
3168
GGGCGAAG GGCTAGCTACAACGA ACATGTGG
7965


5626
UGUGCUUC G CCCAGAAA
3169
TTTCTGGG GGCTAGCTACAACGA GAAGCACA
7966


5617
CCCAGAAA G CCUCAAGG
3170
CCTTGAGG GGCTAGCTACAACGA TTTCTGGG
7967


5608
CCUCAAGG G CUCGCCAC
3171
GTGGCGAG GGCTAGCTACAACGA CCTTGAGG
7968


5604
AAGGGCUC G CCACUUGG
3172
CCAAGTGG GGCTAGCTACAACGA GAGCCCTT
7969


5601
GGCUCGCC A CUUGGAUU
3173
AATCCAAG GGCTAGCTACAACGA GGCGAGCC
7970


5595
CCACUUGG A UUCCACCA
3174
TGGTGGAA GGCTAGCTACAACGA CCAAGTGG
7971


5590
UGGAUUCC A CCACGGGA
3175
TCCCGTGG GGCTAGCTACAACGA GGAATCCA
7972


5587
AUUCCACC A CGGGAGCA
3176
TGCTCCCG GGCTAGCTACAACGA GGTGGAAT
7973


5581
CCACGGGA G CAGCAGCC
3177
GGCTGCTG GGCTAGCTACAACGA TCCCGTGG
7974


5578
CGGGAGCA G CAGCCUCC
3178
GGAGGCTG GGCTAGCTACAACGA TGCTCCCG
7975


5575
GAGCAGCA G CCUCCGCU
3179
AGCGGAGG GGCTAGCTACAACGA TGCTGCTC
7976


5569
CAGCCUCC G CUUGGUUG
3180
CAACCAAG GGCTAGCTACAACGA GGAGGCTG
7977


5564
UCCGCUUG G UUGGUGGC
3181
GCCACCAA GGCTAGCTACAACGA CAAGCGGA
7978


5560
CUUGGUUG G UGGCUGUU
3182
AACAGCCA GGCTAGCTACAACGA CAACCAAG
7979


5557
GGUUGGUG G CUGUUUGC
3183
GCAAACAG GGCTAGCTACAACGA CACCAACC
7980


5554
UGGUGGCU G UUUGCAGC
3184
GCTGCAAA GGCTAGCTACAACGA AGCCACCA
7981


5550
GGCUGUUU G CAGCAAUC
3185
GATTGCTG GGCTAGCTACAACGA AAACAGCC
7982


5547
UGUUUGCA G CAAUCCGA
3186
TCGGATTG GGCTAGCTACAACGA TGCAAACA
7983


5544
UUGCAGCA A UCCGAGCG
3187
CGCTCGGA GGCTAGCTACAACGA TGCTGCAA
7984


5538
CAAUCCGA G CGCCUUCU
3188
AGAAGGCG GGCTAGCTACAACGA TCGGATTG
7985


5536
AUCCGAGC G CCUUCUGC
3189
GCAGAAGG GGCTAGCTACAACGA GCTCGGAT
7986


5529
CGCCUUCU G CUUGAACU
3190
AGTTCAAG GGCTAGCTACAACGA AGAAGGCG
7987


5523
CUGCUUGA A CUGCUCGG
3191
CCGAGCAG GGCTAGCTACAACGA TCAAGCAG
7988


5520
CUUGAACU G CUCGGCGA
3192
TCGCCGAG GGCTAGCTACAACGA AGTTCAAG
7989


5515
ACUGCUCG G CGAGCUGC
3193
GCAGCTCG GGCTAGCTACAACGA CGAGCAGT
7990


5511
CUCGGCGA G CUGCAUCC
3194
GGATGCAG GGCTAGCTACAACGA TCGCCGAG
7991


5508
GGCGAGCU G CAUCCCCU
3195
AGGGGATG GGCTAGCTACAACGA AGCTCGCC
7992


5506
CGAGCUGC A UCCCCUGU
3196
ACAGGGGA GGCTAGCTACAACGA GCAGCTCG
7993


5499
CAUCCCCU G UUCGAUGU
3197
ACATCGAA GGCTAGCTACAACGA AGGGGATG
7994


5494
CCUGUUCG A UGUAAGGG
3198
CCCTTACA GGCTAGCTACAACGA CGAACAGG
7995


5492
UGUUCGAU G UAAGGGAG
3199
CTCCCTTA GGCTAGCTACAACGA ATCGAACA
7996


5483
UAAGGGAG G UGUGAGGC
3200
GCCTCACA GGCTAGCTACAACGA CTCCCTTA
7997


5481
AGGGAGGU G UGAGGCAC
3201
GTGCCTCA GGCTAGCTACAACGA ACCTCCCT
7998


5476
GGUGUGAG G CACACUCC
3202
GGAGTGTG GGCTAGCTACAACGA CTCACACC
7999


5474
UGUGAGGC A CACUCCUC
3203
GAGGAGTG GGCTAGCTACAACGA GCCTCACA
8000


5472
UGAGGCAC A CUCCUCCA
3204
TGGAGGAG GGCTAGCTACAACGA GTGCCTCA
8001


5464
ACUCCUCC A UCUCAUCG
3205
CGATGAGA GGCTAGCTACAACGA GGAGGAGT
8002


5459
UCCAUCUC A UCGAACUC
3206
GAGTTCGA GGCTAGCTACAACGA GAGATGGA
8003


5454
CUCAUCGA A CUCCUGGU
3207
ACCAGGAG GGCTAGCTACAACGA TCGATGAG
8004


5447
AACUCCUG G UAGAGAGC
3208
GCTCTCTA GGCTAGCTACAACGA CAGGAGTT
8005


5440
GGUAGAGA G CCUCCCUG
3209
CAGGGAGG GGCTAGCTACAACGA TCTCTACC
8006


5432
GCCUCCCU G UCGGGGAU
3210
ATCCCCGA GGCTAGCTACAACGA AGGGAGGC
8007


5425
UGUCGGGG A UAACAGCC
3211
GGCTGTTA GGCTAGCTACAACGA CCCCGACA
8008


5422
CGGGGAUA A CAGCCGGC
3212
GCCGGCTG GGCTAGCTACAACGA TATCCCCG
8009


5419
GGAUAACA G CCGGCUUC
3213
GAAGCCGG GGCTAGCTACAACGA TGTTATCC
8010


5415
AACAGCCG G CUUCCCGG
3214
CCGGGAAG GGCTAGCTACAACGA CGGCTGTT
8011


5406
CUUCCCGG A CAAGAUGA
3215
TCATCTTG GGCTAGCTACAACGA CCGGGAAG
8012


5401
CGGACAAG A UGAUUCUG
3216
CAGAATCA GGCTAGCTACAACGA CTTGTCCG
8013


5398
ACAAGAUG A UUCUGCCC
3217
GGGCAGAA GGCTAGCTACAACGA CATCTTGT
8014


5393
AUGAUUCU G CCCACAAU
3218
ATTGTGGG GGCTAGCTACAACGA AGAATCAT
8015


5389
UUCUGCCC A CAAUGACC
3219
GGTCATTG GGCTAGCTACAACGA GGGCAGAA
8016


5386
UGCCCACA A UGACCACG
3220
CGTGGTCA GGCTAGCTACAACGA TGTGGGCA
8017


5383
CCACAAUG A CCACGCUG
3221
CAGCGTGG GGCTAGCTACAACGA CATTGTGG
8018


5380
CAAUGACC A CGCUGCCU
3222
AGGCAGCG GGCTAGCTACAACGA GGTCATTG
8019


5378
AUGACCAC G CUGCCUGU
3223
ACAGGCAG GGCTAGCTACAACGA GTGGTCAT
8020


5375
ACCACGCU G CCUGUCGU
3224
ACGACAGG GGCTAGCTACAACGA AGCGTGGT
8021


5371
CGCUGCCU G UCGUCAGG
3225
CCTGACGA GGCTAGCTACAACGA AGGCAGCG
8022


5368
UGCCUGUC G UCAGGCAA
3226
TTGCCTGA GGCTAGCTACAACGA GACAGGCA
8023


5363
GUCGUCAG G CAAUACGC
3227
GCGTATTG GGCTAGCTACAACGA CTGACGAC
8024


5360
GUCAGGCA A UACGCGGU
3228
ACCGCGTA GGCTAGCTACAACGA TGCCTGAC
8025


5358
CAGGCAAU A CGCGGUCA
3229
TGACCGCG GGCTAGCTACAACGA ATTGCCTG
8026


5356
GGCAAUAC G CGGUCAGA
3230
TCTGACCG GGCTAGCTACAACGA GTATTGCC
8027


5353
AAUACGCG G UCAGAGCU
3231
AGCTCTGA GGCTAGCTACAACGA CGCGTATT
8028


5347
CGGUCAGA G CUGCCAGG
3232
CCTGGCAG GGCTAGCTACAACGA TCTGACCG
8029


5344
UCAGAGCU G CCAGGACG
3233
CGTCCTGG GGCTAGCTACAACGA AGCTCTGA
8030


5338
CUGCCAGG A CGCCACCU
3234
AGGTGGCG GGCTAGCTACAACGA CCTGGCAG
8031


5336
GCCAGGAC G CCACCUAC
3235
GTAGGTGG GGCTAGCTACAACGA GTCCTGGC
8032


5333
AGGACGCC A CCUACUAG
3236
CTAGTAGG GGCTAGCTACAACGA GGCGTCCT
8033


5329
CGCCACCU A CUAGCACC
3237
GGTGCTAG GGCTAGCTACAACGA AGGTGGCG
8034


5325
ACCUACUA G CACCCAGG
3238
CCTGGGTG GGCTAGCTACAACGA TAGTAGGT
8035


5323
CUACUAGC A CCCAGGUG
3239
CACCTGGG GGCTAGCTACAACGA GCTAGTAG
8036


5317
GCACCCAG G UGCUGGUG
3240
CACCAGCA GGCTAGCTACAACGA CTGGGTGC
8037


5315
ACCCAGGU G CUGGUGAC
3241
GTCACCAG GGCTAGCTACAACGA ACCTGGGT
8038


5311
AGGUGCUG G UGACGACC
3242
GGTCGTCA GGCTAGCTACAACGA CAGCACCT
8039


5308
UGCUGGUG A CGACCUCC
3243
GGAGGTCG GGCTAGCTACAACGA CACCAGCA
8040


5305
UGGUGACG A CCUCCAGG
3244
CCTGGAGG GGCTAGCTACAACGA CGTCACCA
8041


5297
ACCUCCAG G UCAGCCGA
3245
TCGGCTGA GGCTAGCTACAACGA CTGGAGGT
8042


5293
CCAGGUCA G CCGACAUG
3246
CATGTCGG GGCTAGCTACAACGA TGACCTGG
8043


5289
GUCAGCCG A CAUGCAUG
3247
CATGCATG GGCTAGCTACAACGA CGGCTGAC
8044


5287
CAGCCGAC A UGCAUGUC
3248
GACATGCA GGCTAGCTACAACGA GTCGGCTG
8045


5285
GCCGACAU G CAUGUCAU
3249
ATGACATG GGCTAGCTACAACGA ATGTCGGC
8046


5283
CGACAUGC A UGUCAUGA
3250
TCATGACA GGCTAGCTACAACGA GCATGTCG
8047


5281
ACAUGCAU G UCAUGAUG
3251
CATCATGA GGCTAGCTACAACGA ATGCATGT
8048


5278
UGCAUGUC A UGAUGUAU
3252
ATACATCA GGCTAGCTACAACGA GACATGCA
8049


5275
AUGUCAUG A UGUAUUUG
3253
CAAATACA GGCTAGCTACAACGA CATCACAT
8050


5273
GUCAUGAU G UAUUUGGU
3254
ACCAAATA GGCTAGCTACAACGA ATCATGAC
8051


5271
CAUGAUGU A UUUGGUUA
3255
TAACCAAA GGCTAGCTACAACGA ACATCATG
8052


5266
UGUAUUUG G UUAUGGGG
3256
CCCCATAA GGCTAGCTACAACGA CAAATACA
8053


5263
AUUUGGUU A UGGGGUGU
3257
ACACCCCA GGCTAGCTACAACGA AACCAAAT
8054


5258
GUUAUGGG G UGUGUGAG
3258
CTCACACA GGCTAGCTACAACGA CCCATAAC
8055


5256
UAUGGGGU G UGUGAGGG
3259
CCCTCACA GGCTAGCTACAACGA ACCCCATA
8056


5254
UGGGGUGU G UGAGGGUG
3260
CACCCTCA GGCTAGCTACAACGA ACACCCCA
8057


5248
GUGUGAGG G UGACAUCA
3261
TGATGTCA GGCTAGCTACAACGA CCTCACAC
8058


5245
UGAGGGUG A CAUCAUUU
3262
AAATGATG GGCTAGCTACAACGA CACCCTCA
8059


5243
AGGGUGAC A UCAUUUUG
3263
CAAAATGA GGCTAGCTACAACGA GTCACCCT
8060


5240
GUGACAUC A UUUUGGAC
3264
GTCCAAAA GGCTAGCTACAACGA GATGTCAC
8061


5233
CAUUUUGG A CGGCUCCU
3265
AGGAGCCG GGCTAGCTACAACGA CCAAAATG
8062


5230
UUUGGACG G CUCCAUGC
3266
GCTAGGAG GGCTAGCTACAACGA CGTCCAAA
8063


5223
GGCUCCUA G CCUAUACA
3267
TGTATAGG GGCTAGCTACAACGA TAGGAGCC
8064


5219
CCUAGCCU A UACAGCAG
3268
CTGCTGTA GGCTAGCTACAACGA AGGCTAGG
8065


5217
UAGCCUAU A CAGCAGGG
3269
CCCTGCTG GGCTAGCTACAACGA ATAGGCTA
8066


5214
CCUAUACA G CAGGGGUG
3270
CACCCCTG GGCTAGCTACAACGA TGTATAGG
8067


5208
CAGCAGGG G UGUUGGCC
3271
GGCCAACA GGCTAGCTACAACGA CCCTGCTG
8068


5206
GCAGGGGU G UUGGCCCG
3272
CGGGCCAA GGCTAGCTACAACGA ACCCCTGC
8069


5202
GGGUGUUG G CCCGUGUA
3273
TACACGGG GGCTAGCTACAACGA CAACACCC
8070


5198
GUUGGCCC G UGUAGCGU
3274
ACGCTACA GGCTAGCTACAACGA GGGCCAAC
8071


5196
UGGCCCGU G UAGCGUAG
3275
CTACGCTA GGCTAGCTACAACGA ACGGGCCA
8072


5193
CCCGUGUA G CGUAGGCU
3276
AGCCTACG GGCTAGCTACAACGA TACACGGG
8073


5191
CGUGUAGC G UAGGCUUU
3277
AAAGCCTA GGCTAGCTACAACGA GCTACACG
8074


5187
UAGCGUAG G CUUUAGCC
3278
GGCTAAAG GGCTAGCTACAACGA CTACGCTA
8075


5181
AGGCUUUA G CCGUGUGA
3279
TCACACGG GGCTAGCTACAACGA TAAAGCCT
8076


5178
CUUUAGCC G UGUGAGAC
3280
GTCTCACA GGCTAGCTACAACGA GGCTAAAG
8077


5276
UUAGCCGU G UGAGACAC
3281
GTGTCTCA GGCTAGCTACAACGA ACGGCTAA
8078


5171
CGUGUGAG A CACUUCCA
3282
TGGAAGTG GGCTAGCTACAACGA CTCACACG
8079


5169
UGUGAGAC A CUUCCACA
3283
TGTGGAAG GGCTAGCTACAACGA GTCTCACA
8080


5163
ACACUUCC A CAUUUGAU
3284
ATCAAATG GGCTAGCTACAACGA GGAAGTGT
8081


5161
ACUUCCAC A UUUGAUCC
3285
GGATCAAA GGCTAGCTACAACGA GTGGAAGT
8082


5156
CACAUUUG A UCCCACGA
3286
TCGTGGGA GGCTAGCTACAACGA CAAATGTG
8083


5151
UUGAUCCC A CGAUGGGG
3287
CCCCATCG GGCTAGCTACAACGA GGGATCAA
8084


5148
AUCCCACG A UGGGGGUG
3288
CACCCCCA GGCTAGCTACAACGA CGTGGGAT
8085


5142
CGAUGGGG G UGGAGCCU
3289
AGGCTCCA GGCTAGCTACAACGA CCCCATCG
8086


5137
GGGGUGGA G CCUGAGCC
3290
GGCTCAGG GGCTAGCTACAACGA TCCACCCC
8087


5131
GAGCCUGA G CCCUGGCG
3291
CGCCAGGG GGCTAGCTACAACGA TCAGGCTC
8088


5125
GAGCCCUG G CGCACACU
3292
AGTGTGCG GGCTAGCTACAACGA CAGGGCTC
8089


5123
GCCCUGGC G CACACUGU
3293
ACAGTGTG GGCTAGCTACAACGA GCCAGGGC
8090


5121
CCUGGCGC A CACUGUGG
3294
CCACAGTG GGCTAGCTACAACGA GCGCCAAG
8091


5119
UGGCGCAC A CUGUGGCU
3295
AGCCACAG GGCTAGCTACAACGA GTGCGCCA
8092


5116
CGCACACU G UGGCUUGG
3296
CCAAGCCA GGCTAGCTACAACGA AGTGTGCG
8093


5113
ACACUGUG G CUUGGUAU
3297
ATACCAAG GGCTAGCTACAACGA CACAGTGT
8094


5108
GUGGCUUG G UAUGCUAC
3298
GTAGCATA GGCTAGCTACAACGA CAAGCCAC
8095


5106
GGCUUGGU A UGCUACCA
3299
TGGTAGCA GGCTAGCTACAACGA ACCAAGCC
8096


5104
CUUGGUAU G CUACCAGG
3300
CCTGGTAG GGCTAGCTACAACGA ATACCAAG
8097


5101
GGUAUGCU A CCAGGUAG
3301
CTACCTGG GGCTAGCTACAACGA AGCATACC
8098


5096
GCUACCAG G UAGGGGAG
3302
CTCCCCTA GGCTAGCTACAACGA CTGGTAGC
8099


5087
UAGGGGAG G UUUUCUCC
3303
GGAGAAAA GGCTAGCTACAACGA CTCCCCTA
8100


5077
UUUCUCCU G CCUGCUUG
3304
CAAGCAGG GGCTAGCTACAACGA AGGAGAAA
8101


5073
UCCUGCCU G CUUGGUCU
3305
AGACCAAG GGCTAGCTACAACGA AGGCAGGA
8102


5068
CCUGCUUG G UCUGGGAC
3306
GTCCCAGA GGCTAGCTACAACGA CAAGCAGG
8103


5061
GGUCUGGG A CAAGAAGU
3307
ACTTCTTG GGCTAGCTACAACGA CCCAGACC
8104


5054
GACAAGAA G UGGGCAUC
3308
GATGCCCA GGCTAGCTACAACGA TTCTTGTC
8105


5050
AGAAGUGG G CAUCUAUG
3309
CATAGATG GGCTAGCTACAACGA CCACTTCT
8106


5048
AAGUGGGC A UCUAUGUG
3310
CACATAGA GGCTAGCTACAACGA GCCCACTT
8107


5044
GGGCAUCU A UGUGGGUG
3311
CACCCACA GGCTAGCTACAACGA AGATGCCC
8108


5042
GCAUCUAU G UGGGUGAG
3312
CTCACCCA GGCTAGCTACAACGA ATAGATGC
8109


5038
CUAUGUGG G UGAGGCCU
3313
AGGCCTCA GGCTAGCTACAACGA CCACATAG
8110


5033
UGGGUGAG G CCUGUGAA
3314
TTCACAGG GGCTAGCTACAACGA CTCACCCA
8111


5029
UGAGGCCU G UGAAGACA
3315
TGTCTTCA GGCTAGCTACAACGA AGGCCTCA
8112


5023
CUGUGAAG A CACCCUCC
3316
GGAGGGTG GGCTAGCTACAACGA CTTCACAG
8113


5021
GUGAAGAC A CCCUCCCA
3317
TGGGAGGG GGCTAGCTACAACGA GTCTTCAC
8114


5010
CUCCCAGA A CUCCAGAU
3318
ATCTGGAG GGCTAGCTACAACGA TCTGGGAG
8115


5003
AACUCCAG A UGGUCCUG
3319
CAGGACCA GGCTAGCTACAACGA CTGGAGTT
8116


5000
UCCAGAUG G UCCUGGCA
3320
TGCCAGGA GGCTAGCTACAACGA CATCTGGA
8117


4994
UGGUCCUG G CAGAAGGG
3321
CCCTTCTG GGCTAGCTACAACGA CAGGACCA
8118


4986
GCAGAAGG G CAACCCUG
3322
CAGGGTTG GGCTAGCTACAACGA CCTTCTGC
8119


4983
GAAGGGCA A CCCUGGUG
3323
CACCAGGG GGCTAGCTACAACGA TGCCCTTC
8120


4977
CAACCCUG G UGUAUUUA
3324
TAAATACA GGCTAGCTACAACGA CAGGGTTG
8121


4975
ACCCUGGU G UAUUUAGG
3325
CCTAAATA GGCTAGCTACAACGA ACCAGGGT
8122


4973
CCUGGUGU A UUUAGGUA
3326
TACCTAAA GGCTAGCTACAACGA ACACCAGG
8123


4967
GUAUUUAG G UAAGCCCG
3327
CGGGCTTA GGCTAGCTACAACGA CTAAATAC
8124


4963
UUAGGUAA G CCCGCAAC
3328
GTTGCGGG GGCTAGCTACAACGA TTACCTAA
8125


4959
GUAAGCCC G CAACCUAA
3329
TTAGGTTG GGCTAGCTACAACGA GGGCTTAC
8126


4956
AGCCCGCA A CCUAACGG
3330
CCGTTAGG GGCTAGCTACAACGA TGCGGGCT
8127


4951
GCAACCUA A CGGAGGUC
3331
GACCTCCG GGCTAGCTACAACGA TAGGTTGC
8128


4945
UAACGGAG G UCUCGGCG
3332
CGCCGAGA GGCTAGCTACAACGA CTCCGTTA
8129


4939
AGGUCUCG G CGGGCGUG
3333
CACGCCCG GGCTAGCTACAACGA CGAGACCT
8130


4935
UAACGGAG G UCUCGGCG
3334
AGCTCACG GGCTAGCTACAACGA CCGCCGAG
8131


4933
CGGCGGGC G UGAGCUCG
3335
CGAGCTCA GGCTAGCTACAACGA GCCCGCCG
8132


4929
GGGCGUGA G CUCGUACC
3336
GGTACGAG GGCTAGCTACAACGA TCACGCCC
8133


4925
GUGAGCUC G UACCAAGC
3337
GCTTGGTA GGCTAGCTACAACGA GAGCTCAC
8134


4923
GAGCUCGU A CCAAGCAC
3338
GTGCTTGG GGCTAGCTACAACGA ACGAGCTC
8135


4918
CGUACCAA G CACAUCCC
3339
GGGATGTG GGCTAGCTACAACGA TTGGTACG
8136


4916
UACCAAGC A CAUCCCGC
3340
GCGGGATG GGCTAGCTACAACGA GCTTGGTA
8137


4914
CCAAGCAC A UCCCGCGU
3341
ACGCGGGA GGCTAGCTACAACGA GTGCTTGG
8138


4909
CACAUCCC G CGUCAUAG
3342
CTATGACG GGCTAGCTACAACGA GGGATGTG
8139


4907
CAUCCCGC G UCAUAGCA
3343
TGCTATGA GGCTAGCTACAACGA GCGGGATG
8140


4904
CCCGCGUC A UAGCACUC
3344
GAGTGCTA GGCTAGCTACAACGA GACGCGGG
8141


4901
GCGUCAUA G CACUCACA
3345
TGTGAGTG GGCTAGCTACAACGA TATGACGC
8142


4899
GUCAUAGC A CUCACACA
3346
TGTGTGAG GGCTAGCTACAACGA GCTATGAC
8143


4895
UAGCACUC A CACAGGAC
3347
GTCCTGTG GGCTAGCTACAACGA GAGTGCTA
8144


4893
GCACUCAC A CAGGACCG
3348
CGGTCCTG GGCTAGCTACAACGA GTGAGTGC
8145


4888
CACACAGG A CCGAGGAG
3349
CTCCTCGG GGCTAGCTACAACGA CCTGTGTG
8146


4880
ACCGAGGA G UCGAACAU
3350
ATGTTCGA GGCTAGCTACAACGA TCCTCGGT
8147


4875
GGAGUCGA A CAUGCCCG
3351
CGGGCATG GGCTAGCTACAACGA TCGACTCC
8148


4873
AGUCGAAC A UGCCCGAA
3352
TTCGGGCA GGCTAGCTACAACGA GTTCGACT
8149


4871
UCGAACAU G CCCGAAGG
3353
CCTTCGGG GGCTAGCTACAACGA ATGTTCGA
8150


4863
GCCCGAAG G CCGCUCUC
3354
GAGAGCGG GGCTAGCTACAACGA CTTCGGGC
8151


4860
CGAAGGCC G CUCUCCUG
3355
CAGGAGAG GGCTAGCTACAACGA GGCCTTCG
8152


4849
CUCCUGGA G UCACAAAC
3356
GTTTGTGA GGCTAGCTACAACGA TCCAGGAG
8153


4846
CUGGAGUC A CAAACCUG
3357
CAGGTTTG GGCTAGCTACAACGA GACTCCAG
8154


4842
AGUCACAA A CCUGUAUA
3358
TATACAGG GGCTAGCTACAACGA TTGTGACT
8155


4838
ACAAACCU G UAUAUGCC
3359
GGCATATA GGCTAGCTACAACGA AGGTTTGT
8156


4836
AAACCUGU A UAUGCCUC
3360
GAGGCATA GGCTAGCTACAACGA ACAGGTTT
8157


4834
ACCUGUAU A UGCCUCUC
3361
GAGAGGCA GGCTAGCTACAACGA ATACAGGT
8158


4832
CUGUAUAU G CCUCUCCU
3362
AGGAGAGG GGCTAGCTACAACGA ATATACAG
8159


4823
CCUCUCCU G CCCCUACC
3363
GGTAGGGG GGCTAGCTACAACGA AGGAGAGG
8160


4817
CUGCCCCU A CCGGUCCU
3364
AGGACCGG GGCTAGCTACAACGA AGGGGCAG
8161


4813
CCCUACCG G UCCUACCU
3365
AGGTAGGA GGCTAGCTACAACGA CGGTAGGG
8162


4808
CCGGUCCU A CCUCGCCU
3366
AGGCGAGG GGCTAGCTACAACGA AGGACCGG
8163


4803
CCUACCUC G CCUCUGCG
3367
CGCAGAGG GGCTAGCTACAACGA GAGGTAGG
8164


4797
UCGCCUCU G CGAGCGGG
3368
CCCGCTCG GGCTAGCTACAACGA AGAGGCGA
8165


4793
CUCUGCGA G CGGGACAC
3369
GTGTCCCG GGCTAGCTACAACGA TCGCAGAG
8166


4788
CGAGCGGG A CACUGCGU
3370
ACGCAGTG GGCTAGCTACAACGA CCCGCTCG
8167


4786
AGCGGGAC A CUGCGUCU
3371
AGACGCAG GGCTAGCTACAACGA GTCCCGCT
8168


4783
GGGACACU G CGUCUUGG
3372
CCAAGACG GGCTAGCTACAACGA AGTGTCCC
8169


4781
GACACUGC G UCUUGGGG
3373
CCCCAAGA GGCTAGCTACAACGA GCAGTGTC
8170


4773
GUCUUGGG G CACGGUCG
3374
CGACCGTG GGCTAGCTACAACGA CCCAAGAC
8171


4771
CUUGGGGC A CGGUCGUC
3375
GACGACCG GGCTAGCTACAACGA GCCCCAAG
8172


4768
GGGGCACG G UCGUCGUC
3376
GACGACGA GGCTAGCTACAACGA CGTGCCCC
8173


4765
GCACGGUC G UCGUCUCA
3377
TGAGACGA GGCTAGCTACAACGA GACCGTGC
8174


4762
CGGUCGUC G UCUCAAUG
3378
CATTGAGA GGCTAGCTACAACGA GACGACCG
8175


4756
UCGUCUCA A UGGUGAAG
3379
CTTCACCA GGCTAGCTACAACGA TGAGACGA
8176


4753
UCUCAAUG G UGAAGGUA
3380
TACCTTCA GGCTAGCTACAACGA CATTGAGA
8177


4747
UGGUGAAG G UAGGGUCC
3381
GGACCCTA GGCTAGCTACAACGA CTTCACCA
8178


4742
AAGGUAGG G UCCAAGCU
3382
AGCTTGGA GGCTAGCTACAACGA CCTACCTT
8179


4736
GGGUCCAA G CUGAAGUC
3383
GACTTCAG GGCTAGCTACAACGA TTGGACCC
8180


4730
AAGCUGAA G UCGACUGU
3384
ACAGTCGA GGCTAGCTACAACGA TTCAGCTT
8181


4726
UGAAGUCG A CUGUUUGG
3385
CCAAACAG GGCTAGCTACAACGA CGACTTCA
8182


4723
AGUCGACU G UUUGGGUG
3386
CACCCAAA GGCTAGCTACAACGA AGTCGACT
8183


4717
CUGUUUGG G UGACACAU
3387
ATGTGTCA GGCTAGCTACAACGA CCAAACAG
8184


4714
UUUGGGUG A CACAUGUA
3388
TACATGTG GGCTAGCTACAACGA CACCCAAA
8185


4712
UGGGUGAC A CAUGUAUU
3389
AATACATG GGCTAGCTACAACGA GTCACCCA
8186


4710
GGUGACAC A UGUAUUAC
3390
GTAATACA GGCTAGCTACAACGA GTGTCACC
8187


4708
UGACACAU G UAUUACAG
3391
CTGTAATA GGCTAGCTACAACGA ATGTGTCA
8188


4706
ACACAUGU A UUACAGUC
3392
GACTGTAA GGCTAGCTACAACGA ACATGTGT
8189


4703
CAUGUAUU A CAGUCGAU
3393
ATCGACTG GGCTAGCTACAACGA AATACATG
8190


4700
GUAUUACA G UCGAUCAC
3394
GTGATCGA GGCTAGCTACAACGA TGTAATAC
8191


4696
UACAGUCG A UCACCGAG
3395
CTCGGTGA GGCTAGCTACAACGA CGACTGTA
8192


4693
AGUCGAUC A CCGAGUCA
3396
TGACTCGG GGCTAGCTACAACGA GATCGACT
8193


4688
AUCACCGA G UCAAAAUC
3397
GATTTTGA GGCTAGCTACAACGA TCGGTGAT
8194


4682
GAGUCAAA A UCGCCGGU
3398
ACCGGCGA GGCTAGCTACAACGA TTTGACTC
8195


4679
UCAAAAUC G CCGGUAUA
3399
TATACCGG GGCTAGCTACAACGA GATTTTGA
8196


4675
AAUCGCCG G UAUAGCCC
3400
GGGCTATA GGCTAGCTACAACGA CGGCGATT
8197


4673
UCGCCGGU A UAGCCCGU
3401
ACGGGCTA GGCTAGCTACAACGA ACCGGCGA
8198


4670
CCGGUAUA G CCCGUCAU
3402
ATGACGGG GGCTAGCTACAACGA TATACCGG
8199


4666
UAUAGCCC G UCAUUAGA
3403
TCTAATGA GGCTAGCTACAACGA GGGCTATA
8200


4663
AGCCCGUC A UUAGAGCG
3404
CGCTCTAA GGCTAGCTACAACGA GACGGGCT
8201


4657
UCAUUAGA G CGUCUGUU
3405
AACAGACG GGCTAGCTACAACGA TCTAATGA
8202


4655
AUUAGAGC G UCUGUUGC
3406
GCAACAGA GGCTAGCTACAACGA GCTCTAAT
8203


4651
GAGCGUCU G UUGCCACG
3407
CGTGGCAA GGCTAGCTACAACGA AGACGCTC
8204


4648
CGUCUGUU G CCACGACA
3408
TGTCGTGG GGCTAGCTACAACGA AACAGACG
8205


4645
CUGUUGCC A CGACAACG
3409
CGTTGTCG GGCTAGCTACAACGA GGCAACAG
8206


4642
UUGCCACG A CAACGACG
3410
CGTCGTTG GGCTAGCTACAACGA CGTGGCAA
8207


4639
CCACGACA A CGACGUCC
3411
GGACGTCG GGCTAGCTACAACGA TGTCGTGG
8208


4636
CGACAACG A CGUCCCCG
3412
CGGGGACG GGCTAGCTACAACGA CGTTGTCG
8209


4634
ACAACGAC G UCCCCGCU
3413
AGCGGGGA GGCTAGCTACAACGA GTCGTTGT
8210


4628
ACGUCCCC G CUGGCCGG
3414
CCGGCCAG GGCTAGCTACAACGA GGGGACGT
8211


4624
CCCCGCUG G CCGGUAUG
3415
CATACCGG GGCTAGCTACAACGA CAGCGGGG
8212


4620
GCUGGCCG G UAUGACGG
3416
CCGTCATA GGCTAGCTACAACGA CGGCCAGC
8213


4618
UGGCCGGU A UGACGGAC
3417
GTCCGTCA GGCTAGCTACAACGA ACCGGCCA
8214


4615
CCGGUAUG A CGGACACG
3418
CGTGTCCG GGCTAGCTACAACGA CATACCGG
8215


4611
UAUGACGG A CACGUCGA
3419
TCGACGTG GGCTAGCTACAACGA CCGTCATA
8216


4609
UGACGGAC A CGUCGAGA
3420
TCTCGACG GGCTAGCTACAACGA GTCCGTCA
8217


4607
ACGGACAC G UCGAGACC
3421
GGTCTCGA GGCTAGCTACAACGA GTGTCCGT
8218


4601
ACGUCGAG A CCCCGGUA
3422
TACCGGGG GGCTAGCTACAACGA CTCGACGT
8219


4595
AGACCCCG G UAAUACGC
3423
GCGTATTA GGCTAGCTACAACGA CGGGGTCT
8220


4592
CCCCGGUA A UACGCUAC
3424
GTAGCGTA GGCTAGCTACAACGA TACCGGGG
8221


4590
CCGGUAAU A CGCUACAG
3425
CTGTAGCG GGCTAGCTACAACGA ATTACCGG
8222


4588
GGUAAUAC G CUACAGCG
3426
CGCTGTAG GGCTAGCTACAACGA GTATTACC
8223


4585
AAUACGCU A CAGCGUUA
3427
TAACGCTG GGCTAGCTACAACGA AGCGTATT
8224


4582
ACGCUACA G CGUUAAGU
3428
ACTTAACG GGCTAGCTACAACGA TGTAGCGT
8225


4580
GCUACAGC G UUAAGUCC
3429
GGACTTAA GGCTAGCTACAACGA GCTGTAGC
8226


4575
AGCGUUAA G UCCGAGGC
3430
GCCTCGGA GGCTAGCTACAACGA TTAACGCT
8227


4568
AGUCCGAG G CCCGACAG
3431
CTGTCGGG GGCTAGCTACAACGA CTCGGACT
8228


4563
GAGGCCCG A CAGCUUUG
3432
CAAAGCTG GGCTAGCTACAACGA CGGGCCTC
8229


4560
GCCCGACA G CUUUGCAG
3433
CTGCAAAG GGCTAGCTACAACGA TGTCGGGC
8230


4555
ACAGCUUU G CAGCGAGC
3434
GCTCGCTG GGCTAGCTACAACGA AAAGCTGT
8231


4552
GCUUUGCA G CGAGCUCG
3435
CGAGCTCG GGCTAGCTACAACGA TGCAAAGC
8232


4548
UGCAGCGA G CUCGUCAC
3436
GTGACGAG GGCTAGCTACAACGA TCGCTGCA
8233


4544
GCGAGCUC G UCACAUUU
3437
AAATGTGA GGCTAGCTACAACGA GAGCTCGC
8234


4541
AGCUCGUC A CAUUUCUU
3438
AAGAAATG GGCTAGCTACAACGA GACGAGCT
8235


4539
CUCGUCAC A UUUCUUCU
3439
AGAAGAAA GGCTAGCTACAACGA GTGACGAG
8236


4526
UUCUUGGA A UGGCAGAA
3440
TTCTGCCA GGCTAGCTACAACGA TCCAAGAA
8237


4523
UUGGAAUG G CAGAAGAU
3441
ATCTTCTG GGCTAGCTACAACGA CATTCCAA
8238


4516
GGCAGAAG A UGAGAUGC
3442
GCATCTCA GGCTAGCTACAACGA CTTCTGCC
8239


4511
AAGAUGAG A UGCCUCCC
3443
GGGAGGCA GGCTAGCTACAACGA CTCATCTT
8240


4509
GAUGAGAU G CCUCCCCC
3444
GGGGGAGG GGCTAGCTACAACGA ATCTCATC
8241


4495
CCCCUUUG A UGGUCUCG
3445
CGAGACCA GGCTAGCTACAACGA CAAAGGGG
8242


4492
CUUUGAUG G UCUCGAUG
3446
CATCGAGA GGCTAGCTACAACGA CATCAAAG
8243


4486
UGGUCUCG A UGGGGAUG
3447
CATCCCCA GGCTAGCTACAACGA CGAGACCA
8244


4480
CGAUGGGG A UGGCUUUG
3448
CAAAGCCA GGCTAGCTACAACGA CCCCATCG
8245


4477
UGGGGAUG G CUUUGCCA
3449
TGGCAAAG GGCTAGCTACAACGA CATCCCCA
8246


4472
AUGGCUUU G CCAUAGAA
3450
TTCTATGG GGCTAGCTACAACGA AAAGCCAT
8247


4469
GCUUUGCC A UAGAAGGG
3451
CCCTTCTA GGCTAGCTACAACGA GGCAAAGC
8248


4459
AGAAGGGG A UCUCUCCG
3452
CGGAGAGA GGCTAGCTACAACGA CCCCTTCT
8249


4450
UCUCUCCG G UGUUGGAC
3453
GTCCAACA GGCTAGCTACAACGA CGGAGAGA
8250


4448
UCUCCGGU G UUGGACAA
3454
TTGTCCAA GGCTAGCTACAACGA ACCGGAGA
8251


4443
GGUGUUGG A CAAGGCUA
3455
TAGCCTTG GGCTAGCTACAACGA CCAACACC
8252


4438
UGGACAAG G CUAUCUCC
3456
GGAGATAG GGCTAGCTACAACGA CTTGTCCA
8253


4435
ACAAGGCU A UCUCCUCG
3457
CGAGGAGA GGCTAGCTACAACGA AGCCTTGT
8254


4426
UCUCCUCG A UGUUGGGA
3458
TCCCAACA GGCTAGCTACAACGA CGAGGAGA
8255


4424
UCCUCGAU G UUGGGAUG
3459
CATCCCAA GGCTAGCTACAACGA ATCGAGGA
8256


4418
AUGUUGGG A UGUGGCAC
3460
GTGCCACA GGCTAGCTACAACGA CCCAACAT
8257


4416
GUUGGGAU G UGGCACGG
3461
CCGTGCCA GGCTAGCTACAACGA ATCCCAAC
8258


4413
GGGAUGUG G CACGGUGA
3462
TCACCGTG GGCTAGCTACAACGA CACATCCC
8259


4411
GAUGUGGC A CGGUGACC
3463
GGTCACCG GGCTAGCTACAACGA GCCACATC
8260


4408
GUGGCACG G UGACCGAU
3464
ATCGGTCA GGCTAGCTACAACGA CGTGCCAC
8261


4405
GCACGGUG A CCGAUCCC
3465
GGGATCGG GGCTAGCTACAACGA CACCGTGC
8262


4401
GGUGACCG A UCCCGGAG
3466
CTCCGGGA GGCTAGCTACAACGA CGGTCACC
8263


4392
UCCCGGAG G CGUAGCGG
3467
CCGCTACG GGCTAGCTACAACGA CTCCGGGA
8264


4390
CCGGAGGC G UAGCGGUG
3468
CACCGCTA GGCTAGCTACAACGA GCCTCCGG
8265


4387
GAGGCGUA G CGGUGGCG
3469
CGCCACCG GGCTAGCTACAACGA TACGCCTC
8266


4384
GCGUAGCG G UGGCGAGC
3470
GCTCGCCA GGCTAGCTACAACGA CGCTACGC
8267


4381
UAGCGGUG G CGAGCACG
3471
CGTGCTCG GGCTAGCTACAACGA CACCGCTA
8268


4377
GGUGGCGA G CACGACGA
3472
TCGTCGTG GGCTAGCTACAACGA TCGCCACC
8269


4375
UGGCGAGC A CGACGAGC
3473
GCTCGTCG GGCTAGCTACAACGA GCTCGCCA
8270


4372
CGAGCACG A CGAGCCGC
3474
GCGGCTCG GGCTAGCTACAACGA CGTGCTCG
8271


4368
CACGACGA G CCGCGCUC
3475
GAGCGCGG GGCTAGCTACAACGA TCGTCGTG
8272


4365
GACGAGCC G CGCUCCAG
3476
CTGGAGCG GGCTAGCTACAACGA GGCTCGTC
8273


4363
CGAGCCGC G CUCCAGCC
3477
GGCTGGAG GGCTAGCTACAACGA GCGGCTCG
8274


4357
GCGCUCCA G CCGUCUCC
3478
GGAGACGG GGCTAGCTACAACGA TGGAGCGC
8275


4354
CUCCAGCC G UCUCCGCU
3479
AGCGGAGA GGCTAGCTACAACGA GGCTGGAG
8276


4348
CCGUCUCC G CUUGGUCC
3480
GGACCAAG GGCTAGCTACAACGA GGAGACGG
8277


4343
UCCGCUUG G UCCAGGAC
3481
GTCCTGGA GGCTAGCTACAACGA CAAGCGGA
8278


4336
GGUCCAGG A CUGUGCCG
3482
CGGCACAG GGCTAGCTACAACGA CCTGGACC
8279


4333
CCAGGACU G UGCCGAUG
3483
CATCGGCA GGCTAGCTACAACGA AGTCCTGG
8280


4331
AGGACUGU G CCGAUGCC
3484
GGCATCGG GGCTAGCTACAACGA ACAGTCCT
8281


4327
CUGUGCCG A UGCCCAAA
3485
TTTGGGCA GGCTAGCTACAACGA CGGCACAG
8282


4325
GUGCCGAU G CCCAAAAU
3486
ATTTTGGG GGCTAGCTACAACGA ATCGGCAC
8283


4318
UGCCCAAA A UGGAAGUC
3487
GACTTCCA GGCTAGCTACAACGA TTTGGGCA
8284


4312
AAAUGGAA G UCGAGUCA
3488
TGACTCGA GGCTAGCTACAACGA TTCCATTT
8285


4307
GAAGUCGA G UCAAUUGA
3489
TCAATTGA GGCTAGCTACAACGA TCGACTTC
8286


4303
UCGAGUCA A UUGAGUGG
3490
CCACTCAA GGCTAGCTACAACGA TGACTCGA
8287


4298
UCAAUUGA G UGGCACUC
3491
GAGTGCCA GGCTAGCTACAACGA TCAATTGA
8288


4295
AUUGAGUG G CACUCAUC
3492
GATGAGTG GGCTAGCTACAACGA CACTCAAT
8289


4293
UGAGUGGC A CUCAUCAC
3493
GTGATGAG GGCTAGCTACAACGA GCCACTCA
8290


4289
UGGCACUC A UCACACAU
3494
ATGTGTGA GGCTAGCTACAACGA GAGTGCCA
8291


4286
CACUCAUC A CACAUUAU
3495
ATAATGTG GGCTAGCTACAACGA GATGAGTG
8292


4284
CUCAUCAC A CAUUAUGA
3496
TCATAATG GGCTAGCTACAACGA GTGATGAG
8293


4282
CAUCACAC A UUAUGAUG
3497
CATCATAA GGCTAGCTACAACGA GTGTGATG
8294


4279
CACACAUU A UGAUGUCA
3498
TGACATCA GGCTAGCTACAACGA AATGTGTG
8295


4276
ACAUUAUG A UGUCAUAG
3499
CTATGACA GGCTAGCTACAACGA CATAATGT
8296


4274
AUUAUGAU G UCAUAGGC
3500
GCCTATGA GGCTAGCTACAACGA ATCATAAT
8297


4271
AUGAUGUC A UAGGCGCC
3501
GGCGCCTA GGCTAGCTACAACGA GACATCAT
8298


4267
UGUCAUAG G CGCCCCCA
3502
TGGGGGCG GGCTAGCTACAACGA CTATGACA
8299


4265
UCAUAGGC G CCCCCAGA
3503
TCTGGGGG GGCTAGCTACAACGA GCCTATGA
8300


4256
CCCCCAGA G CAACCACC
3504
GGTGGTTG GGCTAGCTACAACGA TCTGGGGG
8301


4253
CCAGAGCA A CCACCGUC
3505
GACGGTGG GGCTAGCTACAACGA TGCTCTGG
8302


4250
GAGCAACC A CCGUCGGC
3506
GCCGACGG GGCTAGCTACAACGA GGTTGCTC
8303


4247
CAACCACC G UCGGCAAG
3507
CTTGCCGA GGCTAGCTACAACGA GGTGGTTG
8304


4243
CACCGUCG G CAAGGAAC
3508
GTTCCTTG GGCTAGCTACAACGA CGACGGTG
8305


4236
GGCAAGGA A CUUGCCAU
3509
ATGGCAAG GGCTAGCTACAACGA TCCTTGCC
8306


4232
AGGAACUU G CCAUAGGU
3510
ACCTATGG GGCTAGCTACAACGA AAGTTCCT
8307


4229
AACUUGCC A UAGGUGGA
3511
TCCACCTA GGCTAGCTACAACGA GGCAAGTT
8308


4225
UGCCAUAG G UGGAGUAC
3512
GTACTCCA GGCTAGCTACAACGA CTATGGCA
8309


4220
UAGGUGGA G UACGUGAU
3513
ATCACGTA GGCTAGCTACAACGA TCCACCTA
8310


4218
GGUGGAGU A CGUGAUGG
3514
CCATCACG GGCTAGCTACAACGA ACTCCACC
8311


4216
UGGAGUAC G UGAUGGGG
3515
CCCCATCA GGCTAGCTACAACGA GTACTCCA
8312


4213
AGUACGUG A UGGGGGCG
3516
CGCCCCCA GGCTAGCTACAACGA CACGTACT
8313


4207
UGAUGGGG G CGCCCGUG
3517
CACGGGCG GGCTAGCTACAACGA CCCCATCA
8314


4205
AUGGGGGC G CCCGUGGU
3518
ACCACGGG GGCTAGCTACAACGA GCCCCCAT
8315


4201
GGGCGCCC G UGGUGAUG
3519
CATCACCA GGCTAGCTACAACGA GGGCGCCC
8316


4198
CGCCCGUG G UGAUGGUC
3520
GACCATCA GGCTAGCTACAACGA CACGGGCG
8317


4195
CCGUGGUG A UGGUCCUU
3521
AAGGACCA GGCTAGCTACAACGA CACCACGG
8318


4192
UGGUGAUG G UCCUUACC
3522
GGTAAGGA GGCTAGCTACAACGA CATCACCA
8319


4186
UGGUCCUU A CCCCAGUU
3523
AACTGGGG GGCTAGCTACAACGA AAGGACCA
8320


4180
UUACCCCA G UUCUGAUG
3524
CATCAGAA GGCTAGCTACAACGA TGGGGTAA
8321


4174
CAGUUCUG A UGUUAGGA
3525
TCCTAACA GGCTAGCTACAACGA CAGAACTG
8322


4172
GUUCUGAU G UUAGGAUC
3526
GATCCTAA GGCTAGCTACAACGA ATCAGAAC
8323


4166
AUGUUAGG A UCGACACC
3527
GGTGTCGA GGCTAGCTACAACGA CCTAACAT
8324


4162
UAGGAUCG A CACCGUGU
3528
ACACGGTG GGCTAGCTACAACGA CGATCCTA
8325


4160
GGAUCGAC A CCGUGUGC
3529
GCACACGG GGCTAGCTACAACGA TGCGATCC
8326


4157
UCGACACC G UGUGCCUU
3530
AAGGCACA GGCTAGCTACAACGA GGTGTCGA
8327


4155
GACACCGU G UGCCUUAG
3531
CTAAGGCA GGCTAGCTACAACGA ACGGTGTC
8328


4253
CACCGUGU G CCUUAGAC
3532
GTCTAAGG GGCTAGCTACAACGA ACACGGTG
8329


4246
UGCCUUAG A CAUAUACG
3533
CGTATATG GGCTAGCTACAACGA CTAAGGCA
8330


4144
CCUUAGAC A UAUACGCC
3534
GGCGTATA GGCTAGCTACAACGA GTCTAAGG
8331


4142
UUAGACAU A UACGCCCC
3535
GGGGCGTA GGCTAGCTACAACGA ATGTCTAA
8332


4140
AGACAUAU A CGCCCCAA
3536
TTGGGGCG GGCTAGCTACAACGA ATATGTCT
8333


4138
ACAUAUAC G CCCCAAAC
3537
GTTTGGGG GGCTAGCTACAACGA GTATATGT
8334


4131
CGCCCCAA A CCCUAAGG
3538
CCTTAGGG GGCTAGCTACAACGA TTGGGGCG
8335


4123
ACCCUAAG G UGGCGGUA
3539
TACCGCCA GGCTAGCTACAACGA CTTAGGGT
8336


4120
CUAAGGUG G CGGUAACG
3540
CGTTACCG GGCTAGCTACAACGA CACCTTAG
8337


4117
AGGUGGCG G UAACGGAC
3541
GTCCGTTA GGCTAGCTACAACGA CGCCACCT
8338


4114
UGGCGGUA A CGGACGGA
3542
TCCGTCCG GGCTAGCTACAACGA TACCGCCA
8339


4110
GGUAACGG A CGGAUUUA
3543
TAAATCCG GGCTAGCTACAACGA CCGTTACC
8340


4106
ACGGACGG A UUUAGGAC
3544
GTCCTAAA GGCTAGCTACAACGA CCGTCCGT
8341


4099
GAUUUAGG A CGAGCACU
3545
AGTGCTCG GGCTAGCTACAACGA CCTAAATC
8342


4095
UAGGACGA G CACUUUGU
3546
ACAAAGTG GGCTAGCTACAACGA TCGTCCTA
8343


4093
GGACGAGC A CUUUGUAC
3547
GTACAAAG GGCTAGCTACAACGA GCTCGTCC
8344


4088
AGCACUUU G UACCCUUG
3548
CAAGGGTA GGCTAGCTACAACGA AAAGTGCT
8345


4086
CACUUUGU A CCCUUGGG
3549
CCCAAGGG GGCTAGCTACAACGA ACAAAGTG
8346


4078
ACCCUUGG G CUGCAUAU
3550
ATATGCAG GGCTAGCTACAACGA CCAAGGGT
8347


4075
CUUGGGCU G CAUAUGCA
3551
TGCATATG GGCTAGCTACAACGA AGCCCAAG
8348


4073
UGGGCUGC A UAUGCAGC
3552
GCTGCATA GGCTAGCTACAACGA GCAGCCCA
8349


4071
GGCUGCAU A UGCAGCCG
3553
CGGCTGCA GGCTAGCTACAACGA ATGCAGCC
8350


4069
CUGCAUAU G CAGCCGGU
3554
ACCGGCTG GGCTAGCTACAACGA ATATGCAG
8351


4066
CAUAUGCA G CCGGUACC
3555
GGTACCGG GGCTAGCTACAACGA TGCATATG
8352


4062
UGCAGCCG G UACCUUAG
3556
CTAAGGTA GGCTAGCTACAACGA CGGCTGCA
8353


4060
CAGCCGGU A CCUUAGUG
3557
CACTAAGG GGCTAGCTACAACGA ACCGGCTG
8354


4054
GUACCUUA G UGCUCUUG
3558
CAAGAGCA GGCTAGCTACAACGA TAAGGTAC
8355


4052
ACCUUAGU G CUCUUGCC
3559
GGCAAGAG GGCTAGCTACAACGA ACTAAGGT
8356


4046
GUGCUCUU G CCGCUGCC
3560
GGCAGCGG GGCTAGCTACAACGA AAGAGCAC
8357


4043
CUCUUGCC G CUGCCAGU
3561
ACTGGCAG GGCTAGCTACAACGA GGCAAGAG
8358


4040
UUGCCGCU G CCAGUGGG
3562
CCCACTGG GGCTAGCTACAACGA AGCGGCAA
8359


4036
CGCUGCCA G UGGGAGCG
3563
CGCTCCCA GGCTAGCTACAACGA TGGCAGCG
8360


4030
CAGUGGGA G CGUGUAGG
3564
CCTACACG GGCTAGCTACAACGA TCCCACTG
8361


4028
GUGGGAGC G UGUAGGUG
3565
CACCTACA GGCTAGCTACAACGA GCTCCCAC
8362


4026
GGGAGCGU G UAGGUGGG
3566
CCCACCTA GGCTAGCTACAACGA ACGCTCCC
8363


4022
GCGUGUAG G UGGGCCAC
3567
GTGGCCCA GGCTAGCTACAACGA CTACACGC
8364


4018
GUAGGUGG G CCACUUGG
3568
CCAAGTGG GGCTAGCTACAACGA CCACCTAC
8365


4015
GGUGGGCC A CUUGGAAU
3569
ATTCCAAG GGCTAGCTACAACGA GGCCCACC
8366


4008
CACUUGGA A UGUCUGCG
3570
CGCAGACA GGCTAGCTACAACGA TCCAAGTG
8367


4006
CUUGGAAU G UCUGCGGU
3571
ACCGCAGA GGCTAGCTACAACGA ATTCCAAG
8368


4002
GAAUGUCU G CGGUACGG
3572
CCGTACCG GGCTAGCTACAACGA AGACATTC
8369


3999
UGUCUGCG G UACGGCUG
3573
CAGCCGTA GGCTAGCTACAACGA CGCAGACA
8370


3997
UCUGCGGU A CGGCUGGG
3574
CCCAGCCG GGCTAGCTACAACGA ACCGCAGA
8371


3994
GCGGUACG G CUGGGGGG
3575
CCCCCCAG GGCTAGCTACAACGA CGTACCGC
8372


3984
UGGGGGGG A CGAGUUGU
3576
ACAACTCG GGCTAGCTACAACGA CCCCCCCA
8373


3980
GGGGACGA G UUGUCCGU
3577
ACGGACAA GGCTAGCTACAACGA TCGTCCCC
8374


3977
GACGAGUU G UCCGUGAA
3578
TTCACGGA GGCTAGCTACAACGA AACTCGTC
8375


3973
AGUUGUCC G UGAAGACC
3579
GGTCTTCA GGCTAGCTACAACGA GGACAACT
8376


3967
CCGUGAAG A CCGGGGAC
3580
GTCCCCGG GGCTAGCTACAACGA CTTCACGG
8377


3960
GACCGGGG A CCGCAUGG
3581
CCATGCGG GGCTAGCTACAACGA CCCCGGTC
8378


3957
CGGGGACC G CAUGGUAG
3582
CTACCATG GGCTAGCTACAACGA GGTCCCCG
8379


3955
GGGACCGC A UGGUAGUU
3583
AACTACCA GGCTAGCTACAACGA GCGGTCCC
8380


3952
ACCGCAUG G UAGUUUCC
3584
GGAAACTA GGCTAGCTACAACGA CATGCGGT
8381


3949
GCAUGGUA G UUUCCAUA
3585
TATGGAAA GGCTAGCTACAACGA TACCATGC
8382


3943
UAGUUUCC A UAGACUCA
3586
TGAGTCTA GGCTAGCTACAACGA GGAAACTA
8383


3939
UUCCAUAG A CUCAACGG
3587
CCGTTGAG GGCTAGCTACAACGA CTATGGAA
8384


3934
UAGACUCA A CGGGUACA
3588
TGTACCCG GGCTAGCTACAACGA TGAGTCTA
8385


3930
CUCAACGG G UACAAAGU
3589
ACTTTGTA GGCTAGCTACAACGA CCGTTGAG
8386


3928
CAACGGGU A CAAAGUCC
3590
GGACTTTG GGCTAGCTACAACGA ACCCGTTG
8387


3923
GGUACAAA G UCCACCGC
3591
GCGGTGGA GGCTAGCTACAACGA TTTGTACC
8388


3919
CAAAGUCC A CCGCCUUC
3592
GAAGGCGG GGCTAGCTACAACGA GGACTTTG
8389


3916
AGUCCACC G CCUUCGCA
3593
TGCGAAGG GGCTAGCTACAACGA GGTGGACT
8390


3910
CCGCCUUC G CAACCCCC
3594
GGGGGTTG GGCTAGCTACAACGA GAAGGCGG
8391


3907
CCUUCGCA A CCCCCCGG
3595
CCGGGGGG GGCTAGCTACAACGA TGCGAAGG
8392


3898
CCCCCCGG G UGCACACA
3596
TGTGTGCA GGCTAGCTACAACGA CCGGGGGG
8393


3896
CCCCGGGU G CACACAGC
3597
GCTGTGTG GGCTAGCTACAACGA ACCCGGGG
8394


3894
CCGGGUGC A CACAGCAG
3598
CTGCTGTG GGCTAGCTACAACGA GCACCCGG
8395


3892
GGGUGCAC A CAGCAGCC
3599
GGCTGCTG GGCTAGCTACAACGA GTGCACCC
8396


3889
UGCACACA G CAGCCCGG
3600
CCGGGCTG GGCTAGCTACAACGA TGTGTGCA
8397


3886
ACACAGCA G CCCGGAAG
3601
CTTCCGGG GGCTAGCTACAACGA TGCTGTGT
8398


3877
CCCGGAAG A UGCCCACA
3602
TGTGGGCA GGCTAGCTACAACGA CTTCCGGG
8399


3875
CGGAAGAU G CCCACAAC
3603
GTTGTGGG GGCTAGCTACAACGA ATCTTCCG
8400


3871
AGAUGCCC A CAACGUGC
3604
GCACGTTG GGCTAGCTACAACGA GGGCATCT
8401


3868
UGCCCACA A CGUGCCCC
3605
GGGGCACG GGCTAGCTACAACGA TGTGGGCA
8402


3866
CCCACAAC G UGCCCCGA
3606
TCGGGGCA GGCTAGCTACAACGA GTTGTGGG
8403


3864
CACAACGU G CCCCGAAG
3607
CTTCGGGG GGCTAGCTACAACGA ACGTTGTG
8404


3854
CCCGAAGG G CAGAGCAG
3608
CTGCTCTG GGCTAGCTACAACGA CCTTCGGG
8405


3849
AGGGCAGA G CAGUGGAC
3609
GTCCACTG GGCTAGCTACAACGA TCTGCCCT
8406


3846
GCAGAGCA G UGGACCGC
3610
GCGGTCCA GGCTAGCTACAACGA TGCTCTGC
8407


3842
AGCAGUGG A CCGCCCGA
3611
TCGGGCGG GGCTAGCTACAACGA CCACTGCT
8408


3839
AGUGGACC G CCCGAGGA
3612
TCCTCGGG GGCTAGCTACAACGA GGTCCACT
8409


3830
CCCGAGGA G CCCUUCAA
3613
TTGAAGGG GGCTAGCTACAACGA TCCTCGGG
8410


3821
CCCUUCAA G UAGGAGAU
3614
ATCTCCTA GGCTAGCTACAACGA TTGAAGGG
8411


3814
AGUAGGAG A UGGGCCUG
3615
CAGGCCCA GGCTAGCTACAACGA CTCCTACT
8412


3810
GGAGAUGG G CCUGGGGG
3616
CCCCCAGG GGCTAGCTACAACGA CCATCTCC
8413


3801
CCUGGGGG A UAGUAAGC
3617
GCTTACTA GGCTAGCTACAACGA CCCCCAGG
8414


3798
GGGGGAUA G UAAGCUCC
3618
GGAGCTTA GGCTAGCTACAACGA TATCCCCC
8415


3794
GAUAGUAA G CUCCCCCU
3619
AGGGGGAG GGCTAGCTACAACGA TTACTATC
8416


3785
CUCCCCCU G CUGUCACC
3620
GGTGACAG GGCTAGCTACAACGA AGGGGGAG
8417


3782
CCCCUGCU G UCACCCCG
3621
CGGGGTGA GGCTAGCTACAACGA AGCAGGGG
8418


3779
CUGCUGUC A CCCCGCCG
3622
CGGCGGGG GGCTAGCTACAACGA GACAGCAG
8419


3774
GUCACCCC G CCGGCGCA
3623
TGCGCCGG GGCTAGCTACAACGA GGGGTGAC
8420


3770
CCCCGCCG G CGCACCGG
3624
CCGGTGCG GGCTAGCTACAACGA CGGCGGGG
8421


3768
CCGCCGGC G CACCGGAA
3625
TTCCGGTG GGCTAGCTACAACGA GCCGGCGG
8422


3766
GCCGGCGC A CCGGAAUG
3626
CATTCCGG GGCTAGCTACAACGA GCGCCGGC
8423


3760
GCACCGGA A UGACAUCA
3627
TGATGTCA GGCTAGCTACAACGA TCCGGTGC
8424


3757
CCGGAAUG A CAUCAGCG
3628
CGCTGATG GGCTAGCTACAACGA CATTCCGG
8425


3755
GGAAUGAC A UCAGCGUG
3629
CACGCTGA GGCTAGCTACAACGA GTCATTCC
8426


3751
UGACAUCA G CGUGUCUC
3630
GAGACACG GGCTAGCTACAACGA TGATGTCA
8427


3749
ACAUCAGC G UGUCUCGU
3631
ACGAGACA GGCTAGCTACAACGA GCTGATGT
8428


3747
AUCAGCGU G UCUCGUGA
3632
TCACGAGA GGCTAGCTACAACGA ACGCTGAT
8429


3742
CGUGUCUC G UGACCAAG
3633
CTTGGTCA GGCTAGCTACAACGA GAGACACG
8430


3739
GUCUCGUG A CCAAGUAA
3634
TTACTTGG GGCTAGCTACAACGA CACGAGAC
8431


3734
GUGACCAA G UAAAGGUC
3635
GACCTTTA GGCTAGCTACAACGA TTGGTCAC
8432


3728
AAGUAAAG G UCCGAGCC
3636
GGCTCGGA GGCTAGCTACAACGA CTTTACTT
8433


3722
AGGUCCGA G CCGCCGCA
3637
TGCGGCGG GGCTAGCTACAACGA TCGGACCT
8434


3719
UCCGAGCC G CCGCAGGU
3638
ACCTGCGG GGCTAGCTACAACGA GGCTCGGA
8435


3716
GAGCCGCC G CAGGUGCA
3639
TGCACCTG GGCTAGCTACAACGA GGCGGCTC
8436


3712
CGCCGCAG G UGCAUGGU
3640
ACCATGCA GGCTAGCTACAACGA CTGCGGCG
8437


3710
CCGCAGGU G CAUGGUGU
3641
ACACCATG GGCTAGCTACAACGA ACCTGCGG
8438


3708
GCAGGUGC A UGGUGUCA
3642
TGACACCA GGCTAGCTACAACGA GCACCTGC
8439


3705
UGCAUGGU G UCAAGGAC
3643
CCTTGACA GGCTAGCTACAACGA CATGCACC
8440


3703
UGCAUGGU G UCAAGGAC
3644
GTCCTTGA GGCTAGCTACAACGA ACCATGCA
8441


3696
UGUCAAGG A CCGCGCUC
3645
GAGCGCGG GGCTAGCTACAACGA CCTTGACA
8442


3693
CAAGGACC G CGCUCCGG
3646
CCGGAGCG GGCTAGCTACAACGA GGTCCTTG
8443


3691
AGGACCGC G CUCCGGGG
3647
CCCCGGAG GGCTAGCTACAACGA GCGGTCCT
8444


3681
UCCGGGGG G CGCCGGCC
3648
GGCCGGCG GGCTAGCTACAACGA CCCCCGGA
8445


3679
CGGGGGGC G CCGGCCAU
3649
ATGGCCGG GGCTAGCTACAACGA GCCCCCCG
8446


3675
GGGCGCCG G CCAUCCGA
3650
TCGGATGG GGCTAGCTACAACGA CGGCGCCC
8447


3672
CGCCGGCC A UCCGACGA
3651
TCGTCGGA GGCTAGCTACAACGA GGCCGGCG
8448


3667
GCCAUCCG A CGAGGUCC
3652
GGACCTCG GGCTAGCTACAACGA CGGATGGC
8449


3662
CCGACGAG G UCCUGGUC
3653
GACCAGGA GGCTAGCTACAACGA CTCGTCGG
8450


3656
AGGUCCUG G UCUACAUU
3654
AATGTAGA GGCTAGCTACAACGA CAGGACCT
8451


3652
CCUGGUCU A CAUUGGUG
3655
CACCAATG GGCTAGCTACAACGA AGACCAGG
8452


3650
UGGUCUAC A UUGGUGUA
3656
TACACCAA GGCTAGCTACAACGA GTAGACCA
8453


3646
CUACAUUG G UGUACAUU
3657
AATGTACA GGCTAGCTACAACGA CAATGTAG
8454


3644
ACAUUGGU G UACAUUUG
3658
CAAATGTA GGCTAGCTACAACGA ACCAATGT
8455


3642
AUUGGUGU A CAUUUGGG
3659
CCCAAATG GGCTAGCTACAACGA ACACCAAT
8456


3640
UGGUGUAC A UUUGGGUG
3660
CACCCAAA GGCTAGCTACAACGA GTACACCA
8457


3634
ACAUUUGG G UGAUUGGA
3661
TCCAATCA GGCTAGCTACAACGA CCAAATGT
8458


3631
UUUGGGUG A UUGGACCC
3662
GGGTCCAA GGCTAGCTACAACGA CACCCAAA
8459


3626
GUGAUUGG A CCCUUUGG
3663
CCAAAGGG GGCTAGCTACAACGA CCAATCAC
8460


3617
CCCUUUGG G CCGGCUAG
3664
CTAGCCGG GGCTAGCTACAACGA CCAAAGGG
8461


3613
UUGGGCCG G CUAGGGUC
3665
GACCCTAG GGCTAGCTACAACGA CGGCCCAA
8462


3607
CGGCUAGG G UCUUUGAG
3666
CTCAAAGA GGCTAGCTACAACGA CCTAGCCG
8463


3599
GUCUUUGA G CCGGCGCC
3667
GGCGCCGG GGCTAGCTACAACGA TCAAAGAC
8464


3595
UUGAGCCG G CGCCGUGG
3668
CCACGGCG GGCTAGCTACAACGA CGGCTCAA
8465


3593
GAGCCGGC G CCGUGGUA
3669
TACCACGG GGCTAGCTACAACGA GCCGGCTC
8466


3590
CCGGCGCC G UGGUAGAC
3670
GTCTACCA GGCTAGCTACAACGA GGCGCCGG
8467


3587
GCGCCGUG G UAGACAGU
3671
ACTGTCTA GGCTAGCTACAACGA CACGGCGC
8468


3583
CGUGGUAG A CAGUCCAG
3672
CTGGACTG GGCTAGCTACAACGA CTACCACG
8469


3580
GGUAGACA G UCCAGCAC
3673
GTGCTGGA GGCTAGCTACAACGA TGTCTACC
8470


3575
ACAGUCCA G CACACGCC
3674
GGCGTGTG GGCTAGCTACAACGA TGGACTGT
8471


3573
AGUCCAGC A CACGCCGU
3675
ACGGCGTG GGCTAGCTACAACGA GCTGGACT
8472


3571
UCCAGCAC A CGCCGUUG
3676
CAACGGCG GGCTAGCTACAACGA GTGCTGGA
8473


3569
CAGCACAC G CCGUUGAC
3677
GTCAACGG GGCTAGCTACAACGA GTGTGCTG
8474


3566
CACACGCC G UUGACGCA
3678
TGCGTCAA GGCTAGCTACAACGA GGCGTGTG
8475


3562
CGCCGUUG A CGCAGGUC
3679
GACCTGCG GGCTAGCTACAACGA CAACGGCG
8476


3560
CCGUUGAC G CAGGUCGC
3680
GCGACCTG GGCTAGCTACAACGA GTCAACGG
8477


3556
UGACGCAG G UCGCUAGG
3681
CCTAGCGA GGCTAGCTACAACGA CTGCGTCA
8478


3553
CGCAGGUC G CUAGGAAA
3682
TTTCCTAG GGCTAGCTACAACGA GACCTGCG
8479


3543
UAGGAAAG A CUGCGUCG
3683
CGACGCAG GGCTAGCTACAACGA CTTTCCTA
8480


3540
GAAAGACU G CGUCGCGG
3684
CCGCGACG GGCTAGCTACAACGA AGTCTTTC
8481


3538
AAGACUGC G UCGCGGUG
3685
CACCGCGA GGCTAGCTACAACGA GCAGTCTT
8482


3535
ACUGCGUC G CGGUGGAA
3686
TTCCACCG GGCTAGCTACAACGA GACGCAGT
8483


3532
GCGUCGCG G UGGAAACC
3687
GGTTTCCA GGCTAGCTACAACGA CGCGACGC
8484


3526
CGGUGGAA A CCACUUGA
3688
TCAAGTGG GGCTAGCTACAACGA TTCCACCG
8485


3523
UGGAAACC A CUUGAACU
3689
AGTTCAAG GGCTAGCTACAACGA GGTTTCCA
8486


3517
CCACUUGA A CUUCCCCC
3690
GGGGGAAG GGCTAGCTACAACGA TCAAGTGG
8487


3505
CCCCCUCG A CUUGGUUC
3691
GAACCAAG GGCTAGCTACAACGA CGAGGGGG
8488


3500
UCGACUUG G UUCUUGUC
3692
GACAAGAA GGCTAGCTACAACGA CAAGTCGA
8489


3494
UGGUUCUU G UCCCGGCC
3693
GGCCGGGA GGCTAGCTACAACGA AAGAACCA
8490


3488
UUGUCCCG G CCCGUGAG
3694
CTCACGGG GGCTAGCTACAACGA CGGGACAA
8491


3484
CCCGGCCC G UGAGGCUG
3695
CAGCCTCA GGCTAGCTACAACGA GGGCCGGG
8492


3479
CCCGUGAG G CUGGUGAU
3696
ATCACCAG GGCTAGCTACAACGA CTCACGGG
8493


3475
UGAGGCUG G UGAUAAUG
3697
CATTATCA GGCTAGCTACAACGA CAGCCTCA
8494


3472
GGCUGGUG A UAAUGCAG
3698
CTGCATTA GGCTAGCTACAACGA CACCAGCC
8495


3469
UGGUGAUA A UGCAGCCA
3699
TGGCTGCA GGCTAGCTACAACGA TATCACCA
8496


3467
GUGAUAAU G CAGCCAAA
3700
TTTGGCTG GGCTAGCTACAACGA ATTATCAC
8497


3464
AUAAUGCA G CCAAACAG
3701
CTGTTTGG GGCTAGCTACAACGA TGCATTAT
8498


3459
GCAGCCAA A CAGGCCCC
3702
GGGGCCTG GGCTAGCTACAACGA TTGGCTGC
8499


3455
CCAAACAG G CCCCGCGU
3703
ACGCGGGG GGCTAGCTACAACGA CTGTTTGG
8500


3450
CAGGCCCC G CGUCUGUU
3704
AACAGACG GGCTAGCTACAACGA GGGGCCTG
8501


3448
GGCCCCGC G UCUGUUGG
3705
CCAACAGA GGCTAGCTACAACGA GCGGGGCC
8502


3444
CCGCGUCU G UUGGGAGU
3706
ACTCCCAA GGCTAGCTACAACGA AGACGCGG
8503


3437
UGUUGGGA G UAGGCCGU
3707
ACGGCCTA GGCTAGCTACAACGA TCCCAACA
8504


3433
GGGAGUAG G CCGUAAUG
3708
CATTACGG GGCTAGCTACAACGA CTACTCCC
8505


3430
AGUAGGCC G UAAUGGGC
3709
GCCCATTA GGCTAGCTACAACGA GGCCTACT
8508


3427
AGGCCGUA A UGGGCGCG
3710
CGCGCCCA GGCTAGCTACAACGA TACGGCCT
8507


3423
CGUAAUGG G CGCGAGGA
3711
TCCTCGCG GGCTAGCTACAACGA CCATTACG
8508


3421
UAAUGGGC G CGAGGAGU
3712
ACTCCTCG GGCTAGCTACAACGA GCCCATTA
8509


3414
CGCGAGGA G UCGCCACC
3713
GGTGGCGA GGCTAGCTACAACGA TCCTCGCG
8510


3411
GAGGAGUC G CCACCCCU
3714
AGGGGTGG GGCTAGCTACAACGA GACTCCTC
8511


3408
GAGUCGCC A CCCCUGCC
3715
GGCAGGGG GGCTAGCTACAACGA GGCGACTC
8512


3402
CCACCCCU G CCCCUCAA
3716
TTGAGGGG GGCTAGCTACAACGA AGGGGTGG
8513


3392
CCCUCAAG A CUGUCGGC
3717
GCCGACAG GGCTAGCTACAACGA CTTGAGGG
8514


3389
UCAAGACU G UCGGCUGG
3718
CCAGCCGA GGCTAGCTACAACGA AGTCTTGA
8515


3385
GACUGUCG G CUGGUCCU
3719
AGGACCAG GGCTAGCTACAACGA CGACAGTC
8516


3381
GUCGGCUG G UCCUAGGA
3720
TCCTAGGA GGCTAGCTACAACGA CAGCCGAC
8517


3372
UCCUAGGA G UAUCUCCC
3721
GGGAGATA GGCTAGCTACAACGA TCCTAGGA
8518


3370
CUAGGAGU A UCUCCCUC
3722
GAGGGAGA GGCTAGCTACAACGA ACTCCTAG
8519


3352
CCCUUCGG G CGGAGACA
3723
TGTCTCCG GGCTAGCTACAACGA CCGAAGGG
8520


3346
GGGCGGAG A CAGGUAGA
3724
TCTACCTG GGCTAGCTACAACGA CTCCGCCC
8521


3342
GGAGACAG G UAGACCCA
3725
TGGGTCTA GGCTAGCTACAACGA CTGTCTCC
8522


3338
CCAUAAUG A UGUCCCCA
3728
GGACATCA GGCTAGCTACAACGA TATGGGTC
8523


3334
GUAGACCC A UAAUGAUG
3727
CATCATTA GGCTAGCTACAACGA GGGTCTAC
8524


3331
GACCCAUA A UGAUGUCC
3728
GGACATCA GGCTAGCTACAACGA TATGGGTC
8525


3328
CCAUAAUG A UGUCCCCA
3729
TGGGGACA GGCTAGCTACAACGA CATTATGG
8526


3326
AUAAUGAU G UCCCCACA
3730
TGTGGGGA GGCTAGCTACAACGA ATCATTAT
8527


3320
AUGUCCCC A CACGCCGC
3731
GCGGCGTG GGCTAGCTACAACGA GGGGACAT
8528


3318
GUCCCCAC A CGCCGCGG
3732
CCGCGGCG GGCTAGCTACAACGA GTGGGGAC
8529


3316
CCCCACAC G CCGCGGUG
3733
CACCGCGG GGCTAGCTACAACGA GTGTGGGG
8530


3313
CACACGCC G CGGUGUCU
3734
AGACACCG GGCTAGCTACAACGA GGCGTGTG
8531


3310
ACGCCGCG G UGUCUCCC
3735
GGGAGACA GGCTAGCTACAACGA CGCGGCGT
8532


3308
GCCGCGGU G UCUCCCCC
3736
GATCATCA GGCTAGCTACAACGA CTGGGGGG
8533


3295
CCCCCCAG G UGAUGAUC
3737
GATCATCA GGCTAGCTACAACGA CTGGGGGG
8534


3292
CCCAGGUG A UGAUCUUG
3738
CAAGATCA GGCTAGCTACAACGA CACCTGGG
8535


3289
AGGUGAUG A UCUUGAUU
3739
AATCAAGA GGCTAGCTACAACGA CATCACCT
8536


3283
UGAUCUUG A UUUCCAUG
3740
CATGGAAA GGCTAGCTACAACGA CAAGATCA
8537


3277
UGAUUUCC A UGUCGGAG
3741
CTCCGACA GGCTAGCTACAACGA GGAAATCA
8538


3275
AUUUCCAU G UCGGAGAA
3742
TTCTCCGA GGCTAGCTACAACGA ATGGAAAT
8539


3265
CGGAGAAG A CGACGGGC
3743
GCCCGTCG GGCTAGCTACAACGA CTTCTCCG
8540


3262
AGAAGACG A CGGGCUCG
3744
CGAGCCCG GGCTAGCTACAACGA CGTCTTCT
8541


3258
GACGACGG G CUCGACCG
3745
CGGTCGAG GGCTAGCTACAACGA CCGTCGTC
8542


3253
CGGGCUCG A CCGCUACC
3746
GGTAGCGG GGCTAGCTACAACGA CGAGCCCG
8543


3250
GCUCGACC G CUACCGCC
3747
GGCGGTAG GGCTAGCTACAACGA GGTCGAGC
8544


3247
CGACCGCU A CCGCCAGG
3748
CCTGGCGG GGCTAGCTACAACGA AGCGGTCG
8545


3244
CCGCUACC G CCAGGUCU
3749
AGACCTGG GGCTAGCTACAACGA GGTAGCCG
8546


3239
ACCGCCAG G UCUCGUAG
3750
CTACGAGA GGCTAGCTACAACGA CTGGCGGT
8547


3234
CAGGUCUC G UAGACCUG
3751
CAGGTCTA GGCTAGCTACAACGA CAGACCTG
8548


3230
UCUCGUAG A CCUGUGUG
3752
CACACAGG GGCTAGCTACAACGA CTACGAGA
8549


3226
GUAGACCU G UGUGGGCC
3753
GGCCCACA GGCTAGCTACAACGA AGGTCTAC
8550


3224
AGACCUGU G UGGGCCCA
3754
TGGGCCCA GGCTAGCTACAACGA ACAGGTCT
8551


3220
CUGUGUGG G CCCAGUCC
3755
GGACTGGG GGCTAGCTACAACGA CCACACAG
8552


3215
UGGGCCCA G UCCUGCAG
3756
CTGCAGGA GGCTAGCTACAACGA TGGGCCCA
8553


3210
CCAGUCCU G CAGUGGAG
3757
CTCCACTG GGCTAGCTACAACGA AGGACTGG
8554


3207
GUCCUGCA G UGGAGUGA
3758
TCACTCCA GGCTAGCTACAACGA TGCAGGAC
8555


3202
GCAGUGGA G UGAGGUGG
3759
CCACCTCA GGCTAGCTACAACGA TCCACTGC
8556


3197
GGAGUGAG G UGGUCAUA
3760
TATGACCA GGCTAGCTACAACGA CTCACTCC
8557


3194
GUGAGGUG G UCAUAGAC
3761
GTCTATGA GGCTAGCTACAACGA CACCTCAC
8558


3191
AGGUGGUC A UAGACGGA
3762
TCCGTCTA GGCTAGCTACAACGA GACCACCT
8559


3187
GGUCAUAG A CGGACGUA
3763
TACGTCCG GGCTAGCTACAACGA CTATGACC
8560


3183
AUAGACGG A CGUACCUU
3764
AAGGTACG GGCTAGCTACAACGA CCGTCTAT
8561


3181
AGACGGAC G UACCUUUC
3765
GAAAGGTA GGCTAGCTACAACGA GTCCGTCT
8562


3179
ACGGACGU A CCUUUCAA
3766
TTGAAAGG GGCTAGCTACAACGA ACGTCCGT
8563


3171
ACCUUUCA A UUCGGCCA
3767
TGGCCGAA GGCTAGCTACAACGA TGAAAGGT
8564


3166
UCAAUUCG G CCAACUUC
3768
GAAGTTGG GGCTAGCTACAACGA CGAATTGA
8565


3162
UUCGGCCA A CUUCAUGA
3769
TCATGAAG GGCTAGCTACAACGA TGGCCGAA
8566


3157
CCAACUUC A UGAAGGCC
3770
GGCCTTCA GGCTAGCTACAACGA GAAGTTGG
8567


3151
UCAUGAAG G CCAUUUGG
3771
CCAAATGG GGCTAGCTACAACGA CTTCATGA
8568


3148
UGAAGGCC A UUUGGACA
3772
TGTCCAAA GGCTAGCTACAACGA GGCCTTCA
8569


3142
CCAUUUGG A CAUAUUGC
3773
GCAATATG GGCTAGCTACAACGA CCAAATGG
8570


3140
AUUUGGAC A UAUUGCCC
3774
GGGCAATA GGCTAGCTACAACGA GTCCAAAT
8571


3138
UUGGACAU A UUGCCCCC
3775
GGGGGCAA GGCTAGCTACAACGA ATGTCCAA
8572


3135
GACAUAUU G CCCCCCAC
3776
GTGGGGGG GGCTAGCTACAACGA AATATGTC
8573


3128
UGCCCCCC A CCGACUUU
3777
AAAGTCGG GGCTAGCTACAACGA GGGGGGCA
8574


3124
CCCCACCG A CUUUCCGC
3778
GCGGAAAG GGCTAGCTACAACGA CGGTGGGG
8575


3117
GACUUUCC G CACCAAAA
3779
TTTTGGTG GGCTAGCTACAACGA GGAAAGTC
8576


3115
CUUUCCGC A CCAAAAUG
3780
CATTTTGG GGCTAGCTACAACGA GCGGAAAG
8577


3109
GCACCAAA A UGCAUUCA
3781
TGAATGCA GGCTAGCTACAACGA TTTGGTGC
8578


3107
ACCAAAAU G CAUUCACG
3782
CGTGAATG GGCTAGCTACAACGA ATTTTGGT
8579


3105
CAAAAUGC A UUCACGGA
3783
TCCGTGAA GGCTAGCTACAACGA GCATTTTG
8580


3101
AUGCAUUC A CGGAUGAC
3784
GTCATCCG GGCTAGCTACAACGA GAATGCAT
8581


3097
AUUCACGG A UGACCCCU
3785
AGGGGTCA GGCTAGCTACAACGA CCGTGAAT
8582


3094
CACGGAUG A CCCCUUGA
3786
TCAAGGGG GGCTAGCTACAACGA CATCCGTG
8583


3085
CCCCUUGA G CCCGCACA
3787
TGTGCGGG GGCTAGCTACAACGA TCAAGGGG
8584


3081
UUGAGCCC G CACAAAGU
3788
ACTTTGTG GGCTAGCTACAACGA GGGCTCAA
8585


3079
GAGCCCGC A CAAAGUCC
3789
GGACTTTG GGCTAGCTACAACGA GCGGGCTC
8586


3074
CGCACAAA G UCCGGCAC
3790
GTGCCGGA GGCTAGCTACAACGA TTTGTGCG
8587


3069
AAAGUCCG G CACUUUUG
3791
CAAAAGTG GGCTAGCTACAACGA CGGACTTT
8588


3067
AGUCCGGC A CUUUUGCU
3792
AGCAAAAG GGCTAGCTACAACGA GCCGGACT
8589


3061
GCACUUUU G CUAUACCA
3793
TGGTATAG GGCTAGCTACAACGA AAAAGTGC
8590


3058
CUUUUGCU A UACCAGCC
3794
GGCTGGTA GGCTAGCTACAACGA AGCAAAAG
8591


3056
UUUGCUAU A CCAGCCUG
3795
CAGGCTGG GGCTAGCTACAACGA ATAGCAAA
8592


3052
CUAUACCA G CCUGGAGC
3796
GCTCCAGG GGCTAGCTACAACGA TGGTATAG
8593


3045
AGCCUGGA G CACCAUGA
3797
TCATGGTG GGCTAGCTACAACGA TCCAGGCT
8594


3043
CCUGGAGC A CCAUGAGC
3798
GCTCATGG GGCTAGCTACAACGA GCTCCAGG
8595


3040
GGAGCACC A UGAGCGGG
3799
CCCGCTCA GGCTAGCTACAACGA GGTGCTCC
8596


3036
CACCAUGA G CGGGCCGA
3800
TCGGCCCG GGCTAGCTACAACGA TCATGGTG
8597


3032
AUGAGCGG G CCGAGUAU
3801
ATACTCGG GGCTAGCTACAACGA CCGCTCAT
8598


3027
CGGGCCGA G UAUGGCGA
3802
TCGCCATA GGCTAGCTACAACGA TCGGCCCG
8599


3025
GGCCGAGU A UGGCGAGC
3803
GCTCGCCA GGCTAGCTACAACGA ACTCGGCC
8600


3022
CGAGUAUG G CGAGCAUA
3804
TATGCTCG GGCTAGCTACAACGA CATACTCG
8601


3018
UAUGGCGA G CAUAAUUU
3805
AAATTATG GGCTAGCTACAACGA TCGCCATA
8602


3016
UGGCGAGC A UAAUUUUG
3806
CAAAATTA GGCTAGCTACAACGA GCTCGCCA
8603


3013
CGAGCAUA A UUUUGGUG
3807
CACCAAAA GGCTAGCTACAACGA TATGCTCG
8604


3007
UAAUUUUG G UGAUGUCA
3808
TGACATCA GGCTAGCTACAACGA CAAAATTA
8605


3004
UUUUGGUG A UGUCAAAG
3809
CTTTGACA GGCTAGCTACAACGA CACCAAAA
8606


3002
UUGGUGAU G UCAAAGAU
3810
ATCTTTGA GGCTAGCTACAACGA ATCACCAA
8607


2995
UGUCAAAG A UUAGCUCU
3811
AGAGCTAA GGCTAGCTACAACGA CTTTGACA
8608


2991
AAAGAUUA G CUCUGGGU
3812
ACCCAGAG GGCTAGCTACAACGA TAATCTTT
8609


2984
AGCUCUGG G UGGACCAC
3813
GTGGTCCA GGCTAGCTACAACGA CCAGAGCT
8610


2980
CUGGGUGG A CCACACAC
3814
GTGTGTGG GGCTAGCTACAACGA CCACCCAG
8611


2977
GGUGGACC A CACACGUG
3815
CACGTGTG GGCTAGCTACAACGA GGTCCACC
8612


2975
UGGACCAC A CACGUGAG
3816
CTCACGTG GGCTAGCTACAACGA GTGGTCCA
8613


2973
GACCACAC A CGUGAGGA
3817
TCCTCACG GGCTAGCTACAACGA GTGTGGTC
8614


2971
CCACACAC G UGAGGAGA
3818
TCTCCTCA GGCTAGCTACAACGA GTGTGTGG
8615


2962
UGAGGAGA A UGAUGGCA
3819
TGCCATCA GGCTAGCTACAACGA TCTCCTCA
8616


2959
GGAGAAUG A UGGCACCG
3820
CGGTGCCA GGCTAGCTACAACGA CATTCTCC
8617


2956
GAAUGAUG G CACCGCGC
3821
GCGCGGTG GGCTAGCTACAACGA CATCATTC
8618


2954
AUGAUGGC A CCGCGCCC
3822
GGGCGCGG GGCTAGCTACAACGA GCCATCAT
8619


2951
AUGGCACC G CGCCCCCC
3823
GGGGGGCG GGCTAGCTACAACGA GGTGCCAT
8620


2949
GGCACCGC G CCCCCCCC
3824
GGGGGGGG GGCTAGCTACAACGA GCGGTGCC
8621


2938
CCCCCCGA A CGUUGAGG
3825
CCTCAACG GGCTAGCTACAACGA TCGGGGGG
8622


2936
CCCCGAAC G UUGAGGGG
3826
CCCCTCAA GGCTAGCTACAACGA GTTCGGGG
8623


2923
GGGGGGGG A UCCACACU
3827
AGTGTGGA GGCTAGCTACAACGA CCCCCCCC
8624


2919
GGGGAUCC A CACUUGCA
3828
TGCAAGTG GGCTAGCTACAACGA GGATCCCC
8625


2917
GGAUCCAC A CUUGCAAC
3829
GTTGCAAG GGCTAGCTACAACGA GTGGATCC
8626


2913
CCACACUU G CAACUGCG
3830
CGCAGTTG GGCTAGCTACAACGA AAGTGTGG
8627


2910
CACUUGCA A CUGCGCCU
3831
AGGCGCAG GGCTAGCTACAACGA TGCAAGTG
8628


2907
UUGCAACU G CGCCUCGG
3832
CCGAGGCG GGCTAGCTACAACGA AGTTGCAA
8629


2905
GCAACUGC G CCUCGGCU
3833
AGCCGAGG GGCTAGCTACAACGA CGAGGCGC
8630


2899
GCGCCUCG G CUCUGGUG
3834
CACCAGAG GGCTAGCTACAACGA CGAGGCGC
8631


2893
CGGCUCUG G UGAUAAGG
3835
CCTTATCA GGCTAGCTACAACGA CAGAGCCG
8632


2890
CUCUGGUG A UAAGGUAU
3836
ATACCTTA GGCTAGCTACAACGA CACCAGAG
8633


2885
GUGAUAAG G UAUUGCAA
3837
TTGCAATA GGCTAGCTACAACGA CTTATCAC
8634


2883
GAUAAGGU A UUGCAACC
3838
GGTTGCAA GGCTAGCTACAACGA ACCTTATC
8635


2880
AAGGUAUU G CAACCACC
3839
GGTGGTTG GGCTAGCTACAACGA AATACCTT
8636


2877
GUAUUGCA A CCACCAUA
3840
TATGGTGG GGCTAGCTACAACGA TGCAATAC
8637


2874
UUGCAACC A CCAUAUGA
3841
TCATATGG GGCTAGCTACAACGA GGTTGCAA
8638


2871
CAACCACC A UAUGAGCC
3842
GGCTCATA GGCTAGCTACAACGA GGTGGTTG
8639


2869
ACCACCAU A UGAGCCUA
3843
TAGGCTCA GGCTAGCTACAACGA ATGGTGGT
8640


2865
CCAUAUGA G CCUAGCGA
3844
TCGCTAGG GGCTAGCTACAACGA TCATATGG
8641


2860
UGAGCCUA G CGAGGAAC
3845
GTTCCTCG GGCTAGCTACAACGA TAGGCTCA
8642


2853
AGCGAGGA A CACUUUGU
3846
ACAAAGTG GGCTAGCTACAACGA TCCTCGCT
8643


2851
CGAGGAAC A CUUUGUAG
3847
CTACAAAG GGCTAGCTACAACGA GTTCCTCG
8644


2846
AACACUUU G UAGUAUGG
3848
CCATACTA GGCTAGCTACAACGA AAAGTGTT
8645


2843
ACUUUGUA G UAUGGUGA
3849
TCACCATA GGCTAGCTACAACGA TACAAAGT
8646


2841
UUUGUAGU A UGGUGACA
3850
TGTCACCA GGCTAGCTACAACGA ACTACAAA
8647


2838
GUAGUAUG G UGACAAGG
3851
CCTTGTCA GGCTAGCTACAACGA CATACTAC
8648


2835
GUAUGGUG A CAAGGUCA
3852
TGACCTTG GGCTAGCTACAACGA CACCATAC
8649


2830
GUGACAAG G UCAAGAGU
3853
ACTCTTGA GGCTAGCTACAACGA CTTGTCAC
8650


2823
GGUCAAGA G UGCUAGAC
3854
GTCTAGCA GGCTAGCTACAACGA TCTTGACC
8651


2821
UCAAGAGU G CUAGACCU
3855
AGGTCTAG GGCTAGCTACAACGA ACTCTTGA
8652


2816
AGUGCUAG A CCUACAAA
3856
TTTGTAGG GGCTAGCTACAACGA CTAGCACT
8653


2812
CUAGACCU A CAAAAACC
3857
GGTTTTTG GGCTAGCTACAACGA AGGTCTAG
8654


2806
CUACAAAA A CCACGCCU
3858
AGGCGTGG GGCTAGCTACAACGA TTTTGTAG
8655


2803
CAAAAACC A CGCCUCCG
3859
CGGAGGCG GGCTAGCTACAACGA GGTTTTTG
8656


2801
AAAACCAC G CCUCCGCA
3860
TGCGGAGG GGCTAGCTACAACGA GTGGTTTT
8657


2795
ACGCCUCC G CACGAUGC
3861
GCATCGTG GGCTAGCTACAACGA GGAGGCGT
8658


2793
GCCUCCGC A CGAUGCGG
3862
CCGCATCG GGCTAGCTACAACGA GCGGAGGC
8659


2790
UCCGCACG A UGCGGCCA
3863
TGGCCGCA GGCTAGCTACAACGA CGTGCGGA
8660


2788
CGCACGAU G CGGCCAUC
3864
GATGGCCG GGCTAGCTACAACGA ATCGTGCG
8661


2785
ACGAUGCG G CCAUCUCC
3865
GGAGATGG GGCTAGCTACAACGA CGCATCGT
8662


2782
AUGCGGCC A UCUCCCGG
3866
CCGGGAGA GGCTAGCTACAACGA GGCCGCAT
8663


2774
AUCUCCCG G UCCAUGGC
3867
GCCATGGA GGCTAGCTACAACGA CGGGAGAT
8664


2770
CCCGGUCC A UGGCGUAC
3868
GTACGCCA GGCTAGCTACAACGA GGACCGGG
8665


2767
GGUCCAUG G CGUACGCC
3869
GGCGTACG GGCTAGCTACAACGA CATGGACC
8666


2765
UCCAUGGC G UACGCCCG
3870
CGGGCGTA GGCTAGCTACAACGA GCCATGGA
8667


2763
CAUGGCGU A CGCCCGUG
3871
CACGGGCG GGCTAGCTACAACGA ACGCCATG
8668


2761
UGGCGUAC G CCCGUGGU
3872
ACCACGGG GGCTAGCTACAACGA GTACGCCA
8669


2757
GUACGCCC G UGGUGGUA
3873
TACCACCA GGCTAGCTACAACGA GGGCGTAC
8670


2754
CGCCCGUG G UGGUAACG
3874
CGTTACCA GGCTAGCTACAACGA CACGGGCG
8671


2751
CCGUGGUG G UAACGCCA
3875
TGGCGTTA GGCTAGCTACAACGA CACCACGG
8672


2748
UGGUGGUA A CGCCAGCA
3876
TGCTGGCG GGCTAGCTACAACGA TACCACCA
8673


2746
GUGGUAAC G CCAGCAGG
3877
CCTGCTGG GGCTAGCTACAACGA GTTACCAC
8674


2742
UAACGCCA G CAGGAGCA
3878
TGCTCCTG GGCTAGCTACAACGA TGGCGTTA
8675


2736
CAGCAGGA G CAGGAGUA
3879
TACTCCTG GGCTAGCTACAACGA TCCTGCTG
8676


2730
GAGCAGGA G UAGCGGCC
3880
GGCCGCTA GGCTAGCTACAACGA TCCTGCTC
8677


2727
CAGGAGUA G CGGCCAUA
3881
TATGGCCG GGCTAGCTACAACGA TACTCCTG
8678


2724
GAGUAGCG G CCAUACGC
3882
GCGTATGG GGCTAGCTACAACGA CGCTACTC
8679


2721
UAGCGGCC A UACGCCGU
3883
ACGGCGTA GGCTAGCTACAACGA GGCCGCTA
8680


2719
GCGGCCAU A CGCCGUAG
3884
CTACGGCG GGCTAGCTACAACGA ATGGCCGC
8681


2717
GGCCAUAC G CCGUAGAG
3885
CTCTACGG GGCTAGCTACAACGA GTATGGCC
8682


2714
CAUACGCC G UAGAGAGC
3886
GCTCTCTA GGCTAGCTACAACGA GGCGTATG
8683


2707
CGUAGAGA G CAUAUGCC
3887
GGCATATG GGCTAGCTACAACGA TCTCTACG
8684


2705
UAGAGAGC A UAUGCCGC
3888
GCGGCATA GGCTAGCTACAACGA GCTCTCTA
8685


2703
GAGAGCAU A UGCCGCCC
3889
GGGCGGCA GGCTAGCTACAACGA ATGCTCTC
8686


2701
GAGCAUAU G CCGCCCCA
3890
TGGGGCGG GGCTAGCTACAACGA ATATGCTC
8687


2698
CAUAUGCC G CCCCAGGG
3891
CCCTGGGG GGCTAGCTACAACGA GGCATATG
8688


2689
CCCCAGGG A CCAGCUUG
3892
CAAGCTGG GGCTAGCTACAACGA CCCTGGGG
8689


2685
AGGGACCA G CUUGCCUU
3893
AAGGCAAG GGCTAGCTACAACGA TGGTCCCT
8690


2681
ACCAGCUU G CCUUUGAU
3894
ATCAAAGG GGCTAGCTACAACGA AAGCTGGT
8691


2674
UGCCUUUG A UGUACCAG
3895
CTGGTACA GGCTAGCTACAACGA CAAAGGCA
8692


2672
CCUUUGAU G UACCAGGC
3896
GCCTGGTA GGCTAGCTACAACGA ATCAAAGG
8693


2670
UUUGAUGU A CCAGGCAG
3897
CTGCCTGG GGCTAGCTACAACGA ACATCAAA
8694


2665
UGUACCAG G CAGCACAG
3898
CTGTGCTG GGCTAGCTACAACGA CTGGTACA
8695


2662
ACCAGGCA G CACAGAAG
3899
CTTCTGTG GGCTAGCTACAACGA TGCCTGGT
8696


2660
CAGGCAGC A CAGAAGAA
3900
TTCTTCTG GGCTAGCTACAACGA GCTGCCTG
8697


2652
ACAGAAGA A CACGAGGA
3901
TCCTCGTG GGCTAGCTACAACGA TCTTCTGT
8698


2650
AGAAGAAC A CGAGGAAG
3902
CTTCCTCG GGCTAGCTACAACGA GTTCTTCT
8699


2635
AGGAGAGG A UGCCAUGC
3903
GCATGGCA GGCTAGCTACAACGA CCTCTCCT
8700


2633
GAGAGGAU G CCAUGCAC
3904
GTGCATGG GGCTAGCTACAACGA ATCCTCTC
8701


2630
AGGAUGCC A UGCACUCC
3905
GGAGTGCA GGCTAGCTACAACGA GGCATCCT
8702


2628
GAUGCCAU G CACUCCGG
3906
CCGGAGTG GGCTAGCTACAACGA ATGGCATC
8703


2626
UGCCAUGC A CUCCGGCC
3907
GGCCGGAG GGCTAGCTACAACGA GCATGGCA
8704


2620
GCAGUCCG G CCAAGGAU
3908
ATCCTTGG GGCTAGCTACAACGA CGGAGTGC
8705


2613
GGCCAAGG A UGCUGCAU
3909
ATGCAGCA GGCTAGCTACAACGA CCTTGGCC
8706


2611
CCAAGGAU G CUGCAUUG
3910
CAATGCAG GGCTAGCTACAACGA ATCCTTGG
8707


2608
AGGAUGCU G CAUUGAGG
3911
CCTCAATG GGCTAGCTACAACGA AGCATCCT
8708


2606
GAUGCUGC A UUGAGGAC
3912
GTCCTCAA GGCTAGCTACAACGA GCAGCATC
8709


2599
CAUUGAGG A CCACCAGG
3913
CCTGGTGG GGCTAGCTACAACGA CCTCAATG
8710


2596
UGAGGACC A CCAGGUUC
3914
GAACCTGG GGCTAGCTACAACGA GGTCCTCA
8711


2591
ACCACCAG G UUCUCUAG
3915
CTAGAGAA GGCTAGCTACAACGA CTGGTGGT
8712


2581
UCUCUAGG G CAGCCUCG
3916
CGAGGCTG GGCTAGCTACAACGA CCTAGAGA
8713


2578
CUAGGGCA G CCUCGGCC
3917
GGCCGAGG GGCTAGCTACAACGA TGCCCTAG
8714


2572
CAGCCUCG G CCUGGGCU
3918
AGCCCAGG GGCTAGCTACAACGA CGAGGCTG
8715


2566
CGGCCUGG G CUACCAAC
3919
GTTGGTAG GGCTAGCTACAACGA CCAGGCCG
8716


2563
CCUGGGCU A CCAACAGC
3920
GCTGTTGG GGCTAGCTACAACGA AGCCCAGG
8717


2559
GGCUACCA A CAGCAUCA
3921
TGATGCTG GGCTAGCTACAACGA TGGTAGCC
8718


2556
UACCAACA G CAUCAUCC
3922
GGATGATG GGCTAGCTACAACGA TGTTGGTA
8719


2554
CCAACAGC A UCAUCCAC
3923
GTGGATGA GGCTAGCTACAACGA GCTGTTGG
8720


2551
ACAGCAUC A UCCACAAA
3924
TTTGTGGA GGCTAGCTACAACGA GATGCTGT
8721


2547
CAUCAUCC A CAAACAGG
3925
CCTGTTTG GGCTAGCTACAACGA GGATGATG
8722


2543
AUCCACAA A CAGGCACA
3926
TGTGCCTG GGCTAGCTACAACGA TTGTGGAT
8723


2539
ACAAACAG G CACAGACG
3927
CGTCTGTG GGCTAGCTACAACGA CTGTTTGT
8724


2537
AAACAGGC A CAGACGCG
3928
CGCGTCTG GGCTAGCTACAACGA GCCTGTTT
8725


2533
AGGCACAG A CGCGCGCG
3929
CGCGCGCG GGCTAGCTACAACGA CTGTGCCT
8726


2531
GCACAGAC G CGCGCGUC
3930
GACGCGCG GGCTAGCTACAACGA GTCTGTGC
8727


2529
ACAGACGC G CGCGUCUG
3931
CAGACGCG GGCTAGCTACAACGA GCGTCTGT
8728


2527
AGACGCGC G CGUCUGCC
3932
GGCAGACG GGCTAGCTACAACGA GCGCGTCT
8729


2525
ACGCGCGC G UCUGCCAG
3933
CTGGCAGA GGCTAGCTACAACGA GCGCGCGT
8730


2521
GCGCGUCU G CCAGGAGA
3934
TCTCCTGG GGCTAGCTACAACGA AGACGCGC
8731


2505
AAGGAAAA G CAACAGGA
3935
TCCTGTTG GGCTAGCTACAACGA TTTTCCTT
8732


2502
GAAAAGCA A CAGGACAU
3936
ATGTCCTG GGCTAGCTACAACGA TGCTTTTC
8733


2497
GCAACAGG A CAUACUCC
3937
GGAGTATG GGCTAGCTACAACGA CCTGTTGC
8734


2495
AACAGGAC A UACUCCCA
3938
TGGGAGTA GGCTAGCTACAACGA GTCCTGTT
8735


2493
CAGGACAU A CUCCCAUU
3939
AATGGGAG GGCTAGCTACAACGA ATGTCCTG
8736


2487
AUACUCCC A UUUGAUUG
3940
CAATCAAA GGCTAGCTACAACGA GGGAGTAT
8737


2482
CCCAUUUG A UUGCGAAG
3941
CTTCGCAA GGCTAGCTACAACGA CAAATGGG
8738


2479
AUUUGAUU G CGAAGGAG
3942
CTCCTTCG GGCTAGCTACAACGA AATCAAAT
8739


2470
CGAAGGAG A CAACCGCU
3943
AGCGGTTG GGCTAGCTACAACGA CTCCTTCG
8740


2467
AGGAGACA A CCGCUGAC
3944
GTCAGCGG GGCTAGCTACAACGA TGTCTCCT
8741


2464
AGACAACC G CUGACCCU
3945
AGGGTCAG GGCTAGCTACAACGA GGTTGTCT
8742


2460
AACCGCUG A CCCUACAC
3946
GTGTAGGG GGCTAGCTACAACGA CAGCGGTT
8743


2455
CUGACCCU A CACCGUAC
3947
GTACGGTG GGCTAGCTACAACGA AGGGTCAG
8744


2453
GACCCUAC A CCGUACAG
3948
CTGTACGG GGCTAGCTACAACGA GTAGGGTC
8745


2450
CCUACACC G UACAGGUA
3949
TACCTGTA GGCTAGCTACAACGA GGTGTAAG
8746


2448
UACACCGU A CAGGUAUU
3950
AATACCTG GGCTAGCTACAACGA ACGGTGTA
8747


2444
CCGUACAG G UAUUGCAC
3951
GTGCAATA GGCTAGCTACAACGA CTGTACGG
8748


2442
GUACAGGU A UUGCACGU
3952
ACGTGCAA GGCTAGCTACAACGA ACCTGTAC
8749


2439
CAGGUAUU G CACGUCCA
3953
TGGACGTG GGCTAGCTACAACGA AATACCTG
8750


2437
GGUAUUGC A CGUCCACG
3954
CGTGGACG GGCTAGCTACAACGA GCAATACC
8751


2435
UAUUGCAC G UCCACGAU
3955
ATCGTGGA GGCTAGCTACAACGA GTGCAATA
8752


2431
GCACGUCC A CGAUGUUC
3956
GAACATCG GGCTAGCTACAACGA GGACGTGC
8753


2428
CGUCCACG A UGUUCUGG
3957
CCAGAACA GGCTAGCTACAACGA CGTGGACG
8754


2426
UCCACGAU G UUCUGGUG
3958
CACCAGAA GGCTAGCTACAACGA ATCGTGGA
8755


2420
AUGUUCUG G UGGAGAUG
3959
CATCTCCA GGCTAGCTACAACGA CAGAACAT
8756


2414
UGGUGGAG A UGGAUCAA
3960
TTGATCCA GGCTAGCTACAACGA CTCCACCA
8757


2410
GGAGAUGG A UCAAACCA
3961
TGGTTTGA GGCTAGCTACAACGA CCATCTCC
8758


2405
UGGAUCAA A CCAGUGGA
3962
TCCACTGG GGCTAGCTACAACGA TTGATCCA
8759


2401
UCAAACCA G UGGACAGA
3963
TCTGTCCA GGCTAGCTACAACGA TGGTTTGA
8760


2397
ACCAGUGG A CAGAGCCG
3964
CGGCTCTG GGCTAGCTACAACGA CCACTGGT
8761


2392
UGGACAGA G CCGGUAGG
3965
CCTACCGG GGCTAGCTACAACGA TCTGTCCA
8762


2388
CAGAGCCG G UAGGGUGG
3966
CCACCCTA GGCTAGCTACAACGA CGGCTCTG
8763


2383
CCGGUAGG G UGGUGAAG
3967
CTTCACCA GGCTAGCTACAACGA CCTACCGG
8764


2380
GUAGGGUG G UGAAGGAG
3968
CTCCTTCA GGCTAGCTACAACGA CACCCTAC
8765


2372
GUGAAGGA G CAGGGCAG
3969
CTGCCCTG GGCTAGCTACAACGA TCCTTCAC
8766


2367
GGAGCAGG G CAGUAUUU
3970
AAATACTG GGCTAGCTACAACGA CCTGCTCC
8767


2364
GCAGGGCA G UAUUUGCC
3971
GGCAAATA GGCTAGCTACAACGA TGCCCTGC
8768


2362
AGGGCAGU A UUUGCCAC
3972
GTGGCAAA GGCTAGCTACAACGA ACTGCCCT
8769


2358
CAGUAUUU G CCACUCUG
3973
CAGAGTGG GGCTAGCTACAACGA AAATACTG
8770


2355
UAUUUGCC A CUCUGUAG
3974
CTACAGAG GGCTAGCTACAACGA GGCAAATA
8771


2350
GCCACUCU G UAGUGGAC
3975
GTCCACTA GGCTAGCTACAACGA AGAGTGGC
8772


2347
ACUCUGUA G UGGACAAC
3976
GTTGTCCA GGCTAGCTACAACGA TACAGAGT
8773


2343
UGUAGUGG A CAACAGCA
3977
TGCTGTTG GGCTAGCTACAACGA CCACTACA
8774


2340
AGUGGACA A CAGCAGCG
3978
CGCTGCTG GGCTAGCTACAACGA TGTCCACT
8775


2337
GGACAACA G CAGCGGGC
3979
GCCCGCTG GGCTAGCTACAACGA TGTTGTCC
8776


2334
CAACAGCA G CGGGCUGA
3980
TCAGCCCG GGCTAGCTACAACGA TGCTGTTG
8777


2330
AGCAGCGG G CUGAGCUC
3981
GAGCTCAG GGCTAGCTACAACGA CCGCTGCT
8778


2325
CGGGCUGA G CUCUGAUC
3982
GGGACAGA GGCTAGCTACAACGA TCAGCCCG
8779


2319
GAGCUCUG A UCUGUCCC
3983
GGGACAGA GGCTAGCTACAACGA CAGAGCTC
8780


2315
UCUGAUCU G UCCCUGUC
3984
GACAGGGA GGCTAGCTACAACGA AGATCAGA
8781


2309
CUGUCCCU G UCCUCCAA
3985
TTGGAGGA GGCTAGCTACAACGA AGGGACAG
8782


2300
UCCUCCAA A UCACAACG
3986
CGTTGTGA GGCTAGCTACAACGA TTGGAGGA
8783


2297
UCCAAAUC A CAACGCUC
3987
GAGCGTTG GGCTAGCTACAACGA GATTTGGA
8784


2294
AAAUCACA A CGCUCUCC
3988
GGAGAGCG GGCTAGCTACAACGA TGTGATTT
8785


2292
AUCACAAC G CUCUCCUC
3989
GAGGAGAG GGCTAGCTACAACGA GTTGTGAT
8786


2281
CUCCUCGA G UCCAAUUG
3990
CAATTGGA GGCTAGCTACAACGA TCGAGGAG
8787


2276
CGAGUCCA A UUGCAUGC
3991
GCATGCAA GGCTAGCTACAACGA TGGACTCG
8788


2273
GUCCAAUU G CAUGCGGC
3992
GCCGCATG GGCTAGCTACAACGA AATTGGAC
8789


2271
CCAAUUGC A UGCGGCGG
3993
CCGCCGCA GGCTAGCTACAACGA GCAATTGG
8790


2269
AAUUGCAU G CGGCGGUG
3994
CACCGCCG GGCTAGCTACAACGA ATGCAATT
8791


2266
UGCAUGCG G CGGUGAGC
3995
GCTCACCG GGCTAGCTACAACGA CGCATGCA
8792


2263
AUGCGGCG G UGAGCCUG
3996
CAGGCTCA GGCTAGCTACAACGA CGCCGCAT
8793


2259
GGCGGUGA G CCUGUGCU
3997
AGCACAGG GGCTAGCTACAACGA TCACCGCC
8794


2255
GUGAGCCU G UGCUCCAC
3998
GTGGAGCA GGCTAGCTACAACGA AGGCTCAC
8795


2253
GAGCCUGU G CUCCACGC
3999
GCGTGGAG GGCTAGCTACAACGA ACAGGCTC
8796


2248
UGUGCUCC A CGCCCCCC
4000
GGGGGGCG GGCTAGCTACAACGA GGAGCACA
8797


2246
UGCUCCAC G CCCCCCAC
4001
GTGGGGGG GGCTAGCTACAACGA GTGGAGCA
8798


2239
CGCCCCCC A CAUACAUC
4002
GATGTATG GGCTAGCTACAACGA GGGGGGCG
8799


2237
CCCCCCAC A UACAUCCU
4003
AGGATGTA GGCTAGCTACAACGA GTGGGGGG
8800


2235
CCCCACAU A CAUCCUAA
4004
TTAGGATG GGCTAGCTACAACGA ATGTGGGG
8801


2233
CCACAUAC A UCCUAACC
4005
GGTTAGGA GGCTAGCTACAACGA GTATGTGG
8802


2227
ACAUCCUA A CCUUAAAG
4006
CTTTAAGG GGCTAGCTACAACGA TAGGATGT
8803


2218
CCUUAAAG A UGGAAAAA
4007
TTTTTCCA GGCTAGCTACAACGA CTTTAAGG
8804


2210
AUGGAAAA A UUGACAGU
4008
ACTGTCAA GGCTAGCTACAACGA TTTTCCAT
8805


2206
AAAAAUUG A CAGUGCAG
4009
CTGCACTG GGCTAGCTACAACGA CAATTTTT
8806


2203
AAUUGACA G UGCAGGGG
4010
CCCCTGCA GGCTAGCTACAACGA TGTCAATT
8807


2201
UUGACAGU G CAGGGGUA
4011
TACCCCTG GGCTAGCTACAACGA ACTGTCAA
8808


2195
GUGCAGGG G UAGUGCCA
4012
TGGCACTA GGCTAGCTACAACGA CCCTGCAC
8809


2292
CAGGGGUA G UGCCAAAG
4013
CTTTGGCA GGCTAGCTACAACGA TACCCCTG
8810


2190
GGGGUAGU G CCAAAGCC
4014
GGCTTTGG GGCTAGCTACAACGA ACTACCCC
8811


2184
GUGCCAAA G CCUGUAUG
4015
CATACAGG GGCTAGCTACAACGA TTTGGCAC
8812


2180
CAAAGCCU G UAUGGGUA
4016
TACCCATA GGCTAGCTACAACGA AGGCTTTG
8813


2178
AAGCCUGU A UGGGUAGU
4017
ACTACCCA GGCTAGCTACAACGA ACAGGCTT
8814


2174
CUGUAUGG G UAGUCAAC
4018
GTTGACTA GGCTAGCTACAACGA CCATACAG
8815


2171
UAUGGGUA G UCAACUAU
4019
ATAGTTGA GGCTAGCTACAACGA TACCCATA
8816


2167
GGUAGUCA A CUAUGCAU
4020
ATGCATAG GGCTAGCTACAACGA TGACTACC
8817


2164
AGUCAACU A UGCAUCUA
4021
TAGATGCA GGCTAGCTACAACGA AGTTGACT
8818


2162
UCAACUAU G CAUCUAGG
4022
CCTAGATG GGCTAGCTACAACGA ATAGTTGA
8819


2160
AACUAUGC A UCUAGGUG
4023
CACCTAGA GGCTAGCTACAACGA GCATAGTT
8820


2154
GCAUCUAG G UGUUAACC
4024
GGTTAACA GGCTAGCTACAACGA CTAGATGC
8821


2152
AUCUAGGU G UUAACCAA
4025
TTGGTTAA GGCTAGCTACAACGA ACCTAGAT
8822


2148
AGGUGUUA A CCAAGGCC
4026
GGCCTTGG GGCTAGCTACAACGA TAACACCT
8823


2142
UAACCAAG G CCCCGAAC
4027
GTTCGGGG GGCTAGCTACAACGA CTTGGTTA
8824


2135
GGCCCCGA A CCGCACUU
4028
AAGTGCGG GGCTAGCTACAACGA TCGGGGCC
8825


2132
CCCGAACC G CACUUUGC
4029
GCAAAGTG GGCTAGCTACAACGA GGTTCGGG
8826


2130
CGAACCGC A CUUUGCGU
4030
ACGCAAAG GGCTAGCTACAACGA GCGGTTCG
8827


2125
CGCACUUU G CGUAAGUG
4031
CACTTACG GGCTAGCTACAACGA AAAGTGCG
8828


2123
CACUUUGC G UAAGUGGC
4032
GCCACTTA GGCTAGCTACAACGA GCAAAGTG
8829


2119
UUGCGUAA G UGGCCUCG
4033
CGAGGCCA GGCTAGCTACAACGA TTACGCAA
8830


2116
CGUAAGUG G CCUCGGGG
4034
CCCCGAGG GGCTAGCTACAACGA CACTTACG
8831


2108
GCCUCGGG G UGCUUCCG
4035
CGGAAGCA GGCTAGCTACAACGA CCCGAGGC
8832


2106
CUCGGGGU G CUUCCGGA
4036
TCCGGAAG GGCTAGCTACAACGA ACCCCGAG
8833


2096
UUCCGGAA G CAGUCCGU
4037
ACGGACTG GGCTAGCTACAACGA TTCCGGAA
8834


2093
CGGAAGCA G UCCGUGGG
4038
CCCACGGA GGCTAGCTACAACGA TGCTTCCG
8835


2089
AGCAGUCC G UGGGGCAG
4039
CTGCCCCA GGCTAGCTACAACGA GGACTGCT
8836


2084
UCCGUGGG G CAGGUUAA
4040
TTAACCTG GGCTAGCTACAACGA CCCACGGA
8837


2080
UGGGGCAG G UUAAGGUG
4041
CACCTTAA GGCTAGCTACAACGA CTGCCCCA
8838


2074
AGGUUAAG G UGUCGUUA
4042
TAACGACA GGCTAGCTACAACGA CTTAACCT
8839


2072
GUUAAGGU G UCGUUACC
4043
GGTAACGA GGCTAGCTACAACGA ACCTTAAC
8840


2069
AAGGUGUC G UUACCGGC
4044
GCCGGTAA GGCTAGCTACAACGA GACACCTT
8841


2066
GUGUCGUU A CCGGCCCC
4045
GGGGCCGG GGCTAGCTACAACGA AACGACAC
8842


2062
CGUUACCG G CCCCCCCG
4046
CGGGGGGG GGCTAGCTACAACGA CGGTAACG
8843


2053
CCCCCCCG A UGUUGCAC
4047
GTGCAACA GGCTAGCTACAACGA CGGGGGGG
8844


2051
CCCCCGAU G UUGCACGG
4048
CCGTGCAA GGCTAGCTACAACGA ATCGGGGG
8845


2048
CCGAUGUU G CACGGGGG
4049
CCCCCGTG GGCTAGCTACAACGA AACATCGG
8846


2046
GAUGUUGC A CGGGGGGC
4050
GCCCCCCG GGCTAGCTACAACGA GCAACATC
8847


2039
CACGGGGG G CCCCCGCA
4051
TGCGGGGG GGCTAGCTACAACGA CCCCCGTG
8848


2033
GGGCCCCC G CACGUCUU
4052
AAGACGTG GGCTAGCTACAACGA GGGGGCCC
8849


2031
GCCCCCGC A CGUCUUGG
4053
CCAAGACG GGCTAGCTACAACGA GCGGGGGC
8850


2029
CCCCGCAC G UCUUGGUG
4054
CACCAAGA GGCTAGCTACAACGA GTGCGGGG
8851


2023
ACGUCUUG G UGAACCCA
4055
TGGGTTCA GGCTAGCTACAACGA CAAGACGT
8852


2019
CUUGGUGA A CCCAGUGC
4056
GCACTGGG GGCTAGCTACAACGA TCACCAAG
8853


2014
UGAACCCA G UGCCAUUC
4057
GAATGGCA GGCTAGCTACAACGA TGGGTTCA
8854


2012
AACCCAGU G CCAUUCAU
4058
ATGAATGG GGCTAGCTACAACGA ACTGGGTT
8855


2009
CCAGUGCC A UUCAUCCA
4059
TGGATGAA GGCTAGCTACAACGA GGCACTGG
8856


2005
UGCCAUUC A UCCAUGUG
4060
CACATGGA GGCTAGCTACAACGA GAATGGCA
8857


2001
AUUCAUCC A UGUGCAGC
4061
GCTGCACA GGCTAGCTACAACGA GGATGAAT
8858


1999
UCAUCCAU G UGCAGCCG
4062
CGGCTGCA GGCTAGCTACAACGA ATGGATGA
8859


1997
AUCCAUGU G CAGCCGAA
4063
TTCGGCTG GGCTAGCTACAACGA ACATGGAT
8860


1994
CAUGUGCA G CCGAACCA
4064
TGGTTCGG GGCTAGCTACAACGA TGCACATG
8861


1989
GCAGCCGA A CCAGUUGC
4065
GCAACTGG GGCTAGCTACAACGA TCGGCTGC
8862


1985
CCGAACCA G UUGCCUUG
4066
CAAGGCAA GGCTAGCTACAACGA TGGTTCGG
8863


1982
AACCAGUU G CCUUGCGG
4067
CCGCAAGG GGCTAGCTACAACGA AACTGGTT
8864


1977
GUUGCCUU G CGGCGGCC
4068
GGCCGCCG GGCTAGCTACAACGA AAGGCAAC
8865


1974
GCCUUGCG G CGGCCGCG
4069
CGCGGCCG GGCTAGCTACAACGA CGCAAGGC
8866


1971
UUGCGGCG G CCGCGUGU
4070
ACACGCGG GGCTAGCTACAACGA CGCCGCAA
8867


1968
CGGCGGCC G CGUGUUGU
4071
ACAACACG GGCTAGCTACAACGA GGCCGCCG
8868


1966
GCGGCCGC G UGUUGUUG
4072
CAACAACA GGCTAGCTACAACGA GCGGCCGC
8869


1964
GGCCGCGU G UUGUUGAG
4073
CTCAACAA GGCTAGCTACAACGA ACGCGGCC
8870


1961
CGCGUGUU G UUGAGGAG
4074
CTCCTCAA GGCTAGCTACAACGA AACACGCG
8871


1953
GUUGAGGA G CAGCACGU
4075
ACGTGCTG GGCTAGCTACAACGA TCCTCAAC
8872


1950
GAGGAGCA G CACGUCCG
4076
CGGACGTG GGCTAGCTACAACGA TGCTCCTC
8873


1948
GGAGCAGC A CGUCCGUC
4077
GACGGACG GGCTAGCTACAACGA GCTGCTCC
8874


1946
AGCAGCAC G UCCGUCUC
4078
GAGACGGA GGCTAGCTACAACGA GTGCTGCT
8875


1942
GCACGUCC G UCUCGUUC
4079
GAACGAGA GGCTAGCTACAACGA GGACGTGC
8876


1937
UCCGUCUC G UUCGCCCC
4080
GGGGCGAA GGCTAGCTACAACGA GAGACGGA
8877


1933
UCUCGUUC G CCCCCCAG
4081
CTGGGGGG GGCTAGCTACAACGA GAACGAGA
8878


1925
GCCCCCCA G UUAUACGU
4082
ACGTATAA GGCTAGCTACAACGA TGGGGGGC
8879


1922
CCCCAGUU A UACGUGGG
4083
CCCACGTA GGCTAGCTACAACGA AACTGGGG
8880


1920
CCAGUUAU A CGUGGGGG
4084
CCCCCACG GGCTAGCTACAACGA ATAACTGG
8881


1918
AGUUAUAC G UGGGGGCG
4085
CGCCCCCA GGCTAGCTACAACGA GTATAACT
8882


1912
ACGUGGGG G CGCCGAAA
4086
TTTCGGCG GGCTAGCTACAACGA CCCCACGT
8883


1910
GUGGGGGC G CCGAAACG
4087
CGTTTCGG GGCTAGCTACAACGA GCCCCCAC
8884


1904
GCGCCGAA A CGGUCGGU
4088
ACCGACCG GGCTAGCTACAACGA TTCGGCGC
8885


1901
CCGAAACG G UCGGUCGU
4089
ACGACCGA GGCTAGCTACAACGA CGTTTCGG
8886


1897
AACGGUCG G UCGUCCCC
4090
GGGGACGA GGCTAGCTACAACGA CGACCGTT
8887


1894
GGUCGGUC G UCCCCACC
4091
GGTGGGGA GGCTAGCTACAACGA CACCGACC
8888


1888
UCGUCCCC A CCACAACA
4092
TGTTGTGG GGCTAGCTACAACGA GGGGACGA
8889


1885
UCCCCACC A CAACAGGG
4093
CCCTGTTG GGCTAGCTACAACGA GGTGGGGA
8890


1882
CCACCACA A CAGGGCUU
4094
AAGCCCTG GGCTAGCTACAACGA TGTGGTGG
8891


1877
ACAACAGG G CUUGGGGU
4095
ACCCCAAG GGCTAGCTACAACGA CCTGTTGT
8892


1870
GGCUUGGG G UGAAGCAA
4096
TTGCTTCA GGCTAGCTACAACGA CCCAAGCC
8893


1865
GGGGUGAA G CAAUACAC
4097
GTGTATTG GGCTAGCTACAACGA TTCACCCC
8894


1862
GUGAAGCA A UACACUGG
4098
CCAGTGTA GGCTAGCTACAACGA TGCTTCAC
8895


1860
GAAGCAAU A CACUGGAC
4099
GTCCAGTG GGCTAGCTACAACGA ATTGCTTC
8896


1858
AGCAAUAC A CUGGACCA
4100
TGGTCCAG GGCTAGCTACAACGA GTATTGCT
8897


1853
UACACUGG A CCACAUAC
4101
GTATGTGG GGCTAGCTACAACGA CCAGTGTA
8898


1850
ACUGGACC A CAUACCUG
4102
CAGGTATG GGCTAGCTACAACGA GGTCCAGT
8899


1848
UGGACCAC A UACCUGCG
4103
CGCAGGTA GGCTAGCTACAACGA GTGGTCCA
8900


1846
GACCACAU A CCUGCGAU
4104
ATCGCAGG GGCTAGCTACAACGA ATGTGGTC
8901


1842
ACAUACCU G CGAUGCGG
4105
CCGCATCG GGCTAGCTACAACGA AGGTATGT
8902


1839
UACCUGCG A UGCGGGUA
4106
TACCCGCA GGCTAGCTACAACGA CGCAGGTA
8903


1837
CCUGCGAU G CGGGUACG
4107
CGTACCCG GGCTAGCTACAACGA ATCGCAGG
8904


1833
CGAUGCGG G UACGAUAC
4108
GTATCGTA GGCTAGCTACAACGA CCGCATCG
8905


1831
AUGCGGGU A CGAUACCA
4109
TGGTATCG GGCTAGCTACAACGA ACCCGCAT
8906


1828
CGGGUACG A UACCACAC
4110
GTGTGGTA GGCTAGCTACAACGA CGTACCCG
8907


1826
GGUACGAU A CCACACGG
4111
CCGTGTGG GGCTAGCTACAACGA ATCGTACC
8908


1823
ACGAUACC A CACGGCCG
4112
CGGCCGTG GGCTAGCTACAACGA GGTATCGT
8909


1821
GAUACCAC A CGGCCGCG
4113
CGCGGCCG GGCTAGCTACAACGA GTGGTATC
8910


1818
ACCACACG G CCGCGGUG
4114
CACCGCGG GGCTAGCTACAACGA CGTGTGGT
8911


1815
ACACGGCC G CGGUGCGU
4115
ACGCACCG GGCTAGCTACAACGA GGCCGTGT
8912


1812
CGGCCGCG G UGCGUAGU
4116
ACTACGCA GGCTAGCTACAACGA CGCGGCCG
8913


1810
GCCGCGGU G CGUAGUGC
4117
GCACTACG GGCTAGCTACAACGA ACCGCGGC
8914


1808
CGCGGUGC G UAGUGCCA
4118
TGGCACTA GGCTAGCTACAACGA GCACCGCG
8915


1805
GGUGCGUA G UGCCAGCA
4119
TGCTGGCA GGCTAGCTACAACGA TACGCACC
8916


1803
UGCGUAGU G CCAGCAAU
4120
ATTGCTGG GGCTAGCTACAACGA ACTACGCA
8917


1799
UAGUGCCA G CAAUAGGG
4121
CCCTATTG GGCTAGCTACAACGA TGGCACTA
8918


1796
UGCCAGCA A UAGGGCCU
4122
AGGCCCTA GGCTAGCTACAACGA TGCTGGCA
8919


1791
GCAAUAGG G CCUCUGGU
4123
ACCAGAGG GGCTAGCTACAACGA CCTATTGC
8920


1784
GGCCUCUG G UCCGAGUU
4124
AACTCGGA GGCTAGCTACAACGA CAGAGGCC
8921


1778
UGGUCCGA G UUGUGGCC
4125
GGCCACAA GGCTAGCTACAACGA TCGGACCA
8922


1775
UCCGAGUU G UGGCCCUC
4126
GAGGGCCA GGCTAGCTACAACGA AACTCGGA
8923


1772
GAGUUGUG G CCCUCGGU
4127
ACCGAGGG GGCTAGCTACAACGA CACAACTC
8924


1765
GGCCCUCG G UGUAGGUG
4128
CACCTACA GGCTAGCTACAACGA CGAGGGCC
8925


1763
CCCUCGGU G UAGGUGAU
4129
ATCACCTA GGCTAGCTACAACGA ACCGAGGG
8926


1759
CGGUGUAG G UGAUAGGA
4130
TCCTATCA GGCTAGCTACAACGA CTACACCG
8927


1756
UGUAGGUG A UAGGACCC
4131
GGGTCCTA GGCTAGCTACAACGA CACCTACA
8928


1751
GUGAUAGG A CCCCACCC
4132
GGGTGGGG GGCTAGCTACAACGA CCTATCAC
8929


1746
AGGACCCC A CCCCUGAG
4133
CTCAGGGG GGCTAGCTACAACGA GGGGTCCT
8930


1738
ACCCCUGA G CGAACUUG
4134
CAAGTTCG GGCTAGCTACAACGA TCAGGGGT
8931


1734
CUGAGCGA A CUUGUCAA
4135
TTGACAAG GGCTAGCTACAACGA TCGCTCAG
8932


1730
GCGAACUU G UCAAUGGA
4136
TCCATTGA GGCTAGCTACAACGA AAGTTCGC
8933


1726
ACUUGUCA A UGGAGCGG
4137
CCGCTCCA GGCTAGCTACAACGA TGACAAGT
8934


1721
UCAAUGGA G CGGCAGCU
4138
AGCTGCCG GGCTAGCTACAACGA TCCATTGA
8935


1718
AUGGAGCG G CAGCUGGC
4139
GCCAGCTG GGCTAGCTACAACGA CGCTCCAT
8936


1715
GAGCGGCA G CUGGCCAA
4140
TTGGCCAG GGCTAGCTACAACGA TGCCGCTC
8937


1711
GGCAGCUG G CCAAGCGC
4141
GCGCTTGG GGCTAGCTACAACGA CAGCTGCC
8938


1706
CUGGCCAA G CGCUGUGG
4142
CCACAGCG GGCTAGCTACAACGA TTGGCCAG
8939


1704
GGCCAAGC G CUGUGGGC
4143
GCCCACAG GGCTAGCTACAACGA GCTTGGCC
8940


1701
CAAGCGCU G UGGGCAUC
4144
GATGCCCA GGCTAGCTACAACGA AGCGCTTG
8941


1697
CGCUGUGG G CAUCCGGA
4145
TCCGGATG GGCTAGCTACAACGA CCACAGCG
8942


1695
CUGUGGGC A UCCGGACG
4146
CGTCCGGA GGCTAGCTACAACGA GCCCACAG
8943


1689
GCAUCCGG A CGAGUUGA
4147
TCAACTCG GGCTAGCTACAACGA CCGGATGC
8944


1685
CCGGACGA G UUGAACCU
4148
AGGTTCAA GGCTAGCTACAACGA TCGTCCGG
8945


1680
CGAGUUGA A CCUGUGUG
4149
CACACAGG GGCTAGCTACAACGA TCAACTCG
8946


1676
UUGAACCU G UGUGCAUA
4150
TATGCACA GGCTAGCTACAACGA AGGTTCAA
8947


1674
GAACCUGU G UGCAUAGA
4151
TCTATGCA GGCTAGCTACAACGA ACAGGTTC
8948


1672
ACCUGUGU G CAUAGAAC
4152
GTTCTATG GGCTAGCTACAACGA ACACAGGT
8949


1670
CUGUGUGC A UAGAACAG
4153
CTGTTCTA GGCTAGCTACAACGA GCACACAG
8950


1665
UGCAUAGA A CAGUGCAG
4154
CTGCACTG GGCTAGCTACAACGA TCTATGCA
8951


1662
AUAGAACA G UGCAGCAA
4155
TTGCTGCA GGCTAGCTACAACGA TGTTCTAT
8952


1660
AGAACAGU G CAGCAAUG
4156
CATTGCTG GGCTAGCTACAACGA ACTGTTCT
8953


1657
ACAGUGCA G CAAUGAAC
4157
GTTCATTG GGCTAGCTACAACGA TGCACTGT
8954


1654
GUGCAGCA A UGAACCCG
4158
CGGGTTCA GGCTAGCTACAACGA TGCTGCAC
8955


1650
AGCAAUGA A CCCGGUUU
4159
AAACCGGG GGCTAGCTACAACGA TCATTGCT
8956


1645
UGAACCCG G UUUGGAGG
4160
CCTCCAAA GGCTAGCTACAACGA CGGGTTCA
8957


1634
UGGAGGGA G UCAUUGCA
4161
TGCAATGA GGCTAGCTACAACGA TCCCTCCA
8958


1631
AGGGAGUC A UUGCAGUU
4162
AACTGCAA GGCTAGCTACAACGA GACTCCCT
8959


1628
GAGUCAUU G CAGUUCAG
4163
CTGAACTG GGCTAGCTACAACGA AATGACTC
8960


1625
UCAUUGCA G UUCAGGGC
4164
GCCCTGAA GGCTAGCTACAACGA TGCAATGA
8961


1618
AGUUCAGG G CAGUCCUG
4165
CAGGACTG GGCTAGCTACAACGA CCTGAACT
8962


1615
UCAGGGCA G UCCUGUUA
4166
TAACAGGA GGCTAGCTACAACGA TGCCCTGA
8963


1610
GCAGUCCU G UUAAUGUG
4167
CACATTAA GGCTAGCTACAACGA AGGACTGC
8964


1606
UCCUGUUA A UGUGCCAG
4168
CTGGCACA GGCTAGCTACAACGA TAACAGGA
8965


1604
CUGUUAAU G UGCCAGCU
4169
AGCTGGCA GGCTAGCTACAACGA ATTAACAG
8966


1602
GUUAAUGU G CCAGCUGC
4170
GCAGCTGG GGCTAGCTACAACGA ACATTAAC
8967


1598
AUGUGCCA G CUGCCGUU
4171
AACGGCAG GGCTAGCTACAACGA TGGCACAT
8968


1595
UGCCAGCU G CCGUUGGC
4172
ACCAACGG GGCTAGCTACAACGA AGCTGGCA
8969


1592
CAGCUGCC G UUGGUGUU
4173
AACACCAA GGCTAGCTACAACGA GGCAGCTG
8970


1588
UGCCGUUG G UGUUAAUA
4174
TATTAACA GGCTAGCTACAACGA CAACGGCA
8971


1586
CCGUUGGU G UUAAUAAG
4175
CTTATTAA GGCTAGCTACAACGA ACCAACGG
8972


1582
UGGUGUUA A UAAGCUGG
4176
CCAGCTTA GGCTAGCTACAACGA TAACACCA
8973


1578
GUUAAUAA G CUGGAUAU
4177
ATATCCAG GGCTAGCTACAACGA TTATTAAC
8974


1573
UAAGCUGG A UAUUCUGA
4178
TCAGAATA GGCTAGCTACAACGA CCAGCTTA
8975


1571
AGCUGGAU A UUCUGAGA
4179
TCTCAGAA GGCTAGCTACAACGA ATCCAGCT
8976


1563
AUUCUGAG A UGCUCCAG
4180
CTGGAGCA GGCTAGCTACAACGA CTCAGAAT
8977


1561
UCUGAGAU G CUCCAGAU
4181
ATCTGGAG GGCTAGCTACAACGA ATCTCAGA
8978


1554
UGCUCCAG A UGUAAAGA
4182
TCTTTACA GGCTAGCTACAACGA CTGGAGCA
8979


1552
CUCCAGAU G UAAAGAGG
4183
CCTCTTTA GGCTAGCTACAACGA ATCTGGAG
8980


1542
AAAGAGGG A UGCCACCC
4184
GGGTGGCA GGCTAGCTACAACGA CCCTCTTT
8981


1540
AGAGGGAU G CCACCCUA
4185
TAGGGTGG GGCTAGCTACAACGA ATCCCTCT
8982


1537
GGGAUGCC A CCCUACUA
4186
TAGTAGGG GGCTAGCTACAACGA GGCATCCC
8983


1532
GCCACCCU A CUAGUGGU
4187
ACCACTAG GGCTAGCTACAACGA AGGGTGGC
8984


1528
CCCUACUA G UGGUGUGG
4188
CCACACCA GGCTAGCTACAACGA TAGTAGGG
8985


1525
UACUAGUG G UGUGGCCC
4189
GGGCCACA GGCTAGCTACAACGA CACTAGTA
8986


1523
CUAGUGGU G UGGCCCUG
4190
CAGGGCCA GGCTAGCTACAACGA ACCACTAG
8987


1520
GUGGUGUG G CCCUGCGC
4191
GCGCAGGG GGCTAGCTACAACGA CACACCAC
8988


1515
GUGGCCCU G CGCCCCCC
4192
GGGGGGCG GGCTAGCTACAACGA AGGGCCAC
8989


1513
GGCCCUGC G CCCCCCCU
4193
AGGGGGGG GGCTAGCTACAACGA GCAGGGCC
8990


1504
CCCCCCCU G UCGUGUAG
4194
CTACACGA GGCTAGCTACAACGA AGGGGGGG
8991


1501
CCCCUGUC G UGUAGGUG
4195
CACCTACA GGCTAGCTACAACGA GACAGGGG
8992


1499
CCUGUCGU G UAGGUGUC
4196
GACACCTA GGCTAGCTACAACGA ACGACAGG
8993


1495
UCGUGUAG G UGUCCCCG
4197
CGGGGACA GGCTAGCTACAACGA CTACACGA
8994


1493
GUGUAGGU G UCCCCGUC
4198
GACGGGGA GGCTAGCTACAACGA ACCTACAC
8995


1487
GUGUCCCC G UCAACGCC
4199
GGCGTTGA GGCTAGCTACAACGA GGGGACAC
8996


1483
CCCCGUCA A CGCCGGCA
4200
TGCCGGCG GGCTAGCTACAACGA TGACGGGG
8997


1481
CCGUCAAC G CCGGCAAA
4201
TTTGCCGG GGCTAGCTACAACGA GTTGACGG
8998


1477
CAACGCCG G CAAAGAGU
4202
ACTCTTTG GGCTAGCTACAACGA CGGCGTTG
8999


1470
GGCAAAGA G UAGCAUCA
4203
TGATGCTA GGCTAGCTACAACGA TCTTTGCC
9000


1467
AAAGAGUA G CAUCACAA
4204
TTGTGATG GGCTAGCTACAACGA TACTCTTT
9001


1465
AGAGUAGC A UCACAAUC
4205
GATTGTGA GGCTAGCTACAACGA GCTACTCT
9002


1462
GUAGCAUC A CAAUCAAC
4206
GTTGATTG GGCTAGCTACAACGA GATGCTAC
9003


1459
GCAUCACA A UCAACACC
4207
GGTGTTGA GGCTAGCTACAACGA TGTGATGC
9004


1455
CACAAUCA A CACCUUAG
4208
CTAAGGTG GGCTAGCTACAACGA TGATTGTG
9005


1453
CAAUCAAC A CCUUAGCC
4209
GGCTAAGG GGCTAGCTACAACGA GTTGATTG
9006


1447
ACACCUUA G CCCAGUUC
4210
GAACTGGG GGCTAGCTACAACGA TAAGGTGT
9007


1442
UUAGCCCA G UUCCCCAC
4211
TTCCATGG GGCTAGCTACAACGA GGGGAACT
9008


1435
AGUUCCCC A CCAUGGAA
4212
TTCCATGG GGCTAGCTACAACGA GGGGAACT
9009


1432
UCCCCACC A UGGAAUAA
4213
TTATTCCA GGCTAGCTACAACGA GGTGGGGA
9010


1427
ACCAUGGA A UAAUAGGC
4214
GCCTATTA GGCTAGCTACAACGA TCCATGGT
9011


1424
AUGGAAUA A UAGGCAAG
4215
CTTGCCTA GGCTAGCTACAACGA TATTCCAT
9012


1420
AAUAAUAG G CAAGGCCC
4216
GGGCCTTG GGCTAGCTACAACGA CTATTATT
9013


1415
UAGGCAAG G CCCGCCAG
4217
CTGGCGGG GGCTAGCTACAACGA CTTGCCTA
9014


1411
CAAGGCCC G CCAGGACU
4218
AGTCCTGG GGCTAGCTACAACGA GGGCCTTG
9015


1405
CCGCCAGG A CUCCCCAG
4219
CTGGGGAG GGCTAGCTACAACGA CCTGGCGG
9016


1397
ACUCCCCA G UGGGCCCC
4220
GGGGCCCA GGCTAGCTACAACGA TGGGGAGT
9017


1393
CCCAGUGG G CCCCCGCC
4221
GGCGGGGG GGCTAGCTACAACGA CCACTGGG
9018


1387
GGGCCCCC G CCACCAUG
4222
CATGGTGG GGCTAGCTACAACGA GGGGGCCC
9019


1384
CCCCCGCC A CCAUGUCC
4223
GGACATGG GGCTAGCTACAACGA GGCGGGGG
9020


1381
CCGCCACC A UGUCCACG
4224
CGTGGACA GGCTAGCTACAACGA GGTGGCGG
9021


1379
GCCACCAU G UCCACGAC
4225
GTCGTGGA GGCTAGCTACAACGA ATGGTGGC
9022


1375
CCAUGUCC A CGACGGCU
4226
AGCCGTCG GGCTAGCTACAACGA GGACATGG
9023


1372
UGUCCACG A CGGCUUGU
4227
ACAAGCCG GGCTAGCTACAACGA CGTGGACA
9024


1369
CCACGACG G CUUGUGGG
4228
CCCACAAG GGCTAGCTACAACGA CGTCGTGG
9025


1365
GACGGCUU G UGGGAUCC
4229
GGATCCCA GGCTAGCTACAACGA AAGCCGTC
9026


1360
CUUGUGGG A UCCGGAGC
4230
GCTCCGGA GGCTAGCTACAACGA CCCACAAG
9027


1353
GAUCCGGA G CAACUGCG
4231
CGCAGTTG GGCTAGCTACAACGA TCCGGATC
9028


1350
CCGGAGCA A CUGCGAUA
4232
TATCGCAG GGCTAGCTACAACGA TGCTCCGG
9029


1347
GAGCAACU G CGAUACCA
4233
TGGTATCG GGCTAGCTACAACGA AGTTGCTC
9030


1344
CAACUGCG A UACCACUA
4234
TAGTGGTA GGCTAGCTACAACGA CGCAGTTG
9031


1342
ACUGCGAU A CCACUAGG
4235
CCTAGTGG GGCTAGCTACAACGA ATCGCAGT
9032


1339
GCGAUACC A CUAGGGCU
4236
AGCCCTAG GGCTAGCTACAACGA GGTATCGC
9033


1333
CCACUAGG G CUGUUGUA
4237
TACAACAG GGCTAGCTACAACGA CCTAGTGG
9034


1330
CUAGGGCU G UUGUAGGU
4238
ACCTACAA GGCTAGCTACAACGA AGCCCTAG
9035


1327
GGGCUGUU G UAGGUGAC
4239
GTCACCTA GGCTAGCTACAACGA AACAGCCC
9036


1323
UGUUGUAG G UGACCAAU
4240
ATTGGTCA GGCTAGCTACAACGA CTACAACA
9037


1320
UGUAGGUG A CCAAUUCA
4241
TGAATTGG GGCTAGCTACAACGA CACCTACA
9038


1316
GGUGACCA A UUCAUCAU
4242
ATGATGAA GGCTAGCTACAACGA TGGTCACC
9039


1312
ACCAAUUC A UCAUCAUA
4243
TATGATGA GGCTAGCTACAACGA GAATTGGT
9040


1309
AAUUCAUC A UCAUAUCC
4244
GGATATGA GGCTAGCTACAACGA GATGAATT
9041


1306
UCAUCAUC A UAUCCCAA
4245
TTGGGATA GGCTAGCTACAACGA GATGATGA
9042


1304
AUCAUCAU A UCCCAAGC
4246
GCTTGGGA GGCTAGCTACAACGA ATGATGAT
9043


1297
UAUCCCAA G CCAUGCGA
4247
TCGCATGG GGCTAGCTACAACGA TTGGGATA
9044


1294
CCCAAGCC A UGCGAUGG
4248
CCATCGCA GGCTAGCTACAACGA GGCTTGGG
9045


1292
CAAGCCAU G CGAUGGCC
4249
GGCCATCG GGCTAGCTACAACGA ATGGCTTG
9046


1289
GCCAUGCG A UGGCCUGA
4250
TCAGGCCA GGCTAGCTACAACGA CGCATGGC
9047


1286
AUGCGAUG G CCUGAUAC
4251
GTATCAGG GGCTAGCTACAACGA CATCGCAT
9048


1281
AUGGCCUG A UACGUGGC
4252
GCCACGTA GGCTAGCTACAACGA CAGGCCAT
9049


1279
GGCCUGAU A CGUGGCCG
4253
CGGCCACG GGCTAGCTACAACGA ATCAGGCC
9050


1277
CCUGAUAC G UGGCCGGG
4254
CCCGGCCA GGCTAGCTACAACGA GTATCAGG
9051


1274
GAUACGUG G CCGGGAUA
4255
TATCCCGG GGCTAGCTACAACGA CACGTATC
9052


1268
UGGCCGGG A UAGAUCGA
4256
TCGATCTA GGCTAGCTACAACGA CCCGGCCA
9053


1264
CGGGAUAG A UCGAGCAA
4257
TTGCTCGA GGCTAGCTACAACGA CTATCCCG
9054


1259
UAGAUCGA G CAAUUACA
4258
TGTAATTG GGCTAGCTACAACGA TCGATCTA
9055


1256
AUCGAGCA A UUACAGUC
4259
GACTGTAA GGCTAGCTACAACGA TGCTCGAT
9056


1253
GAGCAAUU A CAGUCCUG
4260
CAGGACTG GGCTAGCTACAACGA AATTGCTC
9057


1250
CAAUUACA G UCCUGUAC
4261
GTACAGGA GGCTAGCTACAACGA TGTAATTG
9058


1245
ACAGUCCU G UACUGUCU
4262
AGACAGTA GGCTAGCTACAACGA AGGACTGT
9059


1243
AGUCCUGU A CUGUCUCA
4263
TGAGACAG GGCTAGCTACAACGA ACAGGACT
9060


1240
CCUGUACU G UCUCAUAC
4264
GTATGAGA GGCTAGCTACAACGA AGTACAGG
9061


1235
ACUGUCUC A UACCGGCG
4265
CGCCGGTA GGCTAGCTACAACGA GAGACAGT
9062


1233
UGUCUCAU A CCGGCGAG
4266
CTCGCCGG GGCTAGCTACAACGA ATGAGACA
9063


1229
UCAUACCG G CGAGGCGA
4267
TCGCCTCG GGCTAGCTACAACGA CGGTATGA
9064


1224
CCGGCGAG G CGAGAAGG
4268
CCTTCTCG GGCTAGCTACAACGA CTCGCCGG
9065


1216
GCGAGAAG G UGAACAGC
4269
GCTGTTCA GGCTAGCTACAACGA CTTCTCGC
9066


1212
GAAGGUGA A CAGCUGAG
4270
CTCAGCTG GGCTAGCTACAACGA TCACCTTC
9067


1209
GGUGAACA G CUGAGAGA
4271
TCTCTCAG GGCTAGCTACAACGA TGTTCACC
9068


1201
GCUGAGAG A CGAGGAAG
4272
CTTCCTCG GGCTAGCTACAACGA CTCTCAGC
9069


1192
CGAGGAAG A CAGAUCCG
4273
CGGATCTG GGCTAGCTACAACGA CTTCCTCG
9070


1188
GAAGACAG A UCCGCAGA
4274
TCTGCGGA GGCTAGCTACAACGA CTGTCTTC
9071


1184
ACAGAUCC G CAGAGAUC
4275
GATCTCTG GGCTAGCTACAACGA GGATCTGT
9072


1178
CCGCAGAG A UCCCCCAC
4276
GTGGGGGA GGCTAGCTACAACGA CTCTGCCG
9073


1171
GAUCCCCC A CGUACAUA
4277
TATGTACG GGCTAGCTACAACGA GGGGGATC
9074


1169
UCCCCCAC G UACAUAGC
4278
GCTATGTA GGCTAGCTACAACGA GTGGGGGA
9075


1167
CCCCACGU A CAUAGCAG
4279
CTGCTATG GGCTAGCTACAACGA ACGTGGGG
9076


1165
CCACGUAC A UAGCAGAG
4280
CTCTGCTA GGCTAGCTACAACGA GTACGTGG
9077


1162
CGUACAUA G CAGAGCAG
4281
CTGCTCTG GGCTAGCTACAACGA TATGTACG
9078


1157
AUAGCAGA G CAGAAAGC
4282
GCTTTCTG GGCTAGCTACAACGA TCTGCTAT
9079


1150
AGCAGAAA G CAGCCGCC
4283
GGCGGCTG GGCTAGCTACAACGA TTTCTGCT
9080


1147
AGAAAGCA G CCGCCCCA
4284
TGGGGCGG GGCTAGCTACAACGA TGCTTTCT
9081


1144
AAGCAGCC G CCCCAACG
4285
CGTTGGGG GGCTAGCTACAACGA GGCTGCTT
9082


1138
CCGCCCCA A CGAGCAAA
4286
TTTGCTCG GGCTAGCTACAACGA TGGGGCGG
9083


1134
CCCAACGA G CAAAUCGA
4287
TCGATTTG GGCTAGCTACAACGA TCGTTGGG
9084


1130
ACGAGCAA A UCGACGUG
4288
CACGTCGA GGCTAGCTACAACGA TTGCTCGT
9085


1126
GCAAAUCG A CGUGACGC
4289
GCGTCACG GGCTAGCTACAACGA CGATTTGC
9086


1124
AAAUCGAC G UGACGCCG
4290
CGGCGTCA GGCTAGCTACAACGA GTCGATTT
9087


1121
UCGACGUG A CGCCGUAU
4291
ATACGGCG GGCTAGCTACAACGA CACGTCGA
9088


1119
GACGUGAC G CCGUAUCG
4292
CGATACGG GGCTAGCTACAACGA GTCACGTC
9089


1116
GUGACGCC G UAUCGUCG
4293
CGACGATA GGCTAGCTACAACGA GGCGTCAC
9090


1114
GACGCCGU A UCGUCGUA
4294
TACGACGA GGCTAGCTACAACGA ACGGCGTC
9091


1111
GCCGUAUC G UCGUAGUG
4295
CACTACGA GGCTAGCTACAACGA GATACGGC
9092


1108
GUAUCGUC G UAGUGGGG
4296
CCCCACTA GGCTAGCTACAACGA GACGATAC
9093


1105
UCGUCGUA G UGGGGAUG
4297
CATCCCCA GGCTAGCTACAACGA TACGACGA
9094


1099
UAGUGGGG A UGCUGGCA
4298
TGCCAGCA GGCTAGCTACAACGA CCCCACTA
9095


1097
GUGGGGAU G CUGGCAUU
4299
AATGCCAG GGCTAGCTACAACGA ATCCCCAC
9096


1093
GGAUGCUG G CAUUCCUG
4300
CAGGAATG GGCTAGCTACAACGA CAGCATCC
9097


1091
AUGCUGGC A UUCCUGGC
4301
GCCAGGAA GGCTAGCTACAACGA GCCAGCAT
9098


1084
CAUUCCUG G CCGCGAGC
4302
GCTCGCGG GGCTAGCTACAACGA CAGGAATG
9099


1081
UCCUGGCC G CGAGCGUG
4303
CACGCTCG GGCTAGCTACAACGA GGCCAGGA
9100


1077
GGCCGCGA G CGUGGGAG
4304
CTCCCACG GGCTAGCTACAACGA TCGCGGCC
9101


1075
CCGCGAGC G UGGGAGUG
4305
CACTCCCA GGCTAGCTACAACGA GCTCGCGG
9102


1069
GCGUGGGA G UGAGCGCU
4306
AGCGCTCA GGCTAGCTACAACGA TCCCACGC
9103


1065
GGGAGUGA G CGCUACCC
4307
GGGTAGCG GGCTAGCTACAACGA TCACTCCC
9104


1063
GAGUGAGC G CUACCCAG
4308
CTGGGTAG GGCTAGCTACAACGA GCTCACTC
9105


1060
UGAGCGCU A CCCAGCAG
4309
CTGCTGGG GGCTAGCTACAACGA AGCGCTCA
9106


1055
GCUACCCA G CAGCGGGA
4310
TCCCGCTG GGCTAGCTACAACGA TGGGTAGC
9107


1052
ACCCAGCA G CGGGAGGA
4311
TCCTCCCG GGCTAGCTACAACGA TGCTGGGT
9108


1043
CGGGAGGA G UUGUUCUC
4312
GAGAACAA GGCTAGCTACAACGA TCCTCCCG
9109


1040
GAGGAGUU G UUCUCCCG
4313
CGGGAGAA GGCTAGCTACAACGA AACTCCTC
9110


1030
UCUCCCGA A CGCAGGGC
4314
GCCCTGCG GGCTAGCTACAACGA TCGGGAGA
9111


1028
UCCCGAAC G CAGGGCAC
4315
GTGCCCTG GGCTAGCTACAACGA GTTCGGGA
9112


1023
AACGCAGG G CACGCACC
4316
GGTGCGTG GGCTAGCTACAACGA CCTGCGTT
9113


1021
CGCAGGGC A CGCACCCC
4317
GGGGTGCG GGCTAGCTACAACGA GCCCTGCG
9114


1019
CAGGGCAC G CACCCCGG
4318
CCGGGGTG GGCTAGCTACAACGA GTGCCCTG
9115


1017
GGGCACGC A CCCCGGGG
4319
CCCCGGGG GGCTAGCTACAACGA GCGTGCCC
9116


1009
ACCCCGGG G UGUGCAUG
4320
CATCGACA GGCTAGCTACAACGA CCCGGGGT
9117


1007
CCCGGGGU G UGCAUGAU
4321
ATCATGCA GGCTAGCTACAACGA ACCCCGGG
9118


1005
CGGGGUGU G CAUGAUCA
4322
TGATCATG GGCTAGCTACAACGA ACACCCCG
9119


1003
GGGUGUGC A UGAUCAUG
4323
CATGATCA GGCTAGCTACAACGA GCACACCC
9120


1000
UGUGCAUG A UCAUGUCC
4324
GGACATGA GGCTAGCTACAACGA CATGCACA
9121


997
GCAUGAUC A UGUCCUCU
4325
AGAGGACA GGCTAGCTACAACGA GATCATGC
9122


995
AUGAUCAU G UCCUCUGC
4326
GCAGAGGA GGCTAGCTACAACGA ATGATCAT
9123


988
UGUCCUCU G CCUCAUAC
4327
GTATGAGG GGCTAGCTACAACGA AGAGGACA
9124


983
UCUGCCUC A UACACAAU
4328
ATTGTGTA GGCTAGCTACAACGA GAGGCAGA
9125


981
UGCCUCAU A CACAAUGC
4329
GCATTGTG GGCTAGCTACAACGA ATGAGGCA
9128


979
CCUCAUAC A CAAUGCUU
4330
AAGCATTG GGCTAGCTACAACGA GTATGAGG
9127


976
CAUACACA A UGCUUGAG
4331
CTCAAGCA GGCTAGCTACAACGA TGTGTATG
9128


974
UACACAAU G CUUGAGUU
4332
AACTCAAG GGCTAGCTACAACGA ATTGTGTA
9129


968
AUGCUUGA G UUGGAGCA
4333
TGCTCCAA GGCTAGCTACAACGA TCAAGCAT
9130


962
GAGUUGGA G CAAUCGUU
4334
AACGATTG GGCTAGCTACAACGA TCCAACTC
9131


959
UUGGAGCA A UCGUUCGU
4335
ACGAACGA GGCTAGCTACAACGA TGCTCCAA
9132


956
GAGCAAUC G UUCGUGAC
4336
GTCACGAA GGCTAGCTACAACGA GATTGCTC
9133


952
AAUCGUUC G UGACAUGG
4337
CCATGTCA GGCTAGCTACAACGA GAACGATT
9134


949
CGUUCGUG A CAUGGUAC
4338
GTACCATG GGCTAGCTACAACGA CACGAACG
9135


947
UUCGUGAC A UGGUACAG
4339
CTGTACCA GGCTAGCTACAACGA GTCACGAA
9136


944
GUGACAUG G UACAGCCC
4340
GGGCTGTA GGCTAGCTACAACGA CATGTCAC
9137


942
GACAUGGU A CAGCCCGG
4341
CCGGGCTG GGCTAGCTACAACGA ACCATGTC
9138


939
AUGGUACA G CCCGGACG
4342
CGTCCGGG GGCTAGCTACAACGA TGTACCAT
9139


933
CAGCCCGG A CGCGUUGC
4343
GCAACGCG GGCTAGCTACAACGA CCGGGCTG
9140


931
GCCCGGAC G CGUUGCAC
4344
GTGCAACG GGCTAGCTACAACGA GTCCGGGC
9141


929
CCGGACGC G UUGCACAC
4345
GTGTGCAA GGCTAGCTACAACGA GCGTCCGG
9142


926
GACGCGUU G CACACCUC
4346
GAGGTGTG GGCTAGCTACAACGA AACGCGTC
9143


924
CGCGUUGC A CACCUCAU
4347
ATGAGGTG GGCTAGCTACAACGA GCAACGCG
9144


922
CGUUGCAC A CCUCAUAA
4348
TTATGAGG GGCTAGCTACAACGA GTGCAACG
9145


917
CACACCUC A UAAGCGGA
4349
TCCGCTTA GGCTAGCTACAACGA GAGGTGTG
9146


913
CCUCAUAA G CGGAGGCU
4350
AGCCTCCG GGCTAGCTACAACGA TTATGAGG
9147


907
AAGCGGAG G CUGGGAUG
4351
CATCCCAG GGCTAGCTACAACGA CTCCGCTT
9148


901
AGGCUGGG A UGGUCAGA
4352
TCTGACCA GGCTAGCTACAACGA CCCAGCCT
9149


898
CUGGGAUG G UCAGACAG
4353
CTGTCTGA GGCTAGCTACAACGA CATCCCAG
9150


893
AUGGUCAG A CAGGGCAG
4354
CTGCCCTG GGCTAGCTACAACGA CTGACCAT
9151


888
CAGACAGG G CAGCAGAG
4355
CTCTGCTG GGCTAGCTACAACGA CCTGTCTG
9152


885
ACAGGGCA G CAGAGCCA
4356
TGGCTCTG GGCTAGCTACAACGA TGCCCTGT
9153


880
GCAGCAGA G CCAAGAGG
4357
CCTCTTGG GGCTAGCTACAACGA TCTGCTGC
9154


868
AGAGGAAG A UAGAGAAA
4358
TTTCTCTA GGCTAGCTACAACGA CTTCCTCT
9155


857
GAGAAAGA G CAACCGGG
4359
CCCGGTTG GGCTAGCTACAACGA TCTTTCTC
9156


854
AAAGAGCA A CCGGGCAG
4360
CTGCCCGG GGCTAGCTACAACGA TGCTCTTT
9157


849
GCAACCGG G CAGAUUCC
4361
GGAATCTG GGCTAGCTACAACGA CCGGTTGC
9158


845
CCGGGCAG A UUCCCUGU
4362
ACAGGGAA GGCTAGCTACAACGA CTGCCCGG
9159


838
GAUUCCCU G UUGCAUAG
4363
CTATGCAA GGCTAGCTACAACGA AGGGAATC
9160


835
UCCCUGUU G CAUAGUUC
4364
GAACTATG GGCTAGCTACAACGA AACAGGGA
9161


833
CCUGUUGC A UAGUUCAC
4365
GTGAACTA GGCTAGCTACAACGA GCAACAGG
9162


830
GUUGCAUA G UUCACGCC
4366
GGCGTGAA GGCTAGCTACAACGA TATGCAAC
9163


826
CAUAGUUC A CGCCGUCU
4367
AGACGGCG GGCTAGCTACAACGA GAACTATG
9164


824
UAGUUCAC G CCGUCUUC
4368
GAAGACGG GGCTAGCTACAACGA GTGAACTA
9165


821
UUCACGCC G UCUUCCAG
4369
CTGGAAGA GGCTAGCTACAACGA GGCGTGAA
9166


811
CUUCCAGA A CCCGGACG
4370
CGTCCGGG GGCTAGCTACAACGA TCTGGAAG
9167


805
GAACCCGG A CGCCAUGC
4371
GCATGGCG GGCTAGCTACAACGA CCGGGTTC
9168


803
ACCCGGAC G CCAUGCGC
4372
GCGCATGG GGCTAGCTACAACGA GTCCGGGT
9169


800
CGGACGCC A UGCGCCAG
4373
CTGGCGCA GGCTAGCTACAACGA GGCGTCCG
9170


798
GACGCCAU G CGCCAGGG
4374
CCCTGGCG GGCTAGCTACAACGA ATGGCGTC
9171


796
CGCCAUGC G CCAGGGCC
4375
GGCCCTGG GGCTAGCTACAACGA GCATGGCG
9172


790
GCGCCAGG G CCCUGGCA
4376
TGCCAGGG GGCTAGCTACAACGA CCTGGCGC
9173


784
GGGCCCUG G CAGUGCCU
4377
AGGCACTG GGCTAGCTACAACGA CAGGGCCC
9174


781
CCCUGGCA G UGCCUCCC
4378
GGGAGGCA GGCTAGCTACAACGA TGCCAGGG
9175


779
CUGGCAGU G CCUCCCAA
4379
TTGGGAGG GGCTAGCTACAACGA ACTGCCAG
9176


766
CCAAGGGG G CGCCGACG
4380
CGTCGGCG GGCTAGCTACAACGA CCCCTTGG
9177


764
AAGGGGGC G CCGACGAG
4381
CTCGTCGG GGCTAGCTACAACGA GCCCCCTT
9178


760
GGGCGCCG A CGAGCGGA
4382
TCCGCTCG GGCTAGCTACAACGA CGGCGCCC
9179


756
GCCGACGA G CGGAAUGU
4383
ACATTCCG GGCTAGCTACAACGA TCGTCGGC
9180


751
CGAGCGGA A UGUACCCC
4384
GGGGTACA GGCTAGCTACAACGA TCCGCTCG
9181


749
AGCGGAAU G UACCCCAU
4385
ATGGGGTA GGCTAGCTACAACGA ATTCCGCT
9182


747
CGGAAUGU A CCCCAUGA
4386
TCATGGGG GGCTAGCTACAACGA ACATTCCG
9183


742
UGUACCCC A UGAGGUCG
4387
CGACCTCA GGCTAGCTACAACGA GGGGTACA
9184


737
CCCAUGAG G UCGGCGAA
4388
TTCGCCGA GGCTAGCTACAACGA CTCATGGG
9185


733
UGAGGUCG G CGAAGCCG
4389
CGGCTTCG GGCTAGCTACAACGA CGACCTCA
9186


728
UCGGCGAA G CCGCAUGU
4390
ACATGCGG GGCTAGCTACAACGA TTCGCCGA
9187


725
GCGAAGCC G CAUGUGAG
4391
CTCACATG GGCTAGCTACAACGA GGCTTCGC
9188


723
GAAGCCGC A UGUGAGGG
4392
CCCTCACA GGCTAGCTACAACGA GCGGCTTC
9189


721
AGCCGCAU G UGAGGGUA
4393
TACCCTCA GGCTAGCTACAACGA ATGCGGCT
9190


715
AUGUGAGG G UAUCGAUG
4394
CATCGATA GGCTAGCTACAACGA CCTCACAT
9191


713
GUGAGGGU A UCGAUGAC
4395
GTCATCGA GGCTAGCTACAACGA ACCCTCAC
9192


709
GGGUAUCG A UGACCUUA
4396
TAAGGTCA GGCTAGCTACAACGA CGATACCC
9193


706
UAUCGAUG A CCUUACCC
4397
GGGTAAGG GGCTAGCTACAACGA CATCGATA
9194


701
AUGACCUU A CCCAAGUU
4398
AACTTGGG GGCTAGCTACAACGA AAGGTCAT
9195


695
UUACCCAA G UUACGCGA
4399
TCGCGTAA GGCTAGCTACAACGA TTGGGTAA
9196


692
CCCAAGUU A CGCGACCU
4400
AGGTCGCG GGCTAGCTACAACGA AACTTGGG
9197


690
CAAGUUAC G CGACCUAC
4401
GTAGGTCG GGCTAGCTACAACGA GTAACTTG
9198


687
GUUACGCG A CCUACGCC
4402
GGCGTAGG GGCTAGCTACAACGA CGCGTAAC
9199


683
CGCGACCU A CGCCGGGG
4403
CCCCGGCG GGCTAGCTACAACGA AGGTCGCG
9200


681
CGACCUAC G CCGGGGGU
4404
ACCCCCGG GGCTAGCTACAACGA GTAGGTCG
9201


674
CGCCGGGG G UCCGUGGG
4405
CCCACGGA GGCTAGCTACAACGA CCCCGGCG
9202


670
GGGGGUCC G UGGGGCCC
4406
GGGCCCCA GGCTAGCTACAACGA GGACCCCC
9203


665
UCCGUGGG G CCCCAACU
4407
AGTTGGGG GGCTAGCTACAACGA CCCACGGA
9204


659
GGGCCCCA A CUAGGCCG
4408
CGGCCTAG GGCTAGCTACAACGA TGGGGCCC
9205


654
CCAACUAG G CCGGGAGC
4409
GCTCCCGG GGCTAGCTACAACGA CTAGTTGG
9206


647
GGCCGGGA G CCGCGGGG
4410
CCCCGCGG GGCTAGCTACAACGA TCCCGGCC
9207


644
CGGGAGCC G CGGGGUGA
4411
TCACCCCG GGCTAGCTACAACGA GGCTCCCG
9208


639
GCCGCGGG G UGACAGGA
4412
TCCTGTCA GGCTAGCTACAACGA CCCGCGGC
9209


636
GCGGGGUG A CAGGAGCC
4413
GGCTCCTG GGCTAGCTACAACGA CACCCCGC
9210


630
UGACAGGA G CCAUCCUG
4414
CAGGATGG GGCTAGCTACAACGA TCCTGTCA
9211


627
CAGGAGCC A UCCUGCCC
4415
GGGCAGGA GGCTAGCTACAACGA GGCTCCTG
9212


622
GCCAUCCU G CCCACCCU
4416
AGGGTGGG GGCTAGCTACAACGA AGGATGGC
9213


618
UCCUGCCC A CCCUAAGC
4417
GCTTAGGG GGCTAGCTACAACGA GGGCAGGA
9214


611
CACCCUAA G CCCUCAUU
4418
AATGAGGG GGCTAGCTACAACGA TTAGGGTG
9215


605
AAGCCCUC A UUGCCAUA
4419
TATGGCAA GGCTAGCTACAACGA GAGGGCTT
9216


602
CCCUCAUU G CCAUAGAG
4420
CTCTATGG GGCTAGCTACAACGA AATGAGGG
9217


599
UCAUUGCC A UAGAGGGG
4421
CCCCTCTA GGCTAGCTACAACGA GGCAATGA
9218


591
AUAGAGGG G CCAAGGGU
4422
ACCCTTGG GGCTAGCTACAACGA CCCTCTAT
9219


584
GGCCAAGG G UACCCGGG
4423
CCCGGGTA GGCTAGCTACAACGA CCTTGGCC
9220


582
CCAAGGGU A CCCGGGCU
4424
AGCCCGGG GGCTAGCTACAACGA ACCCTTGG
9221


576
GUACCCGG G CUGAGCCC
4425
GGGCTCAG GGCTAGCTACAACGA CCGGGTAC
9222


571
CGGGCUGA G CCCAGGCC
4426
GGCCTGGG GGCTAGCTACAACGA TCAGCCCG
9223


565
GAGCCCAG G CCCUGCCC
4427
GGGCAGGG GGCTAGCTACAACGA CTGGGCTC
9224


560
CAGGCCCU G CCCUCGGG
4428
CCCGAGGG GGCTAGCTACAACGA AGGGCCTG
9225


552
GCCCUCGG G CCGGCGAG
4429
CTCGCCGG GGCTAGCTACAACGA CCGAGGGC
9226


548
UCGGGCCG G CGAGCCUU
4430
AAGGCTCG GGCTAGCTACAACGA CGGCCCGA
9227


544
GCCGGCGA G CCUUGGGG
4431
CCCCAAGG GGCTAGCTACAACGA TCGCCGGC
9228


535
CCUUGGGG A UAGGUUGU
4432
ACAACCTA GGCTAGCTACAACGA CCCCAAGG
9229


531
GGGGAUAG G UUGUCGCC
4433
GGCGACAA GGCTAGCTACAACGA CTATCCCC
9230


528
GAUAGGUU G UCGCCUUC
4434
GAAGGCGA GGCTAGCTACAACGA AACCTATC
9231


525
AGGUUGUC G CCUUCCAC
4435
GTGGAAGG GGCTAGCTACAACGA GACAACCT
9232


518
CGCCUUCC A CGAGGUUG
4436
GAACCTCG GGCTAGCTACAACGA GGAAGGCG
9233


513
UCCACGAG G UUGCGACC
4437
GGTCGCAA GGCTAGCTACAACGA CTCGTGGA
9234


510
ACGAGGUU G CGACCGCU
4438
AGCGGTCG GGCTAGCTACAACGA AACCTCGT
9235


507
AGGUUGCG A CCGCUCGG
4439
CCGAGCCG GGCTAGCTACAACGA CGCAACCT
9236


504
UUGCGACC G CUCGGAAG
4440
CTTCCGAG GGCTAGCTACAACGA GGTCGCAA
9237


496
GCUCGGAA G UCUUCCUA
4441
TAGGAAGA GGCTAGCTACAACGA TTCCGAGC
9238


487
UCUUCCUA G UCGCGCGC
4442
GCGCGCGA GGCTAGCTACAACGA TAGGAAGA
9239


484
UCCAUGUC G CGCGCACA
4443
TGTGCGCG GGCTAGCTACAACGA GACTAGGA
9240


482
CUAGUCGC G CGCACACC
4444
GGTGTGCG GGCTAGCTACAACGA GCGACTAG
9241


480
AGUCGCGC G CACACCCA
4445
TGGGTGTG GGCTAGCTACAACGA GCGCGACT
9242


478
UCGCGCGC A CACCCAAC
4446
GTTGGGTG GGCTAGCTACAACGA GCGCGCGA
9243


476
GCGCGCAC A CCCAACCU
4447
AGGTTGGG GGCTAGCTACAACGA GTGCGCGC
9244


471
CACACCCA A CCUGGGGC
4448
GCCCCAGG GGCTAGCTACAACGA TGGGTGTG
9245


464
AACCUGGG G CCCCUGCG
4449
CGCAGGGG GGCTAGCTACAACGA CCCAGGTT
9246


458
GGGCCCCU G CGCGGCAA
4450
TTGCCGCG GGCTAGCTACAACGA AGGGGCCC
9247


456
GCCCCUGC G CGGCAACA
4451
TGTTGCCG GGCTAGCTACAACGA GCAGGGGC
9248


453
CCUGCGCG G CAACAGGU
4452
ACCTGTTG GGCTAGCTACAACGA CGCGCAGG
9249


450
GCGCGGCA A CAGGUAAA
4453
TTTACCTG GGCTAGCTACAACGA TGCCGCGC
9250


446
GGCAACAG G UAAACUCC
4454
GGAGTTTA GGCTAGCTACAACGA CTGTTGCC
9251


442
ACAGGUAA A CUCCACCA
4455
TGGTGGAG GGCTAGCTACAACGA TTACCTGT
9252


437
UAAACUCC A CCAACGAU
4456
ATCGTTGG GGCTAGCTACAACGA GGAGTTTA
9253


433
CUCCACCA A CGAUCUGA
4457
TCAGATCG GGCTAGCTACAACGA TGGTGGAG
9254


430
CACCAACG A UCUGACCA
4458
TGGTCAGA GGCTAGCTACAACGA CGTTGGTG
9255


425
ACGAUCUG A CCACCGCC
4459
GGCGGTGG GGCTAGCTACAACGA CAGATCGT
9256


422
AUCUGACC A CCGCCCGG
4460
CCGGGCGG GGCTAGCTACAACGA GGTCAGAT
9257


419
UGACCACC G CCCGGGAA
4461
TTCCCGGG GGCTAGCTACAACGA GGTGGTCA
9258


411
GCCCGGGA A CUUGACGU
4462
ACGTCAAG GGCTAGCTACAACGA TCCCGGGC
9259


406
GGAACUUG A CGUCCUGU
4463
ACAGGACG GGCTAGCTACAACGA CAAGTTCC
9260


404
AACUUGAC G UCCUGUGG
4464
CCACAGGA GGCTAGCTACAACGA GTCAAGTT
9261


399
GACGUCCU G UGGGCGGC
4465
GCCGCCCA GGCTAGCTACAACGA AGGACGTC
9262


395
UCCUGUGG G CGGCGGUU
4466
AACCGCCG GGCTAGCTACAACGA CCACAGGA
9263


392
UGUGGGCG G CGGUUGGU
4467
ACCAACCG GGCTAGCTACAACGA CGCCCACA
9264


389
GGGCGGCG G UUGGUGUU
4468
AACACCAA GGCTAGCTACAACGA CGCCGCCC
9265


385
GGCGGUUG G UGUUACGU
4469
ACGTAACA GGCTAGCTACAACGA CAACCGCC
9266


383
CGGUUGGU G UUACGUUU
4470
AAACGTAA GGCTAGCTACAACGA ACCAACCG
9267


380
UUGGUGUU A CGUUUGGU
4471
ACCAAACG GGCTAGCTACAACGA AACACCAA
9268


378
GGUGUUAC G UUUGGUUU
4472
AAACCAAA GGCTAGCTACAACGA GTAACACC
9269


373
UACGUUUG G UUUUUCUU
4473
AAGAAAAA GGCTAGCTACAACGA CAAACGTA
9270


360
UCUUUGAG G UUUAGGAU
4474
ATCCTAAA GGCTAGCTACAACGA CTCAAAGA
9271


353
GGUUUAGG A UUCGUGCU
4475
AGCACGAA GGCTAGCTACAACGA CCTAAACC
9272


349
UAGGAUUC G UGCUCAUG
4476
CATGAGCA GGCTAGCTACAACGA GAATCCTA
9273


347
GGAUUCGU G CUCAUGGU
4477
ACCATGAG GGCTAGCTACAACGA ACGAATCC
9274


343
UCGUGCUC A UGGUGCAC
4478
GTGCACCA GGCTAGCTACAACGA GAGCACGA
9275


340
UGCUCAUG G UGCACGGU
4479
ACCGTGCA GGCTAGCTACAACGA CATGAGCA
9276


338
CUCAUGGU G CACGGUCU
4480
AGACCGTG GGCTAGCTACAACGA ACCATGAG
9277


336
CAUGGUGC A CGGUCUAC
4481
GTAGACCG GGCTAGCTACAACGA GCACCATG
9278


333
GGUGCACG G UCUACGAG
4482
CTCGTAGA GGCTAGCTACAACGA CGTGCACC
9279


329
CACGGUCU A CGAGACCU
4483
AGGTCTCG GGCTAGCTACAACGA AGACCGTG
9280


324
UCUACGAG A CCUCCCGG
4484
CCGGGAGG GGCTAGCTACAACGA CTCGTAGA
9281


314
CUCCCGGG G CACUCGCA
4485
TGCGAGTG GGCTAGCTACAACGA CCCGGGAG
9282


312
CCCGGGGC A CUCGCAAG
4486
CTTGCGAG GGCTAGCTACAACGA GCCCCGGG
9283


308
GGGCACUC G CAAGCACC
4487
GGTGCTTG GGCTAGCTACAACGA GAGTGCCC
9284


304
ACUCGCAA G CACCCUAU
4488
ATAGGGTG GGCTAGCTACAACGA TTGCGAGT
9285


302
UCGCAAGC A CCCUAUCA
4489
TGATAGGG GGCTAGCTACAACGA GCTTGCGA
9286


297
AGCACCCU A UCAGGCAG
4490
CTGCCTGA GGCTAGCTACAACGA AGGGTGCT
9287


292
CCUAUCAG G CAGUACCA
4491
TGGTACTG GGCTAGCTACAACGA CTGATAGG
9288


289
AUCAGGCA G UACCACAA
4492
TTGTGGTA GGCTAGCTACAACGA TGCCTGAT
9289


287
CAGGCAGU A CCACAAGG
4493
CCTTGTGG GGCTAGCTACAACGA ACTGCCTG
9290


284
GCAGUACC A CAAGGCCU
4494
AGGCCTTG GGCTAGCTACAACGA GGTACTGC
9291


279
ACCACAAG G CCUUUCGC
4495
GCGAAAGG GGCTAGCTACAACGA CTTGTGGT
9292


272
GGCCUUUC G CGACCCAA
4496
TTGGGTCG GGCTAGCTACAACGA GAAAGGCC
9293


269
CUUUCGCG A CCCAACAC
4497
GTGTTGGG GGCTAGCTACAACGA CGCGAAAG
9294


264
GCGACCCA A CACUACUC
4498
GAGTAGTG GGCTAGCTACAACGA TGGGTCGC
9295


262
GACCCAAC A CUACUCGG
4499
CCGAGTAG GGCTAGCTACAACGA GTTGGGTC
9296


259
CCAACACU A CUCGGCUA
4500
TAGCCGAG GGCTAGCTACAACGA AGTGTTGG
9297


254
ACUACUCG G CUAGCAGU
4501
ACTGCTAG GGCTAGCTACAACGA CGAGTAGT
9298


250
CUCGGCUA G CAGUCUCG
4502
CGAGACTG GGCTAGCTACAACGA TAGCCGAG
9299


247
GGCUAGCA G UCUCGCGG
4503
CCGCGAGA GGCTAGCTACAACGA TGCTAGCC
9300


242
GCAGUCUC G CGGGGGCA
4504
TGCCCCCG GGCTAGCTACAACGA GAGACTGC
9301


236
UCGCGGGG G CACGCCCA
4505
TGGGCGTG GGCTAGCTACAACGA CCCCGCGA
9302


234
GCGGGGGC A CGCCCAAA
4506
TTTGGGCG GGCTAGCTACAACGA GCCCCCGC
9303


232
GGGGGCAC G CCCAAAUC
4507
GATTTGGG GGCTAGCTACAACGA GTGCCCCC
9304


226
ACGCCCAA A UCUCCAGG
4508
CCTGGAGA GGCTAGCTACAACGA TTGGGCGT
9305


218
AUCUCCAG G CAUUGAGC
4509
GCTCAATG GGCTAGCTACAACGA CTGGAGAT
9306


216
CUCCAGGC A UUGAGCGG
4510
CCGCTCAA GGCTAGCTACAACGA GCCTGGAG
9307


211
GGCAUUGA G CGGGUUGA
4511
TCAACCCG GGCTAGCTACAACGA TCAATGCC
9308


207
UUGAGCGG G UUGAUCCA
4512
TGGATCCA GGCTAGCTACAACGA CCGCTCAA
9309


203
GCGGGUUG A UCCAAGAA
4513
TTCTTGGA GGCTAGCTACAACGA CAACCCGC
9310


191
AAGAAAGG A CCCGGUCG
4514
CGACCGGG GGCTAGCTACAACGA CCTTTCTT
9311


186
AGGACCCG G UCGUCCUG
4515
CAGGACGA GGCTAGCTACAACGA CGGGTCCT
9312


183
ACCCGGUC G UCCUGGCA
4516
TGCCAGGA GGCTAGCTACAACGA GACCGGGT
9313


177
UCGUCCUG G CAAUUCCG
4517
CGGAATTG GGCTAGCTACAACGA CAGGACGA
9314


174
UCCUGGCA A UUCCGGUG
4518
CACCGGAA GGCTAGCTACAACGA TGCCAGGA
9315


168
CAAUUCCG G UGUACUCA
4519
TGAGTACA GGCTAGCTACAACGA CGGAATTG
9316


166
AUUCCGGU G UACUCACC
4520
GGTGAGTA GGCTAGCTACAACGA ACCGGAAT
9317


164
UCCGGUGU A CUCACCGG
4521
CCGGTGAG GGCTAGCTACAACGA ACACCGGA
9318


160
GUGUACUC A CCGGUUCC
4522
GGAACCGG GGCTAGCTACAACGA GAGTACAC
9319


156
ACUCACCG G UUCCGCAG
4523
CTGCGGAA GGCTAGCTACAACGA CGGTGAGT
9320


151
CCGGUUCC G CAGACCAC
4524
GTGGTCTG GGCTAGCTACAACGA GGAACCGG
9321


147
UUCCGCAG A CCACUAUG
4525
CATAGTGG GGCTAGCTACAACGA CTGCGGAA
9322


144
CGCAGACC A CUAUGGCU
4526
AGCCATAG GGCTAGCTACAACGA GGTCTGCG
9323


141
AGACCACU A UGGCUCUC
4527
GAGAGCCA GGCTAGCTACAACGA AGTGGTCT
9324


138
CCACUAUG G CUCUCCCG
4528
CGGGAGAG GGCTAGCTACAACGA CATAGTGG
9325


120
GAGGGGGG G UCCUGGAG
4529
CTCCAGGA GGCTAGCTACAACGA CCCCCCTC
9326


111
UCCUGGAG G CUGCACGA
4530
TCGTGCAG GGCTAGCTACAACGA CTCCAGGA
9327


108
UGGAGGCU G CACGACAC
4531
GTGTCGTG GGCTAGCTACAACGA AGCCTCCA
9328


106
GAGGCUGC A CGACACUC
4532
GAGTGTCG GGCTAGCTACAACGA GCAGCCTC
9329


103
GCUGCACG A CACUCAUA
4533
TATGAGTG GGCTAGCTACAACGA CGTGCAGC
9330


101
UGCACGAC A CUCAUACU
4534
AGTATGAG GGCTAGCTACAACGA GTCGTGCA
9331


97
CGACACUC A UACUAACG
4535
CGTTAGTA GGCTAGCTACAACGA GAGTGTCG
9332


95
ACACUCAU A CUAACGCC
4536
GGCGTTAG GGCTAGCTACAACGA ATGAGTGT
9333


91
UCAUACUA A CGCCAUGG
4537
CCATGGCG GGCTAGCTACAACGA TAGTATGA
9334


89
AUACUAAC G CCAUGGCU
4538
AGCCATGG GGCTAGCTACAACGA GTTAGTAT
9335


86
CUAACGCC A UGGCUAGA
4539
TCTAGCCA GGCTAGCTACAACGA GGCGTTAG
9336


83
ACGCCAUG G CUAGACGC
4540
GCGTCTAG GGCTAGCTACAACGA CATGGCGT
9337


78
AUGGCUAG A CGCUUUCU
4541
AGAAAGCG GGCTAGCTACAACGA CTAGCCAT
9338


76
GGCUAGAC G CUUUCUGC
4542
GCAGAAAG GGCTAGCTACAACGA GTCTAGCC
9339


69
CGCUUUCU G CGUGAAGA
4543
TCTTCACG GGCTAGCTACAACGA AGAAAGCG
9340


67
CUUUCUGC G UGAAGACA
4544
TGTCTTCA GGCTAGCTACAACGA GCAGAAAG
9341


61
GCGUGAAG A CAGUAGUU
4545
AACTACTG GGCTAGCTACAACGA CTTCACGC
9342


58
UGAAGACA G UAGUUCCU
4546
AGGAACTA GGCTAGCTACAACGA TGTCTTCA
9343


55
AGACAGUA G UUCCUCAC
4547
GTGAGGAA GGCTAGCTACAACGA TACTGTCT
9344


48
AGUUCCUC A CAGGGGAG
4548
CTCCCCTG GGCTAGCTACAACGA GAGGAACT
9345


40
ACAGGGGA G UGAUCUAU
4549
ATAGATCA GGCTAGCTACAACGA TCCCCTGT
9346


37
GGGGAGUG A UCUAUGGU
4550
ACCATAGA GGCTAGCTACAACGA CACTCCCC
9347


33
AGUGAUCU A UGGUGGAG
4551
CTCCACCA GGCTAGCTACAACGA AGATCACT
9348


30
GAUCUAUG G UGGAGUGU
4552
ACACTCCA GGCTAGCTACAACGA CATAGATC
9349


25
AUGGUGGA G UGUCGCCC
4553
GGGCGACA GGCTAGCTACAACGA TCCACCAT
9350


23
GGUGGAGU G UCGCCCCC
4554
GGGGGCGA GGCTAGCTACAACGA ACTCCACC
9351






Input Sequence = HPCK1S1.




Cut Site = R/Y




Arm Length = 8.




Core Sequence = GGCTAGCTACAACGA




HPCK1S1 Hepatitis C virus (strain HCV-1b, clone HCV-K1-S1), complete genome; acc# gi|1030702|dbj|D50483.1; 9410 nt








[0391]

4





TABLE V










Synthetic anti-HCV nucleic acid molecule and Target Sequences





















Nu-









cleic


ref
Ref

Seq


Seq
Acid


pos
Seq
Target
ID
RPI#
Nucleic Acid
ID
Alias

















195
HCV+
GGGUCCU U UCUUGGA
4556
15364
cscsasasga cUGAuGaggcgaaagccGaa Aggacc B
9352
Ham-









mer-









head


342
HCV+
AGACCGUGCAUCAUGAGCAC
4555
17501
GsTsGsCsTsCsAsTsGsAsTsGsCsAsCsGsGsTsCsT
9353
Anti-









sense


195
HCV+
GGGUCCU U UCUUGGA
4556
17558
cscsasasga cUGAuGaggcguuagccGaZ Aggacc B
9354
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
4556
17559
cscsasasga cUGAuGaggcguuagccGaa AggaZc B
9355
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
4556
17560
Zscsasasga cUGAuGaggcguuagccGaa Aggacc B
9356
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
4556
17561
Z csasasga cUGAuGaggcguuagccGaa Aggacc B
9357
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
4556
18012
ccaagacUGAuGaggcguuagccGaa Aggacc B
9358
Ham-









mer-









head


82
HCV+
GCGUCUA G CCAUGGC
4557
18744
gscscsasugg GccgaaagGCGaGucaaGGuCu uagacgc B
9359
Zin-









zyme


100
HCV+
AGUAUGA G UGUCGUG
4558
18745
csascsgsaca GccgaaagGCGaGucaaGGuCu ucauacu B
9360
Zin-









zyme


102
HCV+
UAUGAGU G UCGUGCA
4559
18746
usgscsascga GccgaaagGCGaGucaaGGuCu acucaua B
9361
Zin-









zyme


105
HCV+
GAGUGUC G UGCAGCC
4560
18747
gsgscsusgca GccgaaagGCGaGucaaGGuCu gacacuc B
9362
Zin-









zyme


107
HCV+
GUGUCGU G CAGCCUC
4561
18748
gsasgsgscug GccgaaagGCGaGucaaGGuCu acgacac B
9363
Zin-









zyme


146
HCV+
CAUAGUG G UCUGCGG
4562
18749
cscsgscsaga GccgaaagGCGaGucaaGGuCu cacuaug B
9364
Zin-









zyme


190
HCV+
CGACCGG G UCCUUUC
4563
18750
gsasasasgga GccgaaagGCGaGucaaGGuCu ccggucg B
9365
Zin-









zyme


217
HCV+
GCUCAAU G CCUGGAG
4564
18751
csuscscsagg GccgaaagGCGaGucaaGGuCu auugagc B
9366
Zin-









zyme


231
HCV+
GAUUUGG G CGUGCCC
4565
18752
gsgsgscsacg GccgaaagGCGaGucaaGGuCu ccaaauc B
9367
Zin-









zyme


258
HCV+
UAGCCGA G UAGUGUU
4566
18753
asascsascua GccgaaagGCGaGucaaGGuCu ucggcua B
9368
Zin-









zyme


307
HCV+
GGUGCUU G CGAGUGC
4567
18754
gscsascsucg GccgaaagGCGaGucaaGGuCu aagcacc B
9369
Zin-









zyme


77
HCV+
GAAAGC G UCUAGC
4568
18755
gscsusasga GccgaaagGCGaGucaaGGuCu gcuuuc B
9370
Zin-









zyme


77
HCV+
AGAAAGC G UCUAGCC
4569
18756
gsgscsusaga GccgaaagGCGaGucaaGGuCu gcuuucu B
9371
Zin-









zyme


88
HCV+
AGCCAUG G CGUUAGU
4570
18757
ascsusasacg GccgaaagGCGaGucaaGGuCu cauggcu B
9372
Zin-









zyme


94
HCV+
GCGUUA G UAUGAGU
4571
18758
ascsuscsaua GccgaaagGCGaGucaaGGuCu uaacgcc B
9373
Zin-









zyme


102
HCV+
AUGAGU G UCGUGC
4572
18759
gscsascsga GccgaaagGCGaGucaaGGuCu acucau B
9374
Zin-









zyme


105
HCV+
AGUGUC G UGCAGC
4573
18760
gscsusgsca GccgaaagGCGaGucaaGGuCu gacacu B
9375
Zin-









zyme


110
HCV+
UCGUGCA G CCUCCAG
4574
18761
csusgsgsagg GccgaaagGCGaGucaaGGuCu ugcacga B
9376
Zin-









zyme


137
HCV+
GGGAGA G CCAUAG
4575
18762
csusasusgg GccgaaagGCGaGucaaGGuCu ucuccc B
9377
Zin-









zyme


137
HCV+
CGGGAGA G CCAUAGU
4576
18763
ascsusasugg GccgaaagGCGaGucaaGGuCu ucucccg B
9378
Zin-









zyme


146
HCV+
AUAGUG G UCUGCG
4577
18764
csgscsasga GccgaaagGCGaGucaaGGuCu cacuau B
9379
Zin-









zyme


150
HCV+
GUGGUCU G CGGAACC
4578
18765
gsgsususccg GccgaaagGCGaGucaaGGuCu agaccac B
9380
Zin-









zyme


176
HCV+
CGGAAUU G CCAGGAC
4579
18766
gsuscscsugg GccgaaagGCGaGucaaGGuCu aauuccg B
9381
Zin-









zyme


190
HCV+
GACCGG G UCCUUU
4580
18767
asasasgsga GccgaaagGCGaGucaaGGuCu ccgguc B
9382
Zin-









zyme


253
HCV+
CUGCUA G CCGAGU
4581
18768
ascsuscsgg GccgaaagGCGaGuoaaGGuCu uagcag B
9383
Zin-









zyme


253
HCV+
ACUGCUA G CCGAGUA
4582
18769
usascsuscgg GccgaaagGCGaGucaaGGuCu uagcagu B
9384
Zin-









zyme


258
HCV+
AGCCGA G UAGUGU
4583
18770
ascsascsua GccgaaagGCGaGucaaGGuCu ucggcu B
9385
Zin-









zyme


263
HCV+
GAGUAGU G UUGGGUC
4584
18771
gsascscscaa GccgaaagGCGaGucaaGGuCu acuacuc B
9386
Zin-









zyme


268
HCV+
UGUUGG G UCGCGA
4585
18772
uscsgscsga GccgaaagGCGaGucaaGGuCu ccaaca B
9387
Zin-









zyme


268
HCV+
GUGUUGG G UCGCGAA
4586
18773
ususcsgscga GccgaaagGCGaGucaaGGuCu ccaacac B
9388
Zin-









zyme


271
HCV+
UUGGGUC G CGAAAGG
4587
18774
cscsususucg GccgaaagGCGaGucaaGGuCu gacccaa B
9389
Zin-









zyme


283
HCV+
AGGCCUU G UGGUACU
4588
18775
asgsusascca GccgaaagGCGaGucaaGGuCu aaggccu B
9390
Zin-









zyme


286
HCV+
CCUUGUG G UACUGCC
4589
18776
gsgscsasgua GccgaaagGCGaGucaaGGuCu cacaagg B
9391
Zin-









zyme


291
HCV+
UGGUACU G CCUGAUA
4590
18777
usasuscsagg GccgaaagGCGaGucaaGGuCu aguacca B
9392
Zin-









zyme


301
HCV+
UGAUAGG G UGCUUGC
4591
18778
gscsasasgca GccgaaagGCGaGucaaGGuCu ccuauca B
9393
Zin-









zyme


303
HCV+
AUAGGGU G CUUGCGA
4592
18779
uscsgscsaag GccgaaagGCGaGucaaGGuCu acccuau B
9394
Zin-









zyme


60
HCV+
ACUACU G UCUUCA
4593
18780
usgsasasga GccgaaagGCGaGucaaGGuCu aguagu B
9395
Zin-









zyme


60
HCV+
AACUACU G UCUUCAC
4594
18781
gsusgsasaga GccgaaagGCGaGucaaGGuCu augaguu B
9396
Zin-









zyme


68
HCV+
UCUUCAC G CAGAAAG
4595
18782
csusususcug GccgaaagGCGaGucaaGGuCu gugaaga B
9397
Zin-









zyme


75
HCV+
CAGAAA G CGUCUA
4596
18783
usasgsascg GccgaaagGCGaGucaaGGuCu uuucug B
9398
Zin-









zyme


82
HCV+
CGUCUA G CCAUGG
4597
18784
cscsasusgg GccgaaagGCGaGucaaGGuCu uagacg B
9399
Zin-









zyme


88
HCV+
GCCAUG G CGUUAG
4598
18785
csusasascg GccgaaagGCGaGucaaGGuCu cauggc B
9400
Zin-









zyme


90
HCV+
CAUGGC G UUAGUA
4599
18786
usascsusaa GccgaaagGCGaGucaaGCuCu gccaug B
9401
Zin-









zyme


90
HCV+
CCAUGGC G UUAGUAU
4600
18787
asusascsuaa GccgaaagGCGaGucaaGGuCu gccaugg B
9402
Zin-









zyme


100
HCV+
GUAUGA G UGUCGU
4601
18788
ascsgsasca GccgaaagGCGaGucaaGGuCu ucauac B
9403
Zin-









zyme


107
HCV+
UGUCGU G CAGCCU
4602
18789
asgsgscsug GccgaaagGCGaGucaaGGuCu acgaca B
9404
Zin-









zyme


110
HCV+
CGUCCA G CCUCCA
4603
18790
usgsgsasgg GccgaaagGCGaGucaaGGuCu acgaca B
9405
Zin-









zyme


150
HCV+
UGGUCU G CGGAAC
4604
18791
gsususcscg GccgaaagGCGaGucaaGGuCu ugcacg B
9406
Zin-









zyme


159
HCV+
GGAACCG G UGAGUAC
4605
18792
gsusascsuca GccgaaagGCGaGucaaGGuCu cgguucc B
9407
Zin-









zyme


176
HCV+
GGAAUU G CCAGGA
4606
18793
uscscsusgg GccgaaagGCGaGucaaGGuCu aauucc B
9408
Zin-









zyme


217
HCV+
CUCAAU G CCUGGA
4607
18794
uscscsasgg GccgaaagGCGaGucaaGGuCu auugag B
9409
Zin-









zyme


231
HCV+
AUUUGG G CGUGCC
4608
18795
gsgscsascg GccgaaagGCGaGucaaGGuCu ccaaau B
9410
Zin-









zyme


261
HCV+
CGAGUA G UGUUGG
4609
18796
cscsasasca GccgaaagGCGaGucaaGGuCu uacucg B
9411
Zin-









zyme


261
HCV+
CCGAGUA G UGUUGGG
4610
18797
cscscsasaca GccgaaagGCGaGucaaGGuCu uacucgg B
9412
Zin-









zyme


263
HCV+
AGUAGU G UUGGGU
4611
18798
ascscscsaa GccgaaagGCGaGucaaGGuCu acuacu B
9413
Zin-









zyme


271
HCV+
UGGGUC G CGAAAG
4612
18799
csusususcg GccgaaagGCGaGucaaGGuCu gaccca B
9414
Zin-









zyme


283
HCV+
GGCCUU G UGGUAC
4613
18800
gsusascsca GccgaaagGCGaGucaaGGuCu aaggcc B
9415
Zin-









zyme


291
HCV+
GGUACU G CCUGAU
4614
18801
asuscsasgg GccgaaagGCGaGucaaGGuCu aguacc B
9416
Zin-









zyme


303
HCV+
UAGGGU G CUUGCG
4615
18802
csgscsasag GccgaaagGCGaGucaaGGuCu acccua B
9417
Zin-









zyme


307
HCV+
GUGCUU G CGAGUG
4616
18803
csascsuscg GccgaaagGCGaGucaaGGuCu aagcac B
9418
Zin-









zyme


323
HCV+
CGGGAG G UCUCGU
4617
18804
ascsgsasga GccgaaagGCGaGucaaGGuCu cucccg B
9419
Zin-









zyme


323
HCV+
CCGGGAG G UCUCGUA
4618
18805
usascsgsaga GccgaaagGCGaGucaaGGuCu cucccgg B
9420
Zin-









zyme


75
HCV+
GCAGAAA G CGUCUAG
4619
18806
csusasgsacg GccgaaagGCGaGucaaGGuCu uuucugc B
9421
Zin-









zyme


143
HCV+
GCCAUA G UGGUCU
4620
18807
asgsascsca GccgaaagGCGaGucaaGGuCu uauggc B
9422
Zin-









zyme


278
HCV+
GCGAAAG G CCUUGUG
4621
18808
csascsasagg GccgaaagGCGaGucaaGGuCu cuuucgc B
9423
Zin-









zyme


163
HCV+
CGGUGA G UACACC
4622
18809
gsgsusgsua GccgaaagGCGaGucaaGGuCu ucaccg B
9424
Zin-









zyme


68
HCV+
CUUCAC G CAGAAA
4623
18810
usususcsug GccgaaagGCGaGucaaGGuCu gugaag B
9425
Zin-









zyme


94
HCV+
GCGUUA G UAUGAG
4624
18811
csuscsasua GccgaaagGCGaGucaaGGuCu uuaacgc B
9426
Zin-









zyme


143
HCV+
AGCCAUA G UGGUCUG
4625
18812
csasgsascca GccgaaagGCGaGucaaGGuCu uauggcu B
9427
Zin-









zyme


159
HCV+
GAACCG G UGAGUA
4626
18813
usascsusca GccgaaagGCGaGucaaGGuCu cgguuc B
9428
Zin-









zyme


163
HCV+
CCGGUGA G UACACCG
4627
18814
csgsgsusgua GccgaaagGCGaGucaaGGuCu ucaccgg B
9429
Zin-









zyme


249
HCV+
GAGACU G CUAGCC
4628
18815
gsgscsusag GccgaaagGCGaGucaaGGuCu agucuc B
9430
Zin-









zyme


249
HCV+
CGAGACU G CUAGCCG
4629
18816
csgsgscsuag GcogaaagGCGaGucaaGGuCu agucucg B
9431
Zin-









zyme


278
HCV+
CGAAAG G CCUUGU
4630
18817
ascsasasgg GccgaaagGCGaGucaaGGuCu cuuucg B
9432
Zin-









zyme


286
HCV+
CUUGUG G UACUGC
4631
18818
gscsasgsua GccgaaagGCGaGucaaGGuCu cacaag B
9433
Zin-









zyme


301
HCV+
GAUAGG G UGCUUG
4632
18819
csasasgsca GccgaaagGCGaGucaaGGuCu ccuauc B
9434
Zin-









zyme


328
HCV+
GGUCUC G UAGACC
4633
18820
gsgsuscsua GccgaaagGCGaGucaaGGuCu gagacc B
9435
Zin-









zyme


328
HCV+
AGGUCUC G UAGACCG
4634
18821
csgsgsuscua GccgaaagGCGaGucaaGGuCu gagaccu B
9436
Zin-









zyme


335
HCV+
UAGACC G UGCACC
4635
18822
gsgsusgsca GccgaaagGCGaGucaaGGuCu ggucua B
9437
Zin-









zyme


30
C
UAAACCU C AAAGAAA
4636
19108
usususcsuuu cUGAuGaggccguuaggccGaa Agguuua B
9438
Ham-









mer-









head


48
C
CAAACGU A ACACCAA
4637
19109
ususgsgsugu cUGAuGaggccguuaggccGaa Acguuug B
9439
Ham-









mer-









head


60
C
CAACCGU C GCCCACA
4638
19110
usgsusgsggc cUGAuGaggccguuaggccGaa Acgguug B
9440
Ham-









mer-









head


175
C
GAGCGGU C ACAACCU
4639
19111
asgsgsusugu cUGAuGaggccguuaggccGaa Accgcuc B
9441
Ham-









mer-









head


374
C
GUAAGGU C AUCGAUA
4640
19112
usasuscsgau cUGAuGaggccguuaggccGaa Accuuac B
9442
Ham-









mer-









head


258
S27
UGGUGGCUCCAUCUUAGCCCUAG
4641
22022
usgsgsusgsgscsuscscsasuscsususasgscscscsusasg
9443
Anti-









sense


259
S27
GGUGGCUCCAUCUUAGCCCUAGU
4642
22023
gsgsusgsgscsuscscsasuscsususasgscscscsusasgsu
9444
Anti-









sense


260
S27
GUGGCUCCAUCUUAGCCCUAGUC
4643
22024
gsusgsgscsuscscsasuscsususasgscscscsusasgsusc
9445
Anti-









sense


261
S27
UGGCUCCAUCUUAGCCCUAGUCA
4644
22025
usgsgscsuscscsasuscsususasgscscscsusasgsuscsa
9446
Anti-









sense


262
S27
GGCUCCAUCUUAGCCCUAGUCAC
4645
22026
gsgscsuscscsasuscsususasgscscscsusasgsuscsasc
9447
Anti-









sense


263
S27
GCUCCAUCUUAGCCCUAGUCACG
4646
22027
gscsuscscsasuscsususasgscscscsusasgsuscsascsg
9448
Anti-









sense


264
S27
CUCCAUCUUAGCCCUAGUCACGG
4647
22028
csuscscsasuscsususasgscscscsusasgsuscsascsgsg
9449
Anti-









sense


265
S27
UCCAUCUUAGCCCUAGUCACGGC
4648
22029
uscscsasuscsususasgscscscsusasgsuscsascsgsgsc
9450
Anti-









sense


266
S27
CCAUCUUAGCCCUAGUCACGGCU
4649
22030
cscsasuscsususasgscscscsusasgsuscsascsgsgscsu
9451
Anti-









sense


267
S27
CAUCUUAGCCCUAGUCACGGCUA
4650
22031
csasuscsususasgscscscsusasgsuscsascsgsgscsusa
9452
Anti-









sense


268
S27
AUCUUAGCCCUAGUCACGGCUAG
4651
22032
asuscsususasgscscscsusasgsuscsascsgsgscsusasg
9453
Anti-









sense


269
S27
UCUUAGCCCUAGUCACGGCUAGC
4652
22033
uscsususasgscscscsusasgsuscsascsgsgscsusasgsc
9454
Anti-









sense


270
S27
CUUAGCCCUAGUCACGGCUAGCU
4653
22034
csususasgscscscsusasgsuscsascsgsgscsusasgscsu
9455
Anti-









sense


271
S27
UUAGCCCUAGUCACGGCUAGCUG
4654
22035
ususasgscscscsusasgsuscsascsgsgscsusasgscsusg
9456
Anti-









sense


272
S27
UAGCCCUAGUCACGGCUAGCUGU
4655
22036
usasgscscscsusasgsuscsascsgsgscsusasgscsusgsu
9457
Anti-









sense


273
S27
AGCCCUAGUCACGGCUAGCUGUG
4656
22037
asgscscscsusasgsuscsascsgsgscsusasgscsusgsusg
9458
Anti-









sense


274
S27
GCCCUAGUCACGGCUAGCUGUGA
4657
22038
gscscscsusasgsuscsascsgsgscsusasgscsusgsusgsa
9459
Anti-









sense


275
S27
CCCUAGUCACGGCUAGCUGUGAA
4658
22039
cscscsusasgsuscsascsgsgscsusasgscsusgsusgsasa
9460
Anti-









sense


276
S27
CCUAGUCACGGCUAGCUGUGAAA
4659
22040
cscsusasgsuscsascsgsgscsusasgscsusgsusgsasasa
9461
Anti-









sense


277
S27
CUAGUCACGGCUAGCUGUGAAAG
4660
22041
csusasgsuscsascsgsgscsusasgscsusgsusgsasasasg
9462
Anti-









sense


278
S27
UAGUCACGGCUAGCUGUGAAAGG
4661
22042
usasgsuscsascsgsgscsusasgscsusgsusgsasasasgsg
9463
Anti-









sense


279
S27
AGUCACGGCUAGCUGUGAAAGGU
4662
22043
asgsuscsascsgsgscsusasgscsusgsusgsasasasgsgsu
9464
Anti-









sense


280
S27
GUCACGGCUAGCUGUGAAAGGUC
4663
22044
gsuscsascsgsgscsusasgscsusgsusgsasasasgsgsusc
9465
Anti-









sense


281
S27
UCACGGCUAGCUGUGAAAGGUCC
4664
22045
uscsascsgsgscsusasgscsusgsusgsasasasgsgsuscsc
9466
Anti-









sense


282
S27
CACGGCUAGCUGUGAAAGGUCCG
4665
22046
csascsgsgscsusasgscsusgsusgsasasasgsgsuscscsg
9467
Anti-









sense


283
S27
ACGGCUAGCUGUGAAAGGUCCGU
4666
22047
ascsgsgscsusasgscsusgsusgsasasasgsgsuscscsgsu
9468
Anti-









sense


284
S27
CGGCUAGCUGUGAAAGGUCCGUG
4667
22048
csgsgscsusasgscsusgsusgsasasasgsgsuscscsgsusg
9469
Anti-









sense


285
S27
GGCUAGCUGUGAAAGGUCCGUGA
4668
22049
gsgscsusasgscsusgsusgsasasasgsgsuscscsgsusgsa
9470
Anti-









sense


286
S27
GCUAGCUGUGAAAGGUCCGUGAG
4669
22050
gscsusasgscsusgsusgsasasasgsgsuscscsgsusgsasg
9471
Anti-









sense


287
S27
CUAGCUGUGAAAGGUCCGUGAGC
4670
22051
csusasgscsusgsusgsasasasgsgsuscscsgsusgsasgsc
9472
Anti-









sense


311
S27
GCAUGACUGCAGAGAGUGCUGAU
4671
22052
gscsasusgsascsusgscsasgsasgsasgsusgscsusgsasu
9473
Anti-









sense


312
S27
CAUGACUGCAGAGAGUGCUGAUA
4672
22053
csasushsascsusgscsasgsasgsasgsusgscsusgsasusa
9474
Anti-









sense


313
S27
AUGACUGCAGAGAGUGCUGAUAC
4673
22054
asusgsascsusgscsasgsasgsasgsusgscsusgsasusasc
9475
Anti-









sense


314
S27
UGACUGCAGAGAGUGCUGAUACU
4674
22055
usgsascsusgscsasgsasgsasgsusgscsusgsasusascsu
9476
Anti-









sense


315
S27
GACUGCAGAGAGUGCUGAUACUG
4675
22056
gsascsusgscsasgsasgsasgsusgscsusgsasusascsusg
9477
Anti-









sense


316
S27
ACUGCAGAGAGUGCUGAUACUGG
4676
22057
ascsusgscsasgsasgsasgsusgscsusgsasusascsusgsg
9478
Anti-









sense


317
S27
CUGCAGAGAGUGCUGAUACUGGC
4677
22058
csusgscsasgsasgsasgsusgscsusgsasusascsusgsgsc
9479
Anti-









sense


318
S27
UGCAGAGAGUGCUGAUACUGGCC
4678
22059
usgscsasgsasgsasgsusgscsusgsasusascsusgsgscsc
9480
Anti-









sense


319
S27
GCAGAGAGUGCUGAUACUGGCCU
4679
22060
gscsasgsasgsasgsusgscsusgsasusascsusgsgscscsu
9481
Anti-









sense


320
S27
CAGAGAGUGCUGAUACUGGCCUC
4680
22061
csasgsasgsasgsusgscsusgsasusascsusgsgscscsusc
9482
Anti-









sense


321
S27
AGAGAGUGCUGAUACUGGCCUCU
4681
22062
asgsasgsasgsusgscsusgsasusascsusgsgscscsuscsu
9483
Anti-









sense


322
S27
GAGAGUGCUGAUACUGGCCUCUC
4682
22063
gsasgsasgsusgscsusgsasusascsusgsgscscsuscsusc
9484
Anti-









sense


157
HCV+
CGGAACCGGUGAG
4683
22524
csuscsascc cUGAuGaggccguuaggccGaa Iuuccg B
9485
Ino-









zyme


167
HCV+
GAGUACACCGGAA
4684
22525
ususcscsgg cUCAuGaggccguuaggccGaa Iuacuc B
9486
Ino-









zyme


139
HCV+
GAGAGCCAUAGUG
4685
22526
csascsUsau cUGAuGaggccguuaggccGaa Icucuc B
9487
Ino-









zyme


140
HCV+
AGAGCCAUAGUGG
4686
22527
cscsascsua cUGAuGaggccguuaggccGaa Igcucu B
9488
Ino-









zyme


281
HCV+
AAGGCCUUGUGGU
4687
22528
ascscsasca cUGAuGaggccguuaggccGaa Igccuu B
9489
Ino-









zyme


130
HCV+
CCCUCCCGGGAGA
4688
22529
uscsuscscc cUGAuGaggccguuaggccGaa Igaggg B
9490
Ino-









zyme


280
HCV+
AAAGGCCUUGUGG
4689
22530
cscsascsaa cUGAuGaggccguuaggccGaa Iccuuu B
9491
Ino-









zyme


149
HCV+
GUGGUCUGCGGAA
4690
22531
ususcscsgc cUGAuGaggccguuaggccGaa Iaccac B
9492
Ino-









zyme


194
HCV+
GGGUCCUUUCUUG
4691
22532
csasasgsaa cUGAuGaggccguuaggccGaa Igaccc B
9493
Ino-









zyme


255
HCV+
GCUAGCCGAGUAG
4692
22533
csusascsuc cUGAuGaggccguuaggccGaa Icuagc B
9494
Ino-









zyme


294
HCV+
ACUGCCUGAUAGG
4693
22534
cscsUsasUC cUGAuGaggccguuaggccGaa Igcagu B
9495
Ino-









zyme


293
HCV+
UACUGCCUGAUAG
4694
22535
csusasusca cUGAuGaggccguuaggccGaa Icagua B
9496
Ino-









zyme


290
HCV+
UGGUACUGCCUGA
4695
22536
uscsasgsgc cUGAuGaggccguuaggccGaa Iuacca B
9497
Ino-









zyme


169
HCV+
GUACACCGGAAUU
4696
22537
asasususcc cUGAuGaggccguuaggccGaa Iuguac B
9498
Ino-









zyme


293
HCV+
GUACUGCCUGAUAGG
4697
22544
cscsusasuca cUGAuGaggccguuaggccGaa Icaguac B
9499
Ino-









zyme


294
HCV+
UACUGCCUGAUAGGG
4698
22545
cscscsusauc cUGAuGaggccguuaggccGaa Igcagua B
9500
Ino-









zyme


281
HCV+
AAAGGCCUUGUGGUA
4699
22546
usascscsaca cUGAuGaggccguuaggccGaa Igccuuu B
9501
Ino-









zyme


166
HCV+
UGAGUACACCGGA
4700
22549
uscscsgsgu cUGAUGaggccguuaggccGaa Uacuca B
9502
Amber-









zyme


168
HCV+
AGUACACCGGAAU
4701
22550
asususcscg cUGAUGaggccguuaggccGaa Uguacu B
9503
Amber-









zyme


141
HCV+
GAGCCAUAGUGGU
4702
22551
ascscsascu cUGAUGaggccguuaggccGaa Uggcuc B
9504
Amber-









zyme


156
HCV+
GCGGAACCGGUGA
4703
22552
uscsascscg cUGAUGaggccguuaggccGaa Uuccgc B
9505
Amber-









zyme


155
HCV+
UGCGGAACCGGUG
4704
22553
csascscsgg cUGAUGaggccguuaggccGaa Uccgca B
9506
Amber-









zyme


289
HCV+
GUGGUACUGCCUG
4705
22554
csasgsgsca cUGAUGaggccguuaggccGaa Uaccac B
9507
Amber-









zyme


297
HCV+
GCCUGAUAGGGUG
4706
22555
csascscscu cUGAUGaggccguuaggccGaa Ucaggc B
9508
Amber-









zyme


166
HCV+
GUGAGUACACCGGAA
4707
22556
ususcscsggu cUGAUGaggccguuaggccGaa Uacucac B
9509
Amber-









zyme


141
HCV+
AGAGCCAUAGUGGUG
4708
22557
gsascscsacu cUGAUGaggccguuaggccGaa Uggcuc B
9510
Amber-









zyme


156
HCV+
UGCGGAACCGGUGAG
4709
22558
csuscsasccg cUGAUGaggccguuaggccGaa Uuccgca B
9511
Amber-









zyme


155
HCV+
CUGCGGAACCGGUGA
4710
22559
uscsascscgg cUGAUGaggccguuaggccGaa Uccgcag B
9512
Amber-









zyme


289
HCV+
UGUGGUACUGCCUGA
4711
22560
uscsasgsgca cUGAUGaggccguuaggccGaa Uaccaca B
9513
Amber-









zyme


297
HCV+
UGCCUGAUAGGGUGG
4712
22561
gscsascsccu cUGAUGaggccguuaggccGaa Ucaggca B
9514
Amber-









zyme


168
HCV−
GAGUACACCGGAAUU
4713
22562
asasususccg cUGAUGaggccguuaggccGaa Uguacuc B
9515
Amber-









zyme


166
HCV−
UCCGGUGUACUCA
4714
22563
usgsasgsua gccgaaaggCgagugaGguGCu accgga B
9506
Zin-









zyme


168
HCV−
AUUCCGGUGUACU
4715
22564
asgsusasca gccgaaaggCgagugaGguGCu cggaau B
9517
Zin-









zyme


138
HCV−
ACUAUGGCUCUCG
4716
22565
gsgsasgsag gccgaaaggCgagugaGguGCu cauagu B
9518
Zin-









zyme


156
HCV−
UCACCGGUUCCGG
4717
22566
gscsgsgsaa gccgaaaggCgagugaGguGCu cgguga B
9519
Zin-









zyme


236
HCV−
GCGGGGGCACGCG
4718
22567
gsgscsgsug gccgaaaggCgagugaGguGCu ccccgc B
9520
Zin-









zyme


279
HCV−
CACAAGGCCUUUG
4719
22568
gsasasasgg gccgaaaggCgagugaGguGCu cuugug B
9521
Zin-









zyme


151
HCV−
GGUUCCGCAGACG
4720
22569
gsgsuscsug gccgaaaggCgagugaGguGCu ggaacc B
9522
Zin-









zyme


292
HCV−
UAUCAGGCAGUAG
4721
22570
gsusascsug gccgaaaggCgagugaGguGCu cugaua B
9523
Zin-









zyme


289
HCV−
CAGGCAGUACCAG
4722
22571
gsusgsgsua gccgaaaggCgagugaGguGCu ugccug B
9524
Zin-









zyme


166
HCV−
UUCCGGUGUACUCAG
4723
22572
gsusgsasgua gccgaaaggCgagugaGguGCu accggaa B
9525
Zin-









zyme


279
HCV−
CCACAAGGCCUUUCG
4724
22573
csgsasasagg gccgaaaggCgagugaGguGCu cuugugg B
9526
Zin-









zyme


156
HCV−
CUCACCGGUUCCGGA
4725
22574
usgscsgsgaa gccgaaaggCgagugaGguGCu cggugag B
9527
Zin-









zyme


138
HCV−
CACUAUGGCUCUCCG
4726
22575
gsgsgsasgag gccgaaaggCgagugaGguGCu cauagug B
9528
Zin-









zyme


151
HCV−
CGGUUCCGCAGACCA
4727
22576
usgsgsuscug gccgaaaggCgagugaGguGCu ggaaccg B
9529
Zin-









zyme


292
HCV−
CUAUCAGGCAGUACG
4728
22577
gsgsusascug gccgaaaggCgagugaGguGCu cugauag B
9530
Zin-









zyme


289
HCV−
UCAGGCAGUACCACA
4729
22578
usgsusgsgua gccgaaaggCgagugaGguGCu ugccuga B
9531
Zin-









zyme


168
HCV−
AAUUCCGGUGUACUG
4730
22579
gsasgsusaca gccgaaaggCgagugaGguGCu cggaauu B
9532
Zin-









zyme


163
HCV−
GGUGUACUCACCG
4731
22580
csgsgsusga cUGAUGaggccguuaggccGaa Uacacc B
9533
Amber-









zyme


159
HCV−
UACUCACCGGUUG
4732
22581
gsasascscg cUGAUGaggccguuaggccGaa Ugagua B
9534
Amber-









zyme


140
HCV−
CCACUAUGGCUCU
4733
22582
asgsasgscc cUGAUGaggccguuaggccGaa Uagugg B
9535
Amber-









zyme


281
HCV−
ACCACAAGGCCUU
4734
22583
asasgsgscc cUGAUGaggccguuaggccGaa Uguggu B
9536
Amber-









zyme


233
HCV−
GGGGCACGCCCAA
4735
22584
ususgsgsgc cUGAUGaggccguuaggccGaa Ugcccc B
9537
Amber-









zyme


143
HCV−
AGACCACUAUGGG
4736
22585
gscscsasua cUGAUGaggccguuaggccGaa Uggucu B
9538
Amber-









zyme


146
HCV−
CGCAGACCACUAU
4737
22586
asusasgsug cUGAUGaggccguuaggccGaa Ucugcg B
9539
Amber-









zyme


195
HCV−
CCAAGAAAGGACG
4738
22587
gsgsuscscu cUGAUGaggccguuaggccGaa Ucuugg B
9540
Amber-









zyme


194
HCV−
CAAGAAAGGACCG
4739
22588
gsgsgsuscc cUGAUGaggccguuaggccGaa Uucuug B
9541
Amber-









zyme


283
HCV−
GUACCACAAGGCG
4740
22589
gsgscscsuu cUGAUGaggccguuaggccGaa Ugguac B
9542
Amber-









zyme


286
HCV−
GCAGUACCACAAG
4741
22590
csususgsug cUGAUGaggccguuaggccGaa Uacugc B
9543
Amber-









zyme


296
HCV−
ACCCUAUCAGGCA
4742
22591
usgscscsug cUGAUGaggccguuaggccGaa Uagggu B
9544
Amber-









zyme


190
HCV−
AAAGGACCCGGUG
4743
22592
gsascscsgg cUGAUGaggccguuaggccGaa Uccuuu B
9545
Amber-









zyme


163
HCV−
CGGUGUACUCACCGG
4744
22593
cscsgsgsuga cUGAUGaggccguuaggccGaa Ucaccg B
9546
Amber-









zyme


140
HCV−
ACCACUAUGGCUCUG
4745
22594
gsasgsasgcc cUGAUGaggccguuaggCCGaa Uaguggu B
9547
Amber-









zyme


159
HCV−
GUACUCACCGGUUCG
4746
22595
gsgsasasccg cUGAUGaggccguuaggccGaa Ugaguac B
9548
Amber-









zyme


233
HCV−
GGGGGCACGCCCAAA
4747
22596
usususgsggc cUGAUGaggccguuaggccGaa Ugccccc B
9549
Amber-









zyme


143
HCV−
CAGACCACUAUGGCU
4748
22597
asgscscsaua cUGAUGaggccguuaggccGaa Uggucug B
9550
Amber-









zyme


146
HCV−
CCGCAGACCACUAUG
4749
22598
csasusasgug cUGAUGaggccguuaggccGaa Ucugcgg B
9551
Amber-









zyme


195
HCV−
UCCAAGAAAGGACCG
4750
22599
gsgsgsusccu cUGAUGaggccguuaggccGaa Ucuugga B
9552
Amber-









zyme


283
HCV−
AGUACCACAAGGCCU
4751
22600
asgsgscscuu cUGAUGaggccguuaggccGaa Ugguacu B
9553
Amber-









zyme


281
HGV−
UACCACAAGGCCUUU
4752
22601
asasasgsgcc cUGAUGaggccguuaggccGaa Uguggua B
9554
Amber-









zyme


296
HCV−
CACCCUAUCAGGCAG
4753
22602
csusgscscug cUGAUGaggccguuaggccGaa Uagggug B
9555
Amber-









zyme


286
HCV−
GGCAGUACCACAAGG
4754
22603
cscsususgug cUGAUGaggccguuaggccGaa Uacugcc B
9556
Amber-









zyme


7985
HCV−
UCUCAGU G UCUUCCA
4765
22719
uggaaga uGAUg gcauGcacuaugc gCg acugaga B
9557
G-









cleav-









er


4832
HCV−
UGUAUAU G CCUCUCC
4755
22720
ggagagg uGAUg gcauGcacuaugc gCg auauaca B
9558
G-









cleav-









er


4153
HCV−
ACCGUGU G CCUUAGA
4756
22721
ucuaagg uGAUg gcauGcacuaugc gCg acacggu B
9559
G-









cleav-









er


3200
HCV−
GUGGAGU G AGGUGGU
4757
22722
accaccu uGAUg gcauGcacuaugc gCg acuccau B
9560
G-









cleav-









er


1682
HCV−
ACGAGUU G AACCUGU
4758
22723
acagguu uGAUg gcauGcacuaugc gCg aacucgu B
9561
G-









cleav-









er


896
HCV+
CCUGUCU G ACCAUCG
4759
22724
ggauggu uGAUg gcauGcacuaugc gCg agacagg B
9562
G-









cleav-









er


2504
HCV+
UCCUGUU G CUUUUCC
4762
22725
ggaaaag uGAUg gcauGcacuaugc gCg aacagga B
9563
G-









cleav-









er


2651
HCV−
UCCUCGU G UUCUUCU
4763
22726
agaagaa uGAUg gcauGcacuaugc gCg acgagga B
9564
G-









cleav-









er


4094
HCV−
ACAAAGU G CUCGUCC
4760
22727
ggacgag uGAUg gcauGcacuaugc gCg acuuugu B
9565
G-









cleav-









er


8970
HCV+
GCCACUU G ACCUACC
4761
22728
gguaggu uGAUg gcauGcacuaugc gCg aaaguggc B
9566
G-









cleav-









er


1200
HCV+
CUUCCUG G UCUCUCA
4789
22747
ugagaga gccgaaaggCgagugaGGuCu gaggaag B
9567
Zin-









zyme


1211
HCV−
CUCAGCU G UUCACCU
4790
22748
aggugaa gccgaaaggCgagugaGGuCu agcugag B
9568
Zin-









zyme


2504
HCV−
UCCUGUU G CUUUUCC
4762
22749
ggaaaag gccgaaaggCgagugaGGuCu aacagga B
9569
Zin-









zyme


2651
HCV+
UCCUCGU G UUCUUCU
4763
22750
agaagaa gccgaaaggCgagugaGGuCu acgagga B
9570
Zin-









zyme


8811
HCV+
CACUCCA G UCAACUC
4764
22751
gaguuga gccgaaaggCgagugaGGuCu uggagug B
9571
Zin-









zyme


8594
HCV−
UCGCCGG G UCCUCUU
4793
22752
aagagga gccgaaaggCgagugaGGuCu gcggcga B
9572
Zin-









zyme


7985
HCV−
UCUCAGU G UCUUCCA
4765
22753
uggaaga gccgaaaggCgagugaGGuCu acugaga B
9573
Zin-









zyme


6611
HCV−
CCUCCAG G UACUCCU
4796
22754
aggagua gccgaaaggCgagugaGGuCu guggagg B
9574
Zin-









zyme


5633
HCV−
UCCACAU G UGCUUCG
4766
22755
cgaagca gccgaaaggCgagugaGGuCu augugga B
9575
Zin-









zyme


821
HCV−
UCACGCG G UCUUCCA
4767
22756
uggaaga gccgaaaggCgagugaGGuCu ggcguga B
9576
Zin-









zyme


870
HCV+
CUCUAUG U UCCUCUU
4768
22775
aagagga CUGAUGAggccguuaggccGAA Iauagag B
9577
Ino-









zyme


1210
HCV+
UCUCAGG U GUUCACC
4769
22776
ggugaac CUGAUGAggccguuaggccGAA Icugaga B
9578
Ino-









zyme


2642
HCV+
UCCUCUC C UUCCUCG
4770
22777
cgaggaa CUGAUGAggccguuaggccGAA Iagagga B
9579
Ino-









zyme


5726
HCV+
UCACAGC C UCCAUCA
4771
22778
ugaugga CUGAUGAggccguuaggccGAA Icuguga B
9568
Ino-









zyme


8142
HCV+
CUCCACC C UUCCUCA
4772
22779
ugaggaa CUGAUGAggccguuaggccGAA Iguggag B
9581
Ino-









zyme


7990
HCV−
UGGUGUG U CAGUGUC
4773
22780
gacacug CUGAUGAggccguuaggccGAA Iacacca B
9582
Ino-









zyme


7813
HCV−
CUUCGCG U UCAUCUC
4774
22781
gagauga CUGAUGAggccguuaggccGAA Igcgaag B
9583
Ino-









zyme


7137
HCV−
ACCUCUG U CUCAUCC
4775
22782
ggaugag CUGAUGAggccguuaggccGAA Iagaggu B
9584
Ino-









zyme


6084
HCV−
UUCAUCC A CUGCACA
4776
22783
ugugcag CUGAUGAggccguuaggccGAA Igaugaa B
9585
Ino-









zyme


2554
HCV−
CAACAGC A UCAUCCA
4777
22784
uggauga CUGAUGAggccguuaggccGAA Icuguug B
9586
Ino-









zyme


1202
HCV+
UCCUCGU C UCUCAGC
4778
22943
gcugaga CUGAUGAggccguuaggccGAA Acgagga B
9587
Ham-









mer-









head


1607
HCV+
GGCACAU U AACAGGA
4779
22944
uccuguu CUGAUGAggccguuaggccGAA Augugcc B
9588
Ham-









mer-









head


2639
HCV+
GCAUCCU C UCCUUCC
4780
22945
ggaagga CUGAUGAggccguuaggccGAA Aggaugc B
9589
Ham-









mer-









head


6610
HCV+
GAGGAGU A CGUGGAG
4781
22946
cuccacg CUGAUGAggccguuaggccGAA Acuccuc B
9590
Ham-









mer-









head


9014
HCV+
GCGCAUU U UCACUCC
4782
22947
ggaguga CUGAUGAggccguuaggccGAA Aaugcgc B
9591
Ham-









mer-









head


8605
HCV−
GACUCGU A GGCUCGC
4783
22948
gcgagcc CUGAUGAggccguuaggccGAA Acgaguc B
9592
Ham-









mer-









head


7983
HCV−
UCAGUGU C UUCCAGC
4784
22949
gcuggaa CUGAUGAggccguuaggccGAA Acacuga B
9593
Ham-









mer-









head


7136
HCV−
CCUCUCU C UCAUCCU
4785
22950
aggauga CUGAUGAggccguuaggccGAA Agagagg B
9594
Ham-









mer-









head


6609
HCV−
UCCACGU A CUCCUCA
4786
22951
ugaggag CUGAUGAggccguuaggccGAA Acgugga B
9595
Ham-









mer-









head


6292
HCV−
CGUGCAU A UCCAGUC
4787
22952
gacugga CUGAUGAggccguuaggccGAA Augcacg B
9596
Ham-









mer-









head


867
HCV+
UUUCUCU A UCUUCCU
4788
22971
aggaaga GGCTAGCTACAACGA agagaaa B
9597
DNA-









zyme


1200
HCV+
CUUCCUG G UCUCUCA
4789
22972
ugagaga GGCTAGCTACAACGA gaggaag B
9598
DNA-









zyme


1211
HCV+
CUCAGCU G UUCACCU
4790
22973
aggugaa GGCTAGCTACAACGA agcugag B
9599
DNA-









zyme


5730
HCV+
AGCCUCC A UCACCAG
4791
22974
cugguga GGCTAGCTACAACGA ggaggcu B
9600
DNA-









zyme


6533
HCV+
UCAACGC A UACACCA
4792
22975
uggugua GGCTAGCTACAACGA gcguuga B
9601
DNA-









zyme


8594
HCV−
UCGCCGG G UCCUCUU
4793
22976
aagagga GGCTAGCTACAACGA gcggcga B
9602
DNA-









zyme


7810
HCV−
CGCCUUC A UCUCCUU
4794
22977
aaggaga GGCTAGCTACAACGA gaaggcg B
9603
DNA-









zyme


7133
HCV−
CUCUCUC A UCCUCCU
4795
22978
aggagga GGCTAGCTACAACGA gagagag B
9604
DNA-









zyme


6611
HCV−
CCUCCAG G UACUCCU
4796
22979
aggagua GGCTAGCTACAACGA guggagg B
9605
DNA-









zyme


2300
HCV−
CCUCCAA A UCACAAC
4797
22980
guuguga GGCTAGCTACAACGA uuggagg B
9606
DNA-









zyme


195
HCV+
GGGUCCU U UCUUGGA
4556
23072
cscsasasga cUGAuGaggcgWWagccGaa Aggacc B
9607
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
45562
23076
WWWWWcscsasasga cUGAuGaggcgWWWagccGaa Aggacc B
9608
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
45562
23077
WWWcscsasasga cUGAuGaggcgWWWagccGaa Aggacc B
9609
Ham-









mer-









head


195
HCV+
GGGUCCU U UCUUGGA
45562
23086
cscsasasga cUGAuGaggcgWWWagccGa Aggacc B
9610
Ham-









mer-









head






lower case = 2′-O-methyl




UPPER CASE = RIBO






B
= inverted deoxy abasic







U
= 2′-deoxy-2′-amino Uridine







C
= 2′-deoxy-2′-amino Cytidine









U


 = 2′-deoxy-2′-amino Uridine





Z = BRdU (5-bromo-2′-deoxy Uridine)






W
= acyclic galactoe-amine linker







UNDERLINE
 = deoxy nuclectide









[0392]

5





TABLE VI










Anti HCV amino containing hammerhead ribozyme and control sequence














HCV 5′UTR


Rz Seq


pos
RPI#
Site

Core
ID


















Ribozyme Sequences (5′-3′)




621
2257
HCV-62
gscsgsugaa cUGAUGaggccguuaggccGaa AcaguagB
Active
9611


791
2258
HCV-79
asusgsgcua cUGAUGaggccguuaggccGaa AcgcuuuB
Active
9612


811
2249
HCV-81
cscsasuggc cUGAUGaggccguuaggccGaa AgacgcuB
Active
9613


1041
2259
HCV-104
gscsusgcac cUGAUGaggccguuaggccGaa AcacucaB
Active
9614


1421
2250
HCV-142
asgsasccac cUGAUGaggccguuaggCCGaa AuggcucB
Active
9615


1481
2251
HCV-148
ususcscgca cUGAUGaggccguuaggccGaa AccacuaB
Active
9616


1651
2260
HCV-165
uscscsggug cUGAUGaggccguuaggccGaa AcucaccB
Active
9617


1921
2261
HCV-192
asasgsaaa9 cUGAUGaggccguuaggccGaa AcccgguB
Active
9618


1951
2252
HCV-195
uscscsaaga cUGAUGaggccguuaggccGaa AggacccB
Active
9619


1961
2262
HCV-196
asuscscaag cUGAUGaggccguuaggccGaa AaggaccB
Active
9620


2701
2263
HCV-270
csususucgc cUGAUGaggccguuaggccGaa AcccaacB
Active
9621


2821
2264
HCV-282
Bsusasccac cUGAUGaggccguuaggccGaa AggccuuB
Active
9622


3061
2265
HCV-306
csascsucgc cUGAUGaggccguuaggccGaa AgcacccB
Active
9623


3251
2253
HCV-325
uscsusacga cUGAUGaggccguuaggccGaa AccucccB
Active
9624


3301
2254
HCV-330
csascsgguc cUGAUGaggccguuaggccGaa AcgagacB
Active
9625








Control Sequence


79
13274
HCV-79 AC2
csususaggu cUAGUGaggccguuaggccGau AguucucB
Attenuated
9626


81
13271
HCV-81 AC
uscsusgccg cUAGUGaggccguuaggccGau AgugaccB
Attenuated
9627


142
13270
HCV-142 AC
asascsccu9 cUAGUGaygcc9uuaggccGau AgcucguB
Attenuated
9628


192
13272
HCV-192 AC
asgsusagaa cUAGUGaggccguuaggccGaU AgcugccB
Attenuated
9629


195
13269
HCV195 AC
gsasusucca cUAGUGaggccguuaggccGaU AcgcgacB
Attenuated
9630


282
13273
HCV-282 AC
gscscsauuc cUAGUGaggccguuaggccGaU AucuggcB
Attenuated
9631


330
13268
HCV-330 AC
cscsasggcu cUAGUGaggccguuaggccGau AaugcgcB
Attenuated
9632


195
15291
HCV-195 BAC3
uscscsaaga cUAGUGacgccguuaggcgGaa AggacccB
Attenuated
9633


195
15292
HCV-195 SAC3
asgsascuac cUAGUGacgccguuaggcgGaa AcccgagB
Attenuated
9634


330
15294
HCV-330 BAC
csascsgguc cUAGUGacgccguuaggcgGaa AcgagacB
Attenuated
9635


330
15295
HCV-330 SAC
gscsusccga cUAGUGacgccguuaggcgGaa AgacacgB
Attenuated
9636






UPPER CASE = RIBO; lower case = 2′-O-methyl; B = inverted deoxyabasic; s = phosphorothioate linkage U = 2′-deoxy-2′-amino uridine








[0393]

6





TABLE VII










Anti HCV site 330 antisense nucleic acid and scrambled control sequence











pos
RPI#
Alias

Seq ID #

















Antisense Nucleic Acid



330
17501
HCV.5-330
GsTsGs CsTsCs AsTsGs AsTsGs CsAsCs GsGsTs CsT
9353




antisense


330
17499
HCV.5-330
GsTsGs CsTscs AsTsGs GsTsGs csAscs GsGsTs CsT
9637




antisense








Control Sequence


330
17499
HCV.5-330 scrambled
TsGsAs TscsAs GsGsTs CsTsGs CsTsGs csGsTs GsC
9638


330
17502
HCV.5-330 scrambled
TsGsAsTscsAsGsGsTscsTsGscsTsGscsAsTsGsG
9639






UPPER CASE = Deoxy Nuclectide




s = phosphorothioate








[0394]

7





TABLE VIII










In Vitro Cleavage Data, anti-HCV Enzymatic Nucleic Acid




















% Sub-










strate







Cleav-


Seq


Site

ed in

Seq
Sub-


ID


(+/

3

ID
strate


#
RPI#
Motif
−)
Enzymatic Nucleic Acid Sequence
hours
Substrate Sequence
#
RPI#


















9587
22943
Hammer-
1190
gcugaga CUGAUGAggccguuaggccGAA Acgagga B
89.67
UCCUCGU C UCUCAGC B
9640
22897



head
(+)


9588
22944
Hammer-
1595
uccuguu CUGAUGAggccguuaggccGAA Augugga B
90.33
GGCACAU U AACAGGA B
9641
22898



head
(+)


9589
22945
Hammer-
2627
ggaagga CUGAUGAggccguuaggccGAA Aggaugc B
82.54
GCAUCCU C UCCUUCC B
9642
22899



head
(+)


9590
22946
Hammer-
6598
cuccacg CUGAUGAggccguuaggccGAA Acuccuc B
78.06
GAGGAGU A CGUGGAG B
9643
22900



head
(+)


9591
22947
Hammer-
9002
ggaguga CUGAUGAggccguuaggccGAA Aaugcgc B
81.88
GCGCAUU U UCACUCC B
9644
22901



head
(+)


9592
22948
Hammer-
 818
gcgagcc CUGAUGAggccguuaggccGAA Acgaguc B
88.34
GACUCGU A GGCUCGC B
9645
22902



head
(−)


9593
22949
Hammer-
1440
gcuggaa CUGAUGAggccguuaggccGAA Acacuga B
89.16
UCAGUGU C UUCCAGC B
9646
22903



head
(−)


9594
22950
Hammer-
2287
aggauga CUGAUGAggccguuaggccGAA Agagagg B
83.43
CCUCUCU C UCAUCCU B
9647
22904



head
(−)


9595
22951
Hammer-
2814
ugaggag CUGAUGAggccguuaggccGAA Acgugga B
83.25
UCCACGU A CUCCUCA B
9648
22905



head
(−)


9596
22952
Hammer-
3131
gacugga CUGAUGAggccguuaggccGAA Augcacg B
86.96
CGUGCAU A UCCAGUC B
9649
22906



head
(−)





9597
22971
DNAzyme
 855
aggaaga GGCTAGCTACAACGA agagaaa B
92.11
UUUCUCU A UCUUCCU B
22925





(+)


9598
22972
CNAzyme
1188
ugagaga GGCTAGCTACAACGA gaggaag B
86.38
CUUCCUC G UCUCUCA B
22926





(+)


9599
22973
DNAzyme
1199
aggugaa GGCTAGCTACAACGA agcugag B
83.15
CUCAGCU G UUCACCU B
22927





(+)


9600
22974
DNAzyme
5718
cugguga GGCTAGCTACAACGA ggaggcu B
57.82
AGCCUCC A UCACCAG B
22928





(+)


9601
22975
DNAzyme
6521
uggugua GGCTAGCTACAACGA gcguuga B
75.77
UCAACGC A UACACCA B
22929





(+)


9602
22976
DNAzyme
 829 aagagga GGCTAGCTACAACGA gcggcga B
66.06
UCGCCGC G UCCUCUU B
22930





(−)


9603
22977
DNAzyme
1613
aaggaga GGCTAGCTACAACGA gaaggcg B
71.28
CGCCUUC A UCUCCUU B
22931





(−)


9604
22978
DNAzyme
2290
aggagga GGCTAGCTACAACGA gagagag B
61.60
CUCUCUC A UCCUCCU B
22932





(−)


96G5
22979
DNAzyme
2812
aggagua GGCTAGCTACAACGA guggagg B
85.53
CCUCCAC G UACUCCU B
22933





(−)


9606
22980
DNAzyme
7123
guuguga GGCTAGCTACAACGA uuggagg B
34.60
CCUCCAA A ACACAAC B
22934





(−)





9557
22719
G-
1438
uggaaga uGAUg gcauGcacuaugc gCg acugaga B
69.88
UCUCAGU G UCUUCCA B



cleaver
(+)


9558
22720
G-
4591
ggagagg uGAUg gcauGcacuaugc gCg auauaca B
77.74
UGUAUAU G CCUCUCC B



cleaver
(+)


9559
22721
G-
5270
ucuaagg uGAUg gcauGcacuaugc gCg acacggu B
47.37
ACCGUGU G CCUUAGA B



cleaver
(+)


9560
22722
G-
6223
accaccu uGAUg gcauccacuaugc gCg acuccac B
75.84
GUGGAGU G AGGUGGU B



cleaver
(+)


9561
22723
G-
7741
acagguu uGAUg gcauccacuaugc gCg aacucgu B
61.58
ACGAGUU G AACCUGU B



cleaver
(+)


9562
22724
G-
 884
ggauggu uGAUg gcauGcacuaugc gCg agacagg B
65.16
CCUGUCU G ACCAUCC B



cleaver
(−)


9563
22725
G-
2492
ggaaaag uGAUg gcauGcacuaugc gCg aacagga B
94.66
UCCUGUU G CUUUUCC B



cleaver
(−)


9564
22726
G-
2639
agaagaa uGAUg gcauGcacuaugc gCg acgagga B
82.14
UCCUGUU G CUUUUCC B



cleaver
(−)


9565
22727
G-
4082
ggacgag uGAUg gcauccacuaugc gCg acuuugu B
67.20
ACAAAGU G CUCGUCC B



cleaver
(−)


9566
22728
G-
8958
gguaggu uGAUg gcauccacuaugc gCg aaguggc B
81.06
GCCACUU G ACCUACC B



cleaver
(−)





9567
22747
Zinzyme
1188
ugagaga gccgaaaggCgagugaGGuCu gaggaag B
66.11
CUUCCUC G UCUCUCA B





(+)


9568
22748
Zinzyme
1199
aggugaa gccgaaaggCgagugaGGuCu agcugag B
80.28
CUCAGCU G UUCACCU B





(+)


9569
22749
Zinzyme
2492
ggaaaag gccgaaaggCgagugaGGuCu aacagga B
90.80
UCCUGUU G CUUUUCC B





(+)


9570
22750
Zinzyme
2639
agaagaa gccgaaaggCgagugaGGuCu acgagga B
80.64
UCCUCGU G UUCUUCU B





(+)


9571
22751
Zinzyme
8799
gaguuga gccgaaaggCgagugaGGuCu uggagug B
14.85
CACUCCA G UCAACUC B





(+)


9572
22752
Zinzyme
 829
aagagga gccgaaaggCgagugaGGuCu gcggcga B
27.83
UCGCCGC G UCCUCUU B





(−)


9573
22753
Zinzyme
1438
uggaaga gccgaaaggCgagugaGGuCu acugaga B
89.39
UCUCAGU G UCUUCCA B





(−)


9574
22754
Zinzyme
2812
aggagua gccgaaaggCgagugaGGuCu guggagg B
50.40
CCUCCAC G UACUCCU B





(−)


9575
22755
Zinzyme
3790
cgaagca gccgaaaggCgagugaGGuCu augugga B
81.10
UCCACAU G UGCUUCG B





(−)


9576
22756
Zinzyme
8602
uggaaga gccgaaaggCgagugaGGuCu ggcguga B
73.47
UCACGCC G UCUUCCA B





(−)





9577
22775
Inozyme
 858
aagagga CUGAUGAggccguuaggccGAA Iauagag B
87.74
CUCUAUC U UCCUCUU B





(+)


9578
22776
Inozyme
1198
ggugaac CUGAUGAggccguuaggccGAA Icugaga B
84.55
UCUCAGC U UCCUCUU B





(+)


9579
22777
Inozyme
2630
cgaggaa CUGAUGAggccguuaggccGAA Iagagga B
90.12
UCCUCUC C UUCCUCG B





(+)


9580
22778
Inozyme
5714
ugaugga CUGAUGAggccguuaggccGAA Icuguga B
83.77
UCACAGC C UCCAUCA B





(+)


9581
22779
Inozyme
8130
ugaggaa CUGAUGAggccguuaggccGAA Iguggag B
82.22
CUCCACC C UUCCUCA B





(+)


9582
22780
Inozyme
1433
gacacug CUGAUGAggccguuaggccGAA Iacacca B
87.33
UGGUGUC U CAGUGUC B





(−)


9583
22781
Inozyme
1610
gagauga CUGAUGAggccguuaggccGAA Igcgaag B
70.67
CUUCGCC U UCAUCUC B





(−)


9584
22782
Inozyme
2286
ggaugag CUGAUGAggccguuaggccGAA Iagaggu B
78.83
ACCUCUC U CUCAUCC B





(−)


9585
22783
Inozyme
3339
ugugcag GUGAUGAggccguuaggccGAA Igaugaa B
86.93
UUCAUCC A CUGCACA B





(−)


9586
22784
Inozyme
6869
uggauga CUGAUGAggccguuaggccGAA Icuguug B
90.41
CAACAGC A UCAUCCA B





(−)






In vitro cleavage in 50 mM Tris-Cl, pH 8.0, 40 mM Mg2+ at 37°, using trace substrate, and enzymatic nucleic acid concentration of 500 nM or greater.




UPPER CASE = RIBO






UNDERLINED
 = DEOXY





lower case = 2′-O-methyl




B = inverted deoxyabasic






C
= 2′-amino C





(+/−) = plus strand/minus strand of HCV genome








[0395] All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.


[0396] One skilled in the art would readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.


[0397] It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims.


[0398] The invention illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” can be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed can be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.


[0399] In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.


[0400] Other embodiments are within the following claims.


Claims
  • 1. A compound having Formula I:
  • 2. The compound of claim 1, wherein R6 independently represents H, OH, NH2, O NH2, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, or fluoro.
  • 3. The compound of claim 1, wherein each R1 and R2 independently represent O, alkyl, O-alkyl, or S.
  • 4. The compound of claim 1, wherein R3, R4 and R8 independantly represent O, N, alkyl, fluoroalkyl, or S.
  • 5. The compound of claim 1, wherein said oligonucleotide comprising a sequence complementary to any of SEQ ID NOS. 1-4556 is an enzymatic nucleic acid molecule.
  • 6. The compound of claim 1, wherein said oligonucleotide comprising a sequence complementary to any of SEQ ID NOS. 1-4556 is an antisense nucleic acid molecule.
  • 7. The compound of claim 2, wherein said enzymatic nucleic acid molecule is selected from the group consisting of Hammerhead, Inozyme, G-cleaver, DNAzyme, Amberzyme, and Zinzyme motifs.
  • 8. The compound of claim 4, wherein said Inozyme enzymatic nucleic acid molecule comprises a stem II region of length greater than or equal to 2 base pairs.
  • 9. The compound of claim 5, wherein said enzymatic nucleic acid comprises between 12 and 100 bases complementary to an RNA derived from HCV.
  • 10. The compound of claim 5, wherein said enzymatic nucleic acid comprises between 14 and 24 bases complementary to an RNA derived from HCV.
  • 11. The compound of claim 6, wherein said antisense nucleic acid comprises between 12 and 100 bases complementary to an RNA derived from HCV.
  • 12. The compound of claim 6, wherein said antisense nucleic acid comprises between 14 and 24 bases complementary to an RNA derived from HCV.
  • 13. A pharmaceutical composition comprising the compound of claim 1, in a pharmaceutically acceptable carrier.
  • 14. A mammalian cell comprising a compound of claim 1.
  • 15. The mammalian cell of claim 14, wherein said mammalian cell is a human cell.
  • 16. A method for treatment of cirrhosis, liver failure or hepatocellular carcinoma comprising the step of administering to a patient a compound of claim 1, under conditions suitable for said treatment.
  • 17. A method of treatment of a patient having a condition associated with HCV infection comprising contacting cells of said patient with a compound of claim 1, and further comprising contacting said cells with one or more other therapeutic compounds under conditions suitable for said treatment.
  • 18. A method for inhibiting HCV replication in a mammalian cell comprising the step of administering to said cell the compound of claim 1 under conditions suitable for said inhibition.
  • 19. A method of cleaving a separate RNA molecule comprising contacting the compound of claim 1 with said separate RNA molecule under conditions suitable for the cleavage of said separate RNA molecule.
  • 20. The method of claim 19, wherein said cleavage is carried out in the presence of a divalent cation.
  • 21. The method of claim 20, wherein said divalent cation is Mg2+.
  • 22. The method of claim 19, wherein said cleavage is carried out in the presence of a protein nuclease.
  • 23. The method of claim 22, wherein said protein nuclease is an RNAse L nuclease.
  • 24. The compound of claim 1, wherein said compound is chemically synthesized.
  • 25. The compound of claim 1, wherein said oligonucleotide comprises at least one 2′-sugar modification.
  • 26. The compound of claim 1, wherein said oligonucleotide comprises at least one nucleic acid base modification.
  • 27. The compound of claim 1, wherein said oligonucleotide comprises at least one phosphate modification.
  • 28. The method of claim 17, wherein said therapeutic compound is type I interferon.
  • 29. The method of claim 28, wherein said type I interferon and the compound of claim 1 are administered simultaneously.
  • 30. The method of claim 28, wherein said type I interferon and the compound of claim 1 are administered separately.
  • 31. The method of claim 28, wherein said type I interferon is interferon alpha.
  • 32. The method of claim 28, wherein said type I interferon is interferon beta.
  • 33. The method of claim 28, wherein said type I interferon is consensus interferon.
  • 34. The method of claim 28, wherein said type I interferon is polyethylene glycol interferon.
  • 35. The method of claim 28, wherein said type I interferon is polyethylene glycol interferon alpha 2a.
  • 36. The method of claim 28, wherein said type I interferon is polyethylene glycol interferon alpha 2b.
  • 37. The method of claim 28, wherein said type I interferon is polyethylene glycol consensus interferon.
  • 38. The method of claim 17, wherein R5 in compound 1 is selected from the group consisting of alkyl, alkylamine and abasic moiety and said other therapeutic compound comprises an enzymatic nucleic acid molecule which is targeted against HCV replication.
  • 39. The method of claim 17, wherein R5 in compound 1 is selected from the group consisting of alkyl, alkylamine and abasic moiety and said other therapeutic compound comprises an antisense nucleic acid molecule which is targeted against HCV replication.
  • 40. A pharmaceutical composition comprising type I interferon and the compound of claim 1, in a pharmaceutically acceptable carrier.
  • 41. The compound of claim 1, wherein said abasic moiety is selected from the group consisting of:
  • 42. The compound of claim 41, wherein R7 represents H, OH, NH2, O—NH2, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, fluoro, oligonucleotide, alkyl, alkylamine or abasic moiety.
Parent Case Info

[0001] This patent application is a continuation-in-part of Blatt et al., U.S. Ser. No. (09/740,332), filed Dec. 18, 2000, which is a continuation-in-part of Blatt et al., U.S. Ser. No. (09/611,931), filed Jul. 7, 2000, which is a continuation-in-part of Blatt et al., Ser. No. 09/504,321, filed Feb. 15, 2000, which is a continuation-in-part of Blatt et al., U.S. Ser. No. 09/274,553, filed Mar. 23, 1999, which is a continuation-in-part of Blatt et al., U.S. Ser. No. 09/257,608, filed Feb. 24, 1999 (abandoned), which claims priority from Blatt et al., U.S. Ser. No. 60/100,842, filed Sep. 18, 1998, and McSwiggen et al., U.S. Ser. No. 60/083,217 filed Apr. 27, 1998, all of these earlier applications are entitled “ENZYMATIC NUCLEIC ACID TREATMENT OF DISEASES OR CONDITIONS RELATED TO HEPATITIS C VIRUS INFECTION”. Each of these applications are hereby incorporated by reference herein in their entirety including the drawings.

Provisional Applications (2)
Number Date Country
60100842 Sep 1998 US
60083217 Apr 1998 US
Continuation in Parts (5)
Number Date Country
Parent 09740332 Dec 2000 US
Child 09817879 Mar 2001 US
Parent 09611931 Jul 2000 US
Child 09740332 Dec 2000 US
Parent 09504231 Feb 2000 US
Child 09611931 Jul 2000 US
Parent 09274553 Mar 1999 US
Child 09504231 Feb 2000 US
Parent 09257608 Feb 1999 US
Child 09274553 Mar 1999 US