1. Field of the Disclosure
The disclosure relates generally to systems and methods for selective control of fluid flow into a production string in a wellbore.
2. Description of the Related Art
Hydrocarbons such as oil and gas are recovered from a subterranean formation using a wellbore drilled into the formation. Such wells are typically completed by placing a casing along the wellbore length and perforating the casing adjacent each such production zone to extract the formation fluids (such as hydrocarbons) into the wellbore. These production zones are sometimes separated from each other by installing a packer between the production zones. Fluid from each production zone entering the wellbore is drawn into a tubing that runs to the surface. It is desirable to have substantially even drainage along the production zone. Uneven drainage may result in undesirable conditions such as an invasive gas cone or water cone. In the instance of an oil-producing well, for example, a gas cone may cause an in-flow of gas into the wellbore that could significantly reduce oil production. In like fashion, a water cone may cause an in-flow of water into the oil production flow that reduces the amount and quality of the produced oil. Accordingly, it is desired to provide even drainage across a production zone and/or the ability to selectively close off or reduce in-flow within production zones experiencing an undesirable influx of water and/or gas.
The present disclosure addresses these and other needs of the prior art.
In aspects, the present disclosure provides an apparatus for controlling a flow of a fluid into a tubular in a wellbore. In one embodiment, the apparatus may include a flow path associated with a production control device; an occlusion member positioned along the flow path that moves between a first position and a second position, the occlusion member being activated by a change in a pressure differential in the flow path; and a reactive media disposed along the flow path that changes a pressure differential across at least a portion of the flow path by interacting with a selected fluid to thereby actuate the occlusion member. The occlusion member may translate from the first position to the second position after the reactive media interacts with the selected fluid. In one aspect, the occlusion member may include a head portion that occludes a section of the flow path when the occlusion member is in the second position. In embodiments, the occlusion member may include an inner sleeve and an outer sleeve. A portion of the flow path may be defined by an annular space separating the inner sleeve and the outer sleeve. In some arrangements, the reactive media may be a water swellable material. In other arrangements, the reactive media may be an oil swellable material. Also, the reactive media may be selected or formulated to change a parameter related to the flow path. Illustrative parameters include, but are not limited to, (i) permeability, (ii) tortuosity, (iii) turbulence, (iv) viscosity, and (v) cross-sectional flow area.
In aspects, the present disclosure provides a method for controlling a flow of a fluid into a wellbore tubular in a wellbore. In embodiments, the method may include conveying the fluid via a flow path from the formation into a flow bore of the wellbore; positioning an occlusion member along the flow path; controlling a pressure differential in at least a portion of the flow path using a reactive material that interacts with a selected fluid; and moving the occlusion member between the first position and a second position when the selected fluid is in the flowing fluid. The moving may be performed, in part, by translating the occlusion member from the first position to the second position after the reactive media interacts with the selected fluid. In embodiments, the method may utilize applying a translating force to the occlusion member to move the occlusion member.
In aspects, the present disclosure provides a system for controlling a flow of a fluid from a formation into a wellbore tubular. The system may include a plurality of in-flow control devices positioned along a section of the wellbore tubular. Each in-flow control device may include an occlusion member and an associated reactive media disposed in a flow path in communication with a bore of the wellbore tubular. The reactive media may be configured to change a pressure differential across at least a portion of the flow path by interacting with a selected fluid. In one embodiment, each occlusion member may include a conduit, and wherein the associated reactive media is disposed in the conduit.
In aspects, the present disclosure further includes an apparatus for controlling a flow of a fluid along a flow path in a wellbore. In embodiments, the apparatus may include an occlusion member and a reactive media positioned along the flow path. The occlusion member may be configured to control flow in the flow path by selectively occluding the flow path; and a reactive media disposed along the flow path. The reactive media may be configured to change a pressure differential across at least a portion of the flow path by interacting with a selected fluid, the occlusion member being activated by the change in the pressure differential.
It should be understood that examples of the more important features of the disclosure have been summarized rather broadly in order that detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
The advantages and further aspects of the disclosure will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawing and wherein:
The present disclosure relates to devices and methods for controlling production of a hydrocarbon producing well. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. Further, while embodiments may be described as having one or more features or a combination of two or more features, such a feature or a combination of features should not be construed as essential unless expressly stated as essential.
In one embodiment of the disclosure, in-flow of water into the wellbore tubular of an oil well is controlled, at least in part using an in-flow control element that contains a media that can interact with water in fluids produced from an underground formation and/or a fluid or other material introduced from the surface. The interaction varies a pressure differential across the in-flow control element, which applies an actuating force that may be used to translate or displace a member that restricts or blocks flow.
Referring initially to
Each production device 34 features a production control device 38 that is used to govern one or more aspects of a flow of one or more fluids into the production assembly 20. As used herein, the term “fluid” or “fluids” includes liquids, gases, hydrocarbons, multi-phase fluids, mixtures of two of more fluids, water, brine, engineered fluids such as drilling mud, fluids injected from the surface such as water, and naturally occurring fluids such as oil and gas. Additionally, references to water should be construed to also include water-based fluids; e.g., brine or salt water. In accordance with embodiments of the present disclosure, the production control device 38 may have a number of alternative constructions that ensure selective operation and controlled fluid flow therethrough.
Referring now to
The production control device 100 may include a particulate control device 110 for reducing the amount and size of particulates entrained in the fluids, a flow management device 120 that controls one or more drainage parameters, and an in-flow control device 130 that controls flow based on the composition of the in-flowing fluid. The particulate control device 110 can include known devices such as sand screens and associated gravel packs. The in-flow control device 120 includes one or more flow paths between a formation and a wellbore tubular that may be configured to control one or more flow characteristics such as flow rates, pressure, etc. For example, the in-flow control device 120 may utilize a helical flow path to reduce a flow rate of the in-flowing fluid. As will be described in greater detail below, the in-flow control device 130 may be actuated by a pressure-differential that is generated when a specified fluid, e.g., water, of a sufficient concentration or amount, is encountered by the production control device 100. While the flow control element 130 is shown downstream of the particulate control device 110 in
Turning to
In aspects, Darcy's Law may be used to determine the dimensions and other characteristics of the conduit 144, the piston 132, and the reactive media 134 that will cause the first and the second pressure differentials. As is known, Darcy's Law is an expression of the proportional relationship between the instantaneous discharge rate through a permeable medium, the viscosity of the fluid, and the pressure drop over a given distance:
where Q is the total discharge, K is permeability of the permeable medium, A is the cross-sectional flow area, (P2−P1) is the pressure drop, μ is the viscosity of the fluid, and L is the length of the conduit. Because permeability, cross-sectional flow area, and the length of the conduit are characteristics of the in-flow control device 130, the in-flow control device 130 may be constructed to provide a specified pressure drop for a given type of fluid and flow rate.
In order to confine flow through only the conduit 144, seals 150 may be positioned as needed to prevent fluid leaks between the piston 132 and a housing 152 of the flow control device 120 or the wellbore tubular 104. Additionally, a seal 154 may be positioned at the outlet 142 to primarily or secondarily block flow across the outlet 142. For example, as shown in
It should be understood that the piston 132, the reactive media 134 and the conduit 144 are susceptible to a variety of configurations. A few non-limiting configurations are discussed below.
Referring now to
The reactive media need not be integrated within an occlusion member in order to vary the pressure differential applied to that occlusion member. Referring now to
It should be appreciated that the in-flow control device 130 may utilize any of a number of configurations and methodologies to vary the pressure differential applied to the occlusion member 132. As shown in
Referring now to
Referring now to
It should be appreciated that the in-flow control devices of the present disclosure may utilize certain features that may provide enhanced control over fluid in-flow. For example, the risk of inadvertent or undesirable actuation of the in-flow device 130 of
Additionally, the reactive media 134 may be selected or formulated to react or interact with materials other than water. For example, the reactive media 134 may react with hydrocarbons, chemical compounds, particulates, gases, liquids, solids, additives, chemical solutions, mixtures, etc. For instance, the reactive media may be selected to increase rather than decrease permeability, which would decrease a pressure differential. One material for such an application may be a dissolving material. Another suitable material may reduce or oxidize upon contact with water or other substance. Thus, in aspects, materials suitable for such an application may dissolve, oxidize, degrade, disintegrate, etc. upon contact with a selected fluid such as water, oil, etc.
In still further variants, devices according to the present disclosure may be actuated to perform a desired action in a wellbore by pumping into the well a fluid having a selected material. It should be appreciated that flow parameters such as pressure or circulation rate would not necessarily have to be adjusted to actuate such a device. Rather, a “pill” of fluid may be conveyed into the wellbore to activate a reactive media. Thus, mechanical intervention, dropping a ball, using a flow-sensitive switch, deploying an actuating device via coiled tubing, jointed pipe, wireline or slick, etc., may not be needed.
Also, in certain production-related applications, a piston using an oil swellable reactive media may be used to actuate or operate a valve device. The oil swellable reactive media would be in an non-activated state while fluids such as drilling fluid, water, acids, fracturing fluids, and other such fluids are circulated in the wellbore. However, once hydrocarbons are produced, the oil swellable reactive media would be activated.
It should be appreciated that the teachings of the present disclosure may be advantageously applied to situations and operations outside of the oil well production. For example, drilling systems, milling tools, formation evaluation tools, and other types of equipment may also be configured to be actuated by selective generation of pressure differentials.
Referring now to
It should be understood that
From the above, it should be appreciated that what has been described includes, in part, an apparatus for controlling a flow of a fluid into a wellbore tubular in a wellbore. In one embodiment, the apparatus may include a flow path associated with a production control device and an occlusion member positioned along the flow path. The occlusion member may be configured to move between a first position and a second position. The apparatus may also include a reactive media disposed along the flow path. The reactive media may be configured to change a pressure differential across at least a portion of the flow path by interacting with a selected fluid. The occlusion member may translate from the first position to the second position after the reactive media interacts with the selected fluid. The interaction may increase a pressure differential applied to the occlusion member that moves or otherwise displaces the occlusion member. The reactive media may increase the pressure differential by changing a parameter related to the flow path. Illustrative parameters include, but are not limited to, (i) permeability, (ii) tortuosity, (iii) turbulence, (iv) viscosity, and (v) cross-sectional flow area.
From the above, it should also be appreciated that what has been described includes, in part, a method for controlling a flow of a fluid into a wellbore tubular in a wellbore. In embodiments, the method may include conveying the fluid via a flow path from the formation into a flow bore of the wellbore; positioning an occlusion member along the flow path; controlling a pressure differential in at least a portion of the flow path using a reactive material that interacts with a selected fluid; and moving the occlusion member between the first position and a second position when the selected fluid is in the flowing fluid. The moving may be performed, in part, by translating the occlusion member from the first position to the second position after the reactive media interacts with the selected fluid. In embodiments, the method may utilize applying a translating force to the occlusion member to move the occlusion member.
From the above, it should be appreciated that what has been described includes, in part, a system for controlling a flow of a fluid from a formation into a wellbore tubular. The system may include a plurality of in-flow control devices positioned along a section of the wellbore tubular. Each in-flow control device may include an occlusion member and an associated reactive media disposed in a flow path in communication with a bore of the wellbore tubular. The reactive media may be configured to change a pressure differential across at least a portion of the flow path by interacting with a selected fluid. In one embodiment, each occlusion member may include a conduit, and wherein the associated reactive media is disposed in the conduit.
For the sake of clarity and brevity, descriptions of most threaded connections between tubular elements, elastomeric seals, such as o-rings, and other well-understood techniques are omitted in the above description. Further, terms such as “slot,” “passages,” “conduit,” “opening,” and “channels” are used in their broadest meaning and are not limited to any particular type or configuration. The foregoing description is directed to particular embodiments of the present disclosure for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1362552 | Alexander et al. | Dec 1920 | A |
1649524 | Hammond | Nov 1927 | A |
1915867 | Penick | Jun 1933 | A |
1984741 | Harrington | Dec 1934 | A |
2089477 | Halbert | Aug 1937 | A |
2119563 | Wells | Jun 1938 | A |
2214064 | Niles | Sep 1940 | A |
2257523 | Combs | Sep 1941 | A |
2412641 | Spangler | Dec 1946 | A |
2762437 | Egan et al. | Sep 1956 | A |
2610352 | Tumilson | Oct 1957 | A |
2814947 | Stegemeier | Dec 1957 | A |
2942668 | Maly et al. | Jun 1960 | A |
2945541 | Maly et al. | Jul 1960 | A |
3326291 | Zandmer | Jun 1967 | A |
3385367 | Kollsman | May 1968 | A |
3419089 | Venghiattis | Dec 1968 | A |
3451477 | Kelley | Jun 1969 | A |
3675714 | Thompson | Jul 1972 | A |
3739645 | Berry et al. | Jun 1973 | A |
3791444 | Hickey | Feb 1974 | A |
3876471 | Jones | Apr 1975 | A |
3918523 | Stuber | Nov 1975 | A |
3951338 | Genna | Apr 1976 | A |
4173255 | Kramer | Nov 1979 | A |
4180132 | Young | Dec 1979 | A |
4186100 | Mott | Jan 1980 | A |
4250907 | Struckman et al. | Feb 1981 | A |
4257650 | Allen | Mar 1981 | A |
4287952 | Erbstoesser | Sep 1981 | A |
4415205 | Rehm et al. | Nov 1983 | A |
4434849 | Allen | Mar 1984 | A |
4491186 | Alder | Jan 1985 | A |
4497714 | Harris | Feb 1985 | A |
4552218 | Ross et al. | Nov 1985 | A |
4572295 | Walley | Feb 1986 | A |
4614303 | Moseley, Jr. et al. | Sep 1986 | A |
4649996 | Kojicic et al. | Mar 1987 | A |
4821800 | Scott et al. | Apr 1989 | A |
4856590 | Caillier | Aug 1989 | A |
4917183 | Gaidry et al. | Apr 1990 | A |
4974674 | Wells | Dec 1990 | A |
4998585 | Newcomer et al. | Mar 1991 | A |
5004049 | Arterbury | Apr 1991 | A |
5156811 | White | Oct 1992 | A |
5333684 | Walter et al. | Aug 1994 | A |
5337821 | Peterson | Aug 1994 | A |
5339895 | Arterbury et al. | Aug 1994 | A |
5377750 | Arterbury et al. | Jan 1995 | A |
5381864 | Nguyen et al. | Jan 1995 | A |
5431346 | Sinaisky | Jul 1995 | A |
5435393 | Brekke et al. | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439966 | Graham et al. | Aug 1995 | A |
5551513 | Surles et al. | Sep 1996 | A |
5586213 | Bridges et al. | Dec 1996 | A |
5597042 | Tubel et al. | Jan 1997 | A |
5609204 | Rebardi et al. | Mar 1997 | A |
5673751 | Head et al. | Oct 1997 | A |
5803179 | Echols | Sep 1998 | A |
5831156 | Mullins | Nov 1998 | A |
5839508 | Tubel et al. | Nov 1998 | A |
5873410 | Iato et al. | Feb 1999 | A |
5881809 | Gillespie et al. | Mar 1999 | A |
5982801 | Deak | Nov 1999 | A |
6068015 | Pringle | May 2000 | A |
6112815 | Boe et al. | Sep 2000 | A |
6112817 | Voll | Sep 2000 | A |
6228812 | Dawson et al. | May 2001 | B1 |
6253847 | Stephenson | Jul 2001 | B1 |
6253861 | Carmichael et al. | Jul 2001 | B1 |
6273194 | Hiron | Aug 2001 | B1 |
6305470 | Woie | Oct 2001 | B1 |
6367547 | Towers et al. | Apr 2002 | B1 |
6371210 | Bode et al. | Apr 2002 | B1 |
6372678 | Youngman et al. | Apr 2002 | B1 |
6419021 | George et al. | Jul 2002 | B1 |
6474413 | Barbosa et al. | Nov 2002 | B1 |
6505682 | Brockman | Jan 2003 | B2 |
6516888 | Gunnarson et al. | Feb 2003 | B1 |
6581682 | Parent et al. | Jun 2003 | B1 |
6622794 | Zisk | Sep 2003 | B2 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6635732 | Mentak | Oct 2003 | B2 |
6667029 | Zhong et al. | Dec 2003 | B2 |
6679324 | Boer et al. | Jan 2004 | B2 |
6692766 | Rubinstein et al. | Feb 2004 | B1 |
6699503 | Sako et al. | Mar 2004 | B1 |
6699611 | Kim et al. | Mar 2004 | B2 |
6786285 | Johnson et al. | Sep 2004 | B2 |
6817416 | Wilson et al. | Nov 2004 | B2 |
6840321 | Restarick et al. | Jan 2005 | B2 |
6863126 | McGlothen et al. | Mar 2005 | B2 |
6938698 | Coronado | Sep 2005 | B2 |
6951252 | Restarick et al. | Oct 2005 | B2 |
6976542 | Henriksen et al. | Dec 2005 | B2 |
7084094 | Gunn et al. | Aug 2006 | B2 |
7159656 | Eoff et al. | Jan 2007 | B2 |
7185705 | Freyer | Mar 2007 | B2 |
7318472 | Smith | Jan 2008 | B2 |
7322412 | Badalamenti et al. | Jan 2008 | B2 |
7325616 | Lopez de Cardenas et al. | Feb 2008 | B2 |
7395858 | Barbosa et al. | Jul 2008 | B2 |
7409999 | Henriksen et al. | Aug 2008 | B2 |
20020125009 | Wetzel et al. | Sep 2002 | A1 |
20030221834 | Hess et al. | Dec 2003 | A1 |
20040052689 | Yao | Mar 2004 | A1 |
20040144544 | Freyer | Jul 2004 | A1 |
20040194971 | Thomson | Oct 2004 | A1 |
20050016732 | Brannon et al. | Jan 2005 | A1 |
20050126776 | Russell | Jun 2005 | A1 |
20050171248 | Li et al. | Aug 2005 | A1 |
20050178705 | Broyles et al. | Aug 2005 | A1 |
20050189119 | Gynz-Rekowski | Sep 2005 | A1 |
20050199298 | Farrington | Sep 2005 | A1 |
20050207279 | Chemali et al. | Sep 2005 | A1 |
20050241835 | Burris et al. | Nov 2005 | A1 |
20060048936 | Fripp et al. | Mar 2006 | A1 |
20060048942 | Moen et al. | Mar 2006 | A1 |
20060076150 | Coronado | Apr 2006 | A1 |
20060086498 | Wetzel et al. | Apr 2006 | A1 |
20060108114 | Johnson | May 2006 | A1 |
20060133089 | Reid et al. | Jun 2006 | A1 |
20060185849 | Edwards et al. | Aug 2006 | A1 |
20060272814 | Broome et al. | Dec 2006 | A1 |
20070039741 | Hailey | Feb 2007 | A1 |
20070044962 | Tibbles | Mar 2007 | A1 |
20070131434 | MacDougall et al. | Jun 2007 | A1 |
20070246210 | Richards | Oct 2007 | A1 |
20070246225 | Hailey et al. | Oct 2007 | A1 |
20080035350 | Henriksen et al. | Feb 2008 | A1 |
20080053662 | Williamson et al. | Mar 2008 | A1 |
20080135249 | Fripp et al. | Jun 2008 | A1 |
20080149323 | O'Malley et al. | Jun 2008 | A1 |
20080149351 | Marya et al. | Jun 2008 | A1 |
20080236839 | Oddie | Oct 2008 | A1 |
20080236843 | Scott et al. | Oct 2008 | A1 |
20080283238 | Richards et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1385594 | Dec 2002 | CN |
1492345 | Nov 1977 | GB |
2341405 | Dec 2007 | GB |
59089383 | May 1984 | JP |
1335677 | Sep 1987 | SU |
9403743 | Feb 1994 | WO |
WO 0079097 | May 2000 | WO |
WO 0165063 | Feb 2001 | WO |
WO 0177485 | Mar 2001 | WO |
WO 02075110 | Sep 2002 | WO |
2004018833 | Mar 2004 | WO |
WO 2005015277 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090283275 A1 | Nov 2009 | US |