In various embodiments, the present invention relates to pneumatics, hydraulics, power generation, and energy storage, and more particularly, to systems and methods using pneumatic, pneumatic/hydraulic, and/or hydraulic cylinders for energy storage and recovery.
Storing energy in the form of compressed gas has a long history and components tend to be well tested and reliable, and have long lifetimes. The general principle of compressed-gas or compressed-air energy storage (CAES) is that generated energy (e.g., electric energy) is used to compress gas (e.g., air), thus converting the original energy to pressure potential energy; this potential energy is later recovered in a useful form (e.g., converted back to electricity) via gas expansion coupled to an appropriate mechanism. Advantages of compressed-gas energy storage include low specific-energy costs, long lifetime, low maintenance, reasonable energy density, and good reliability.
If a body of gas is at the same temperature as its environment, and expansion occurs slowly relative to the rate of heat exchange between the gas and its environment, then the gas will remain at approximately constant temperature as it expands. This process is termed “isothermal” expansion. Isothermal expansion of a quantity of high-pressure gas stored at a given temperature recovers approximately three times more work than would “adiabatic expansion,” that is, expansion where no heat is exchanged between the gas and its environment—e.g., because the expansion happens rapidly or in an insulated chamber. Gas may also be compressed isothermally or adiabatically.
An ideally isothermal energy-storage cycle of compression, storage, and expansion would have 100% thermodynamic efficiency. An ideally adiabatic energy-storage cycle would also have 100% thermodynamic efficiency, but there are many practical disadvantages to the adiabatic approach. These include the production of higher temperature and pressure extremes within the system, heat loss during the storage period, and inability to exploit environmental (e.g., cogenerative) heat sources and sinks during expansion and compression, respectively. In an isothermal system, the cost of adding a heat-exchange system is traded against resolving the difficulties of the adiabatic approach. In either case, mechanical energy from expanding gas must usually be converted to electrical energy before use.
An efficient and novel design for storing energy in the form of compressed gas utilizing near isothermal gas compression and expansion has been shown and described in U.S. Pat. No. 7,832,207, filed Apr. 9, 2009 (the '207 patent) and U.S. Pat. No. 7,874,155, filed Feb. 25, 2010 (the '155 patent), the disclosures of which are hereby incorporated herein by reference in their entireties. The '207 and '155 patents disclose systems and techniques for expanding gas isothermally in staged cylinders and intensifiers over a large pressure range in order to generate electrical energy when required. Mechanical energy from the expanding gas may be used to drive a hydraulic pump/motor subsystem that produces electricity. Systems and techniques for hydraulic-pneumatic pressure intensification that may be employed in systems and methods such as those disclosed in the '207 and '155 patents are shown and described in U.S. patent application Ser. No. 12/879,595, filed Sep. 10, 2010 (the '595 application), the disclosure of which is hereby incorporated herein by reference in its entirety.
In the systems disclosed in the '207 and '155 patents, reciprocal mechanical motion is produced during recovery of energy from storage by expansion of gas in the cylinders. This reciprocal motion may be converted to electricity by a variety of means, for example as disclosed in the '595 application as well as in U.S. patent application Ser. No. 12/938,853, filed Nov. 3, 2010 (the '853 application), the disclosure of which is hereby incorporated herein by reference in its entirety. The ability of such systems to either store energy (i.e., use energy to compress gas into a storage reservoir) or produce energy (i.e., expand gas from a storage reservoir to release energy) will be apparent to any person reasonably familiar with the principles of electrical and pneumatic machines.
During expansion of gas from storage in certain systems such as those disclosed in the '207 and '155 patents, the pressure of a quantity of gas within one chamber of a pneumatic or pneumatic-hydraulic cylinder exerts a force upon a piston and attached rod slidably disposed within the cylinder. The force exerted by the gas upon the piston and rod causes the piston and rod to move. The temperature of the gas undergoing expansion tends to decrease. To control the temperature of the quantity of gas being expanded within the cylinder (e.g., to hold it substantially constant, that is, to produce isothermal expansion), a heat-exchange liquid may be sprayed into the chamber containing the expanding gas. To prevent excess heat-exchange liquid from accumulating within the chamber, heat-exchange liquid may be removed continuously or episodically from the chamber. The liquid is conducted through a pipe to a pump that forces the liquid through a heat exchanger and back to the hydraulic cylinder, where the liquid is re-injected as a spray. The temperature of gas undergoing compression within the cylinder may be similarly controlled by circulation of the heat-exchange liquid.
In such an arrangement, portions of the cylinder assembly are in motion during either expansion or compression of gas within the cylinder. Consequently, if continuous circulation of the heat-exchange liquid is to be maintained, the pipe conveying the heat-exchange liquid generally flexes while the piston moves. A flexible pipe that flexes during operation is herein termed a hose. Flexure of a hose subjects its constituent materials, its connection points, and possibly other components (e.g., rod and/or rod gaskets) to time-varying forces. Such forces tend to shorten the lifespans of components subjected to them. Hence, there is a need for systems enabling the circulation of heat-exchange fluids into, within, and/or out of compressed-gas energy storage and recovery systems without utilization of flexible hose.
Embodiments of the invention enable the circulation of heat-exchange liquid in various energy storage and recovery systems without the use of hoses that flex during operation. Systems employing various embodiments of the invention contain fewer moving parts and undergo fewer motion-related stresses than comparable systems employing hoses. Thus, embodiments of the invention increase the simplicity and reliability of a pneumatic (and/or pneumatic-hydraulic) compressor-expander cylinder through which a heat-exchange liquid is circulated. Various embodiments enable the injection of heat-exchange liquid into and the removal of heat-exchange liquid from one or both chambers in a pneumatic compressor-expander cylinder without recourse to flexible hose. An at least partially internal tube (which is preferably rigid), herein termed a straw, is used to convey liquid from one chamber of the cylinder to the exterior of the cylinder. (While in some embodiments a straw may be innately flexible, it does not flex during normal operation in accordance with embodiments of the invention.) Two or more straws may be used to convey liquid from both chambers of the cylinder to the exterior of the cylinder. In various embodiments of the invention, the straw or tube may include or be a part of an internal pump (e.g., submersible bore pump, axial flow pump, or other in-line style pump) to convey liquid from one chamber of the cylinder to the exterior of the cylinder. Thus, heat-exchange fluid may be circulated through the straw via use of an internal circulation apparatus (e.g., a pump) or via its own pumping action.
Embodiments of the invention include one or more of four approaches to the circulation of a heat-exchange liquid through a pneumatic cylinder within which gas is expanded or compressed. First, in a system employing at least one vertically-aligned pneumatic cylinder for the expansion or compression of gas, where each cylinder contains a piston slidably disposed therein and a vertically aligned rod attached to the piston, a rigid, hollow tube open at both ends, herein termed a straw, is located within each cylinder. Gas to be expanded or compressed may be introduced into the chamber above the piston, herein termed the upper chamber; the chamber below the piston may contain gas or liquid. Heat-exchange liquid may be introduced into the upper chamber through one or more spray heads located within the upper chamber. The straw is attached to the upper portion of the cylinder and its position within the cylinder is fixed. The straw is aligned with a cavity within the rod (e.g., center drilled rod, plugged hollow rod) and also passing through the piston. A portion of the straw is inserted into the cavity: the extent of this inserted portion varies with the position of the rod and piston. The straw is sufficiently smaller in diameter than the cavity so that liquid may flow in the portion of the cavity that surrounds the straw. The upper end of the straw is not in liquid communication with the interior of the cylinder; it is in liquid communication with a pipe external to the cylinder. The upper end of the cavity is open to the upper chamber; the lower end of the cavity is sealed. If heat-exchange liquid is present in or is sprayed into the upper chamber of the cylinder, it accumulates on the upper surface of the piston and flows down into the cavity. The cavity is in fluid communication with the interior of the straw, whose nether end is always within the cavity. Heat-exchange liquid passes from the portion of the cavity surrounding the straw into the nether end of the straw. The liquid then passes up the straw, through the upper end of the cylinder, and into a pipe external to the cylinder that conducts it to a pump. The liquid passes out of the pump, thence through a heat exchanger, and thence back to the cylinder assembly, where it enters the upper chamber of the cylinder as a spray. A complete circuit containing no hose is thus established for the heat-exchange liquid.
Second, in a system employing at least one pneumatic cylinder for the expansion or compression of gas, where each cylinder contains a piston slidably disposed therein and a rod attached to the piston, a straw is located within each cylinder. Gas to be expanded or compressed may be introduced into the chamber below the piston, herein termed the lower chamber; the chamber above the piston may contain gas or liquid. Heat-exchange liquid may be introduced into the lower chamber through a spray head attached to the nether surface of the piston. The straw is attached to the lower portion of the cylinder and its position within the cylinder is fixed. The straw is aligned with a cavity within the rod (e.g., center drilled rod, plugged hollow rod) and also passing through the piston. A portion of the straw is inserted into the cavity: the extent of this inserted portion varies with the position of the rod and piston. The straw is sufficiently smaller in diameter than the center-drilled cavity so that liquid may flow in the portion of the cavity that surrounds the straw. The cavity is in fluid communication with the interior of the straw, whose upper end is always within the cavity. The nether end of the straw is not in liquid communication with the interior of the cylinder; it is in liquid communication with a pipe external to the cylinder. The upper end of the center-drilled cavity is sealed. If heat-exchange liquid is sprayed into the lower chamber, it accumulates on the lower surface of the lower chamber. The heat-exchange liquid exits the lower chamber through a port and passes into a pipe external to the cylinder. This pipe conducts the heat-exchange liquid to a pump. Exiting the pump, the heat-exchange liquid passes through a heat exchanger. Exiting the heat exchanger, the heat-exchange liquid is conducted to the nether end of the straw and passes up the interior of the straw into the portion of the cavity surrounding the straw within the rod. The heat-exchange liquid then passes from the cavity into the spray head attached to the nether surface of the piston. Passing into the spray head, the heat-exchange liquid is at a pressure (e.g., approximately 3,050 psi) higher than the pressure within the lower chamber (e.g., approximately 3,000 psi). The pressure in the straw is thus somewhat higher (e.g., approximately 50 psi higher) than the pressure in the lower chamber. To prevent leakage of heat exchange fluid and equalization of the pressures in the straw and lower chamber, a seal capable of maintaining a pressure differential (e.g., approximately 50 psi) is attached to the nether surface of the spray head or piston, surrounding the straw and in contact with it. A complete circuit containing no hose is thus established for the heat-exchange liquid.
Third, in a system employing at least one pneumatic cylinder for the expansion or compression of gas, where each cylinder contains a piston slidably disposed therein and a rod attached to the nether side of the piston, two straws are located within each cylinder. Gas to be expanded or compressed may be introduced into either the chamber below the piston, herein termed the lower chamber, or into the chamber above the piston, herein termed the upper chamber. The cylinder may perform an expansion or compression in either direction of piston motion; a cylinder so equipped is herein termed a double-acting cylinder. Heat-exchange liquid may be introduced into the upper chamber through a spray head located within the upper chamber; heat-exchange liquid may be introduced into the lower chamber through a spray head attached to the nether surface of the piston. Two parallel cavities are drilled lengthwise into the rod and are sealed at the rod's nether end. The two straws within the cylinder may be designated A and B and the two cavities in the rod may be designated a and b. Straw A is disposed with respect to cavity a, the upper chamber, and an external pump and heat exchanger (as described above in the first embodiment) serves to circulate heat-exchange liquid through the upper chamber during expansion or compression of gas in the upper chamber. Straw B is disposed with respect to cavity b, the lower chamber, and an external pump and heat exchanger (as described above in the second embodiment) serves to circulate heat-exchange liquid through the lower chamber during expansion or compression of gas in the lower chamber.
Fourth, in a system employing at least one pneumatic cylinder for the expansion or compression of gas, where each cylinder contains a piston slidably disposed therein and a rod attached to the piston, an internal pump (e.g., submersible bore pump, axial flow pump, or other in-line type pump) is located within each cylinder. Gas to be expanded or compressed may be introduced into the chamber above the piston, herein termed the upper chamber; the chamber below the piston may contain gas or liquid. Heat-exchange liquid may be introduced into the upper chamber through a spray head attached to the upper surface of the chamber. Preferably, the internal pump is attached to the upper portion of the cylinder and its position within the cylinder is fixed. The internal pump is aligned with a cavity within the rod (e.g., center drilled rod, plugged hollow rod) and also passing through the piston. A portion of the internal pump is inserted into the cavity: the extent of this inserted portion varies with the position of the rod and piston. The internal pump is sufficiently smaller in diameter than the center-drilled cavity so that liquid may flow in the portion of the cavity that surrounds the internal pump shaft. The cavity is in fluid communication with the interior of the pump, whose lower end is always within the cavity. The upper portion of the internal pump is not in liquid communication with the interior of the cylinder; it is in liquid communication with a pipe external to the cylinder. If heat-exchange liquid is sprayed into the upper chamber, it accumulates on the upper surface of the piston. The heat-exchange liquid exits the upper chamber through the rod cavity and passes through the internal pump into a pipe external to the cylinder. This pipe conducts the heat-exchange liquid to a heat exchanger. Exiting the heat exchanger, the heat-exchange liquid then passes into the spray head attached to the upper surface of the chamber. Passing into the spray head, the heat-exchange liquid is at a pressure (e.g., approximately 3,050 psi) higher than the pressure within the upper chamber (e.g., approximately 3,000 psi). A complete circuit containing no hose is thus established for the heat-exchange liquid.
Embodiments of the present invention are typically utilized in energy storage and generation systems utilizing compressed gas. In a compressed-gas energy storage system, gas is stored at high pressure (e.g., approximately 3,000 psi). This gas may be expanded into a cylinder having a first compartment (or “chamber”) and a second compartment separated by a piston slidably disposed within the cylinder (or by another boundary mechanism). A shaft may be coupled to the piston and extend through the first compartment and/or the second compartment of the cylinder and beyond an end cap of the cylinder, and a transmission mechanism may be coupled to the shaft for converting a reciprocal motion of the shaft into a rotary motion, as described in the '595 and '853 applications. Moreover, a motor/generator may be coupled to the transmission mechanism. Alternatively or additionally, the shaft of the cylinders may be coupled to one or more linear generators, as described in the '853 application.
As also described in the '853 application, the range of forces produced by expanding a given quantity of gas in a given time may be reduced through the addition of multiple, series-connected cylinder stages. That is, as gas from a high-pressure reservoir is expanded in one chamber of a first, high-pressure cylinder, gas from the other chamber of the first cylinder is directed to the expansion chamber of a second, lower-pressure cylinder. Gas from the lower-pressure chamber of this second cylinder may either be vented to the environment or directed to the expansion chamber of a third cylinder operating at still lower pressure; the third cylinder may be similarly connected to a fourth cylinder; and so on.
The principle may be extended to more than two cylinders to suit particular applications. For example, a narrower output force range for a given range of reservoir pressures is achieved by having a first, high-pressure cylinder operating between, for example, approximately 3,000 psig and approximately 300 psig and a second, larger-volume, lower-pressure cylinder operating between, for example, approximately 300 psig and approximately 30 psig. When two expansion cylinders are used, the range of pressure within either cylinder (and thus the range of force produced by either cylinder) is reduced as the square root relative to the range of pressure (or force) experienced with a single expansion cylinder, e.g., from approximately 100:1 to approximately 10:1 (as set forth in the '853 application). Furthermore, as set forth in the '595 application, N appropriately sized cylinders can reduce an original operating pressure range R to R1/N. Any group of N cylinders staged in this manner, where N≧2, is herein termed a cylinder group.
All of the approaches described above for converting potential energy in compressed gas into mechanical and electrical energy may, if appropriately designed, be operated in reverse to store electrical energy as potential energy in a compressed gas. Since the accuracy of this statement will be apparent to any person reasonably familiar with the principles of electrical machines, power electronics, pneumatics, and the principles of thermodynamics, the operation of these mechanisms to both store energy and recover it from storage will not be described for each embodiment. Such operation is, however, contemplated and within the scope of the invention and may be straightforwardly realized without undue experimentation.
The systems described herein, and/or other embodiments employing liquid-spray heat exchange or external gas heat exchange, may draw or deliver thermal energy via their heat-exchange mechanisms to external systems (not shown) for purposes of cogeneration, as described in U.S. Pat. No. 7,958,731, filed Jan. 20, 2010 (the '731 patent), the entire disclosure of which is incorporated by reference herein.
The compressed-air energy storage and recovery systems described herein are preferably “open-air” systems, i.e., systems that take in air from the ambient atmosphere for compression and vent air back to the ambient after expansion, rather than systems that compress and expand a captured volume of gas in a sealed container (i.e., “closed-air” systems). Thus, the systems described herein generally feature one or more cylinder assemblies for the storage and recovery of energy via compression and expansion of gas. The systems also include (i) a reservoir for storage of compressed gas after compression and supply of compressed gas for expansion thereof, and (ii) a vent for exhausting expanded gas to atmosphere after expansion and supply of gas for compression. The storage reservoir may include or consist essentially of, e.g., one or more one or more pressure vessels (i.e., containers for compressed gas that may have rigid exteriors or may be inflatable, and that may be formed of various suitable materials such as metal or plastic) or caverns (i.e., naturally occurring or artificially created cavities that are typically located underground). Open-air systems typically provide superior energy density relative to closed-air systems.
Furthermore, the systems described herein may be advantageously utilized to harness and recover sources of renewable energy, e.g., wind and solar energy. For example, energy stored during compression of the gas may originate from an intermittent renewable energy source of, e.g., wind or solar energy, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional (i.e., either not producing harnessable energy or producing energy at lower-than-nominal levels). As such, the systems described herein may be connected to, e.g., solar panels or wind turbines, in order to store the renewable energy generated by such systems.
In one aspect, embodiments of the invention feature a compressed gas energy storage and recovery system including or consisting essentially of a cylinder assembly, a mechanism for introducing heat-exchange fluid, and a tube for facilitating recirculation of heat-exchange fluid. The cylinder assembly typically includes or consists essentially of first and second compartments, a piston, slidably disposed within the cylinder assembly, separating the compartments, and a piston rod coupled to the piston and extending outside the first compartment. The piston rod includes a cavity in fluid communication with the second compartment. The mechanism introduces heat-exchange fluid within the second compartment. The tube is configured for non-flexure and disposed at least partially within the cavity and in fluid communication with the mechanism, and facilitates recirculation of heat-exchange fluid from the second compartment to the mechanism.
Embodiments of the invention may include one or more of the following, in any of a variety of combinations. The tube may be substantially rigid and/or coaxially disposed within the cavity. The tube may extend outside the second compartment and/or may include or consist essentially of an internal pump. The internal pump may include or consist essentially of a submersible bore pump, an axial flow pump, and/or an in-line-type pump. A motor may operate the internal pump, and the motor may be disposed within the cavity. The tube may include or consist essentially of a substantially hollow cylinder.
The mechanism may include or consist essentially of a spray head, which may be annular and/or at least partially disposed around the tube. The system may include a heat exchanger and an external circulation apparatus for circulating heat-exchange fluid from the second compartment through the heat exchanger and back to the second compartment. The heat-exchange fluid may be circulated from the second compartment to, in order, (i) the tube, (ii) the heat exchanger, and (iii) the mechanism or to, in order, (i) the heat exchanger, (ii) the tube, and (iii) the mechanism. The system may include a heat exchanger, and the tube may include or consist essentially of an internal pump for circulating heat-exchanger fluid from the second compartment through the heat exchanger and back to the second compartment.
The system may include a second mechanism for introducing heat-exchange fluid within the first compartment and a second tube disposed at least partially within a second cavity (which may be different from the cavity mentioned above) in the piston rod and in fluid communication with the second mechanism. The second tube may be configured for non-flexure. The second tube may be substantially rigid and/or include or consist essentially of an internal pump. The internal pump may include or consist essentially of a submersible bore pump, an axial flow pump, and/or an in-line-type pump. The second tube may include or consist of a substantially hollow cylinder. The second mechanism may include or consist essentially of a spray head. The system may include a second heat exchanger (which may be different from the heat exchanger mentioned above) and a second external circulation apparatus (which may be different from the external circulation apparatus mentioned above) for circulating heat-exchange fluid from the first compartment through the second heat exchanger and back to the first compartment. A seal for preventing the flow of heat-exchange fluid from the cavity directly into the second compartment may be disposed between the mechanism and the tube. The tube may be configured to remain stationary notwithstanding movement of the piston and piston rod during expansion or compression of a gas in the second compartment. The heat-exchange fluid may include or consist essentially of water.
In another aspect, embodiments of the invention feature a method for energy storage and recovery. A gas is expanded and/or compressed within a chamber of a cylinder assembly that includes a piston rod slidably disposed therewithin and a piston rod coupled to the piston. Heat-exchange fluid is circulated from the chamber, through the piston rod in a plurality of different directions, and back to the chamber. The plurality of different directions may include or consist essentially of two parallel opposite directions. The heat-exchange fluid may be thermally conditioned before it circulates back to the chamber.
In yet another aspect, embodiments of the invention feature a method for energy storage and recovery. A gas is expanded and/or compressed within a chamber of a cylinder assembly. Heat is exchanged with the gas during the expansion and/or compression via continuous recirculation (i.e., continuously during the expansion and/or compression) of a heat-exchange fluid through the chamber and an external heat exchanger via piping and without flexure of the piping. The heat exchange may render the expansion and/or compression substantially isothermal.
In another aspect, embodiments of the invention feature a method for energy storage and recovery. A gas is expanded and/or compressed within a chamber of a cylinder assembly. Heat is exchanged with the gas during the expansion and/or compression via continuous recirculation (i.e., continuously during the expansion and/or compression) of a heat-exchange fluid through the chamber and an external heat exchanger via an internal pump disposed at least partially within the chamber. The heat exchange may render the expansion and/or compression substantially isothermal. The internal pump may be disposed at least partially within a cavity within a piston rod, the piston road being mechanically coupled to a piston disposed within the cylinder assembly and partially defining the chamber, and the cavity may be in fluid communication with the chamber.
These and other objects, along with advantages and features of the invention, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. Note that as used herein, the terms “pipe,” “piping” and the like shall refer to one or more conduits that are rated to carry gas or liquid between two points. Thus, the singular term should be taken to include a plurality of parallel conduits where appropriate. Herein, the terms “liquid” and “water” interchangeably connote any mostly or substantially incompressible liquid, the terms “gas” and “air” are used interchangeably, and the term “fluid” may refer to a liquid or a gas unless otherwise indicated. As used herein unless otherwise indicated, the term “substantially” means±10%, and, in some embodiments, ±5%. A “valve” is any mechanism or component for controlling fluid communication between fluid paths or reservoirs, or for selectively permitting control or venting. The term “cylinder” refers to a chamber, of uniform but not necessarily circular cross-section, which may contain a slidably disposed piston or other mechanism that separates the fluid on one side of the chamber from that on the other, preventing fluid movement from one side of the chamber to the other while allowing the transfer of force/pressure from one side of the chamber to the next or to a mechanism outside the chamber. A “cylinder assembly” may be a simple cylinder or include multiple cylinders, and may or may not have additional associated components (such as mechanical linkages among the cylinders). The shaft of a cylinder may be coupled hydraulically or mechanically to a mechanical load (e.g., a hydraulic motor/pump or a crankshaft) that is in turn coupled to an electrical load (e.g., rotary or linear electric motor/generator attached to power electronics and/or directly to the grid or other loads), as described in the '595 and '853 applications. As used herein, “thermal conditioning” of a heat-exchange fluid does not include any modification of the temperature of the heat-exchange fluid resulting from interaction with gas with which the heat-exchange fluid is exchanging thermal energy; rather, such thermal conditioning generally refers to the modification of the temperature of the heat-exchange fluid by other means (e.g., an external heat exchanger). Unless otherwise indicated, motor/pumps described herein are not required to be configured to function both as a motor and a pump if they are utilized during system operation only as a motor or a pump but not both.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Cylinders, rods, and other components are depicted in cross section in a manner that will be intelligible to all persons familiar with the art of pneumatic and hydraulic cylinders. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
An electric motor/generator 102 (e.g., a rotary or linear electric machine) is in physical communication (e.g., via hydraulic pump, piston shaft, or mechanical crankshaft) with the expansion/compression assembly 101. The motor/generator 102 may be electrically connected to a source and/or sink of electric energy not explicitly depicted in
The expansion/compression assembly 101 may be in fluid communication with a heat-transfer subsystem 104 that alters the temperature and/or pressure of a fluid (i.e., gas, liquid, or gas-liquid mixture) extracted from expansion/compression assembly 101 and, after alteration of the fluid's temperature and/or pressure, returns at least a portion of it to expansion/compression assembly 101. Heat-transfer subsystem 104 may include pumps, valves, and other devices (not depicted explicitly in
Connected to the expansion/compression assembly 101 is a pipe 106 with a control valve 108 that controls a flow of fluid (e.g., gas) between assembly 101 and a storage reservoir 112 (e.g., one or more pressure vessels and/or caverns). The storage reservoir 112 may be in fluid communication with a heat-transfer subsystem 114 that alters the temperature and/or pressure of fluid removed from storage reservoir 112 and, after alteration of the fluid's temperature and/or pressure, returns it to storage reservoir 112. A second pipe 116 with a control valve 118 may be in fluid communication with the expansion/compression assembly 101 and with a vent 120 that communicates with a body of gas at relatively low pressure (e.g., the ambient atmosphere).
A control system 122 receives information inputs from any of expansion/compression assembly 101, storage reservoir 112, and other components of system 100 and sources external to system 100. These information inputs may include or consist essentially of pressure, temperature, and/or other telemetered measurements of properties of components of system 101. Such information inputs, here generically denoted by the letter “T,” are transmitted to control system 122 either wirelessly or through wires. Such transmission is denoted in
The control system 122 may selectively control valves 108 and 118 to enable substantially isothermal compression and/or expansion of a gas in assembly 101. Control signals, here generically denoted by the letter “C,” are transmitted to valves 108 and 118 either wirelessly or through wires. Such transmission is denoted in
The control system 122 may be any acceptable control device with a human-machine interface. For example, the control system 122 may include a computer (for example a PC-type) that executes a stored control application in the form of a computer-readable software medium. More generally, control system 122 may be realized as software, hardware, or some combination thereof. For example, control system 122 may be implemented on one or more computers, such as a PC having a CPU board containing one or more processors such as the Pentium, Core, Atom, or Celeron family of processors manufactured by Intel Corporation of Santa Clara, Calif., the 680×0 and POWER PC family of processors manufactured by Motorola Corporation of Schaumburg, Ill., and/or the ATHLON line of processors manufactured by Advanced Micro Devices, Inc., of Sunnyvale, Calif. The processor may also include a main memory unit for storing programs and/or data relating to the methods described above. The memory may include random access memory (RAM), read only memory (ROM), and/or FLASH memory residing on commonly available hardware such as one or more application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), electrically erasable programmable read-only memories (EEPROM), programmable read-only memories (PROM), programmable logic devices (PLD), or read-only memory devices (ROM). In some embodiments, the programs may be provided using external RAM and/or ROM such as optical disks, magnetic disks, or other storage devices.
For embodiments in which the functions of controller 122 are provided by software, the program may be written in any one of a number of high-level languages such as FORTRAN, PASCAL, JAVA, C, C++, C#, LISP, PERL, BASIC or any suitable programming language. Additionally, the software can be implemented in an assembly language and/or machine language directed to the microprocessor resident on a target device.
As described above, the control system 122 may receive telemetry from sensors monitoring various aspects of the operation of system 100, and may provide signals to control valve actuators, valves, motors, and other electromechanical/electronic devices. Control system 122 may communicate with such sensors and/or other components of system 100 (and other embodiments described herein) via wired or wireless communication. An appropriate interface may be used to convert data from sensors into a form readable by the control system 122 (such as RS-232 or network-based interconnects). Likewise, the interface converts the computer's control signals into a form usable by valves and other actuators to perform an operation. The provision of such interfaces, as well as suitable control programming, is clear to those of ordinary skill in the art and may be provided without undue experimentation.
System 100 may be operated so as to compress gas admitted through the vent 120 and store the gas thus compressed in reservoir 112. For example, in an initial state of operation, valve 108 is closed and valve 118 is open, admitting a quantity of gas into expansion/compression assembly 101. When a desired quantity of gas has been admitted into assembly 101, valve 118 may be closed. The motor/generator 102, employing energy supplied by a source not explicitly depicted in
During compression of the gas within assembly 101, fluid (i.e., gas, liquid, or a gas-liquid mixture) may be circulated between assembly 101 and heat-exchange assembly 104. Heat-exchange assembly 104 may be operated in such a manner as to enable substantially isothermal compression of the gas within assembly 101. During or after compression of the gas within assembly 101, valve 108 may be opened to enable high-pressure fluid (e.g., compressed gas or a mixture of liquid and compressed gas) to flow to reservoir 112. Heat-exchange assembly 114 may be operated at any time in such a manner as to alter the temperature and/or pressure of the fluid within reservoir 112.
That system 100 may also be operated so as to expand compressed gas from reservoir 112 in expansion/compression assembly 101 in such a manner as to deliver energy to the motor/generator 102 will be apparent to all persons familiar with the operation of pneumatic, hydraulic, and electric machines.
In an initial state, the cylinder assembly 141 may contain a gas 146 (e.g., air introduced to the cylinder assembly 141 via valve 161 and vent 163) and a heat-transfer fluid 148 (which may include or consist essentially of, e.g., water or another suitable liquid). When the gas 146 enters the cylinder assembly 141, piston 142 is operated to compress the gas 146 to an elevated pressure (e.g., 3,000 psi). The heat-transfer fluid 148 flows through the center-drilled rod 144 and through a pipe 152 to the pump 154 (any fluid 149 on the other side of the piston 142 may flow through other valves and pipes that are not shown). The pump 154 may raise the pressure of the heat-exchange fluid 148 to a pressure (e.g., up to approximately 3,015 psig) somewhat higher than the pressure within the cylinder assembly 141, as described in U.S. patent application Ser. No. 13/009,409, filed Jan. 19, 2011 (the '409 application), the entire disclosure of which is incorporated by reference herein. The heat-transfer fluid 148 is then sent through a pipe 156 to the heat exchanger 143, where its temperature is altered, and then through a pipe 158 to the spray mechanism 150 disposed within the cylinder assembly 141. Heat-transfer spray 151 from spray mechanism 150 is admitted into cylinder assembly 141 to enable substantially isothermal compression of gas 146. In some embodiments, the heat exchanger 143 is configured to condition heat-transfer fluid 148 at low pressure (e.g., a pressure lower than the maximum pressure of a compression or expansion stroke in cylinder assembly 141), and heat-transfer fluid 148 is thermally conditioned between strokes or only during portions of strokes, as detailed in U.S. patent application Ser. No. 13/211,440, filed Aug. 17, 2011 (the '440 application), the entire disclosure of which is incorporated by reference herein.
At or near the end of the compression stroke, control system 166 opens valve 160 to admit the compressed gas 146 to the storage reservoir 162. Operation of valves 160 and 161 may be controlled by various inputs to control system 166, such as piston position in cylinder assembly 141, pressure in storage vessel 162, pressure in cylinder assembly 141, and/or temperature in cylinder assembly 141.
As mentioned above, the control system 166 may enforce substantially isothermal operation, i.e., expansion and/or compression of gas in cylinder assembly 141, via control over, e.g., the introduction of gas into and the exhausting of gas out of cylinder assembly 141, the rates of compression and/or expansion, and/or the operation of the heat-exchange subsystem in response to sensed conditions. For example, control system 166 may be responsive to one or more sensors disposed in or on cylinder assembly 141 for measuring the temperature of the gas and/or the heat-exchange fluid within cylinder assembly 141, responding to deviations in temperature by issuing control signals that operate one or more of the system components noted above to compensate, in real time, for the sensed temperature deviations. For example, in response to a temperature increase within cylinder assembly 141, control system 166 may issue commands to increase the flow rate of spray 151 of heat-exchange fluid 148.
Furthermore, embodiments of the invention may be applied to systems in which cylinder assembly 141 (or a chamber thereof) is in fluid communication with a pneumatic chamber of a second cylinder. That second cylinder, in turn, may communicate similarly with a third cylinder, and so forth. Any number of cylinders may be linked in this way. These cylinders may be connected in parallel or in a series configuration, where the compression and expansion is done in multiple stages.
The fluid circuit of heat exchanger 143 may be filled with water, a coolant mixture, and/or any acceptable heat-exchange medium. In alternative embodiments, a gas, such as air or refrigerant, is used as the heat-exchange medium. In general, the fluid is routed by conduits to a large reservoir of such fluid in a closed or open loop. One example of an open loop is a well or body of water from which ambient water is drawn and the exhaust water is delivered to a different location, for example, downstream in a river. In a closed-loop embodiment, a cooling tower may cycle the water through the air for return to the heat exchanger. Likewise, water may pass through a submerged or buried coil of continuous piping where a counter heat-exchange occurs to return the fluid flow to ambient temperature before it returns to the heat exchanger for another cycle.
In various embodiments, the heat-exchange fluid is conditioned (i.e., pre-heated and/or pre-chilled) or used for heating or cooling needs by connecting the fluid inlet 238 and fluid outlet 240 of the external heat exchange side of the heat exchanger 143 to an installation (not shown) such as a heat-engine power plant, an industrial process with waste heat, a heat pump, and/or a building needing space heating or cooling, as described in the '731 patent. The installation may be a large water reservoir that acts as a constant-temperature thermal fluid source for use with the system. Alternatively, the water reservoir may be thermally linked to waste heat from an industrial process or the like, as described above, via another heat exchanger contained within the installation. This allows the heat-exchange fluid to acquire or expel heat from/to the linked process, depending on configuration, for later use as a heating/cooling medium in the energy storage/conversion system.
Spray head 210 (which may be annular in shape, as shown) may inject a spray 212 of liquid droplets into the upper chamber 206 of the cylinder 202. This spray 212 produces an accumulation of liquid 214 on top of piston 204. A port or ports (not shown) with associated pipes and valves (not shown) allows for gas to be admitted to or exhausted from chamber 206 as desired. A port or ports (not shown) with associated pipes and valves (not shown) allows for fluid to be admitted to or withdrawn from chamber 208 as desired.
The system 200 in
In the state of operation of system 300 depicted in
The pressure of the heat-exchange liquid after pump 324, including within the straw 332, the cavity 316, and spray head 310, is, in system 300 in the state of operation depicted in
In another embodiment of the invention, not depicted, a double-acting, vertically-aligned cylinder incorporates a straw mechanism similar to that depicted in
In
In the state of operation of system 400 depicted in
The state of operation of system 500 depicted in
The pneumatic cylinders shown herein may be outfitted with an external gas heat exchanger instead of or in addition to liquid sprays. An external gas heat exchanger may also allow expedited heat transfer to or from the high-pressure gas being expanded (or compressed) in the cylinders. Such methods and systems for isothermal gas expansion (or compression) using an external heat exchanger are shown and described in the U.S. Pat. No. 7,802,426, the disclosure of which is hereby incorporated by reference herein in its entirety.
Generally, the systems described herein may be operated in both an expansion mode and in the reverse compression mode as part of a full-cycle energy storage system with high efficiency. For example, the systems may be operated as both compressor and expander, storing electricity in the form of the potential energy of compressed gas and producing electricity from the potential energy of compressed gas. Alternatively, the systems may be operated independently as compressors or expanders.
Embodiments of the invention may, during operation, convert energy stored in the form of compressed gas and/or recovered from the expansion of compressed gas into gravitational potential energy, e.g., of a raised mass, as described in U.S. patent application Ser. No. 13/221,563, filed Aug. 30, 2011, the entire disclosure of which is incorporated herein by reference.
Systems in accordance with embodiments of the invention may utilize a substantially incompressible fluid and/or one or more pressurized reservoirs to minimize or eliminate dead space within one or more cylinder assemblies, as described in U.S. patent application Ser. Nos. 13/080,910 and 13/080,914, filed Apr. 6, 2011, the entire disclosure of each of which is incorporated herein by reference. As also described in these applications, embodiments of the invention may incorporate mechanisms for substantially preventing the flow of gas from the cylinder assembly into the heat-exchange components (e.g., heat exchangers, pumps, and/or pipes connected thereto and/or between the cylinder assembly and such components), and may thereby substantially prevent formation of dead space in the heat-exchange components. For example, various embodiments incorporate one or more check valves on the upstream side of one or more of the nozzles in the spray mechanism introducing heat-exchange fluid into a cylinder assembly.
In various embodiments of the invention, the heat-exchange fluid utilized to thermally condition gas within one or more cylinders incorporates one or more additives and/or solutes, as described in U.S. patent application Ser. No. 13/082,808, filed Apr. 8, 2011 (the '808 application), the entire disclosure of which is incorporated herein by reference. As described in the '808 application, the additives and/or solutes may reduce the surface tension of the heat-exchange fluid, reduce the solubility of gas into the heat-exchange fluid, and/or slow dissolution of gas into the heat-exchange fluid. They may also (i) retard or prevent corrosion, (ii) enhance lubricity, (iii) prevent formation of or kill microorganisms (such as bacteria), and/or (iv) include a defoaming agent, as desired for a particular system design or application.
Embodiments of the invention may also feature spray-mechanism designs described in U.S. patent application Ser. Nos. 13/105,986 and 13/105,988, filed May 12, 2011, the entire disclosure of each of which is incorporated herein by reference, e.g., spray mechanisms configured to fill substantially all of the volume of a cylinder with overlapping sprays of heat-exchange fluid. As also described in these applications, embodiments of the invention may control the number of nozzles of a spray mechanism actively spraying heat-exchange fluid based on, e.g., the pressure inside the cylinder assembly, rather than merely increasing a volumetric flow of heat-exchange fluid through the nozzles. Embodiments may utilize multiple groups of nozzles (of similar or different designs), more of which are utilized as the pressure within the cylinder assembly increases.
The terms and expressions employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/384,814, filed Sep. 21, 2010, and U.S. Provisional Patent Application No. 61/494,473, filed Jun. 8, 2011. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/966,773, filed Dec. 13, 2010, which is a continuation of U.S. patent application Ser. No. 12/690,513, filed Jan. 20, 2010, which claims priority to U.S. Provisional Patent Application No. 61/145,860, filed on Jan. 20, 2009, U.S. Provisional Patent Application No. 61/145,864, filed on Jan. 20, 2009, U.S. Provisional Patent Application No. 61/146,432, filed on Jan. 22, 2009, U.S. Provisional Patent Application No. 61/148,481, filed on Jan. 30, 2009, U.S. Provisional Patent Application No. 61/151,332, filed on Feb. 10, 2009, U.S. Provisional Patent Application No. 61/227,222, filed on Jul. 21, 2009, U.S. Provisional Patent Application No. 61/256,576, filed on Oct. 30, 2009, U.S. Provisional Patent Application No. 61/264,317, filed on Nov. 25, 2009, and U.S. Provisional Patent Application No. 61/266,758, filed on Dec. 4, 2009. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/639,703, filed Dec. 16, 2009, which (i) is a continuation-in-part of U.S. patent application Ser. No. 12/421,057, filed Apr. 9, 2009, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/148,691, filed Jan. 30, 2009, and U.S. Provisional Patent Application No. 61/043,630, filed Apr. 9, 2008; (ii) is a continuation-in-part of U.S. patent application Ser. No. 12/481,235, filed Jun. 9, 2009, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/059,964, filed Jun. 9, 2008; and (iii) claims the benefit of and priority to U.S. Provisional Patent Application Nos. 61/166,448, filed on Apr. 3, 2009; 61/184,166, filed on Jun. 4, 2009; 61/223,564, filed on Jul. 7, 2009; 61/227,222, filed on Jul. 21, 2009; and 61/251,965, filed on Oct. 15, 2009. The entire disclosure of each of these applications is hereby incorporated herein by reference.
This invention was made with government support under IIP-0923633 awarded by the NSF and DE-OE0000231 awarded by the DOE. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
114297 | Ivens et al. | May 1871 | A |
224081 | Eckart | Feb 1880 | A |
233432 | Pitchford | Oct 1880 | A |
1353216 | Carlson | Sep 1920 | A |
1635524 | Aikman | Jul 1927 | A |
1681280 | Bruckner | Aug 1928 | A |
2025142 | Zahm et al. | Dec 1935 | A |
2042991 | Harris, Jr. | Jun 1936 | A |
2141703 | Bays | Dec 1938 | A |
2280100 | Singleton | Apr 1942 | A |
2280845 | Parker | Apr 1942 | A |
2404660 | Rouleau | Jul 1946 | A |
2420098 | Rouleau | May 1947 | A |
2486081 | Weenen | Oct 1949 | A |
2539862 | Rushing | Jan 1951 | A |
2628564 | Jacobs | Feb 1953 | A |
2632995 | Noe | Mar 1953 | A |
2712728 | Lewis et al. | Jul 1955 | A |
2813398 | Wilcox | Nov 1957 | A |
2829501 | Walls | Apr 1958 | A |
2880759 | Wisman | Apr 1959 | A |
3041842 | Heinecke | Jul 1962 | A |
3100965 | Blackburn | Aug 1963 | A |
3192705 | Miller | Jul 1965 | A |
3236512 | Caslav et al. | Feb 1966 | A |
3237847 | Wilson | Mar 1966 | A |
3269121 | Ludwig | Aug 1966 | A |
3538340 | Lang | Nov 1970 | A |
3608311 | Roesel, Jr. | Sep 1971 | A |
3648458 | McAlister | Mar 1972 | A |
3650636 | Eskeli | Mar 1972 | A |
3672160 | Kim | Jun 1972 | A |
3677008 | Koutz | Jul 1972 | A |
3704079 | Berlyn | Nov 1972 | A |
3750391 | Roblyer | Aug 1973 | A |
3757517 | Rigollot | Sep 1973 | A |
3793848 | Eskeli | Feb 1974 | A |
3801793 | Goebel | Apr 1974 | A |
3803847 | McAlister | Apr 1974 | A |
3839863 | Frazier | Oct 1974 | A |
3847182 | Greer | Nov 1974 | A |
3895493 | Rigollot | Jul 1975 | A |
3903696 | Carman | Sep 1975 | A |
3935469 | Haydock | Jan 1976 | A |
3939356 | Loane | Feb 1976 | A |
3942323 | Maillet | Mar 1976 | A |
3945207 | Hyatt | Mar 1976 | A |
3948049 | Ohms et al. | Apr 1976 | A |
3952516 | Lapp | Apr 1976 | A |
3952723 | Browning | Apr 1976 | A |
3958899 | Coleman, Jr. et al. | May 1976 | A |
3986354 | Erb | Oct 1976 | A |
3988592 | Porter | Oct 1976 | A |
3988897 | Strub | Nov 1976 | A |
3990246 | Wilmers | Nov 1976 | A |
3991574 | Frazier | Nov 1976 | A |
3996741 | Herberg | Dec 1976 | A |
3998049 | McKinley et al. | Dec 1976 | A |
3999388 | Nystrom | Dec 1976 | A |
4008006 | Bea | Feb 1977 | A |
4027993 | Wolff | Jun 1977 | A |
4030303 | Kraus et al. | Jun 1977 | A |
4031702 | Burnett et al. | Jun 1977 | A |
4031704 | Moore et al. | Jun 1977 | A |
4041708 | Wolff | Aug 1977 | A |
4050246 | Bourquardez | Sep 1977 | A |
4055950 | Grossman | Nov 1977 | A |
4055951 | Davoud et al. | Nov 1977 | A |
4058979 | Germain | Nov 1977 | A |
4075844 | Schiferli | Feb 1978 | A |
4089744 | Cahn | May 1978 | A |
4094356 | Ash et al. | Jun 1978 | A |
4095118 | Rathbun | Jun 1978 | A |
4100745 | Gyarmathy et al. | Jul 1978 | A |
4104955 | Murphy | Aug 1978 | A |
4108077 | Laing | Aug 1978 | A |
4109465 | Plen | Aug 1978 | A |
4110987 | Cahn et al. | Sep 1978 | A |
4112311 | Theyse | Sep 1978 | A |
4117342 | Melley, Jr. | Sep 1978 | A |
4117696 | Fawcett et al. | Oct 1978 | A |
4118637 | Tackett | Oct 1978 | A |
4124182 | Loeb | Nov 1978 | A |
4126000 | Funk | Nov 1978 | A |
4136432 | Melley, Jr. | Jan 1979 | A |
4142368 | Mantegani | Mar 1979 | A |
4147204 | Pfenninger | Apr 1979 | A |
4149092 | Cros | Apr 1979 | A |
4150547 | Hobson | Apr 1979 | A |
4154292 | Herrick | May 1979 | A |
4167372 | Tackett | Sep 1979 | A |
4170878 | Jahnig | Oct 1979 | A |
4173431 | Smith | Nov 1979 | A |
4189925 | Long | Feb 1980 | A |
4194889 | Wanner | Mar 1980 | A |
4195481 | Gregory | Apr 1980 | A |
4197700 | Jahnig | Apr 1980 | A |
4197715 | Fawcett et al. | Apr 1980 | A |
4201514 | Huetter | May 1980 | A |
4204126 | Diggs | May 1980 | A |
4206608 | Bell | Jun 1980 | A |
4209982 | Pitts | Jul 1980 | A |
4220006 | Kindt | Sep 1980 | A |
4229143 | Pucher | Oct 1980 | A |
4229661 | Mead et al. | Oct 1980 | A |
4232253 | Mortelmans | Nov 1980 | A |
4237692 | Ahrens et al. | Dec 1980 | A |
4242878 | Brinkerhoff | Jan 1981 | A |
4246978 | Schulz et al. | Jan 1981 | A |
4262735 | Courrege | Apr 1981 | A |
4273514 | Shore et al. | Jun 1981 | A |
4274010 | Lawson-Tancred | Jun 1981 | A |
4275310 | Summers et al. | Jun 1981 | A |
4281256 | Ahrens | Jul 1981 | A |
4293323 | Cohen | Oct 1981 | A |
4299198 | Woodhull | Nov 1981 | A |
4302684 | Gogins | Nov 1981 | A |
4304103 | Hamrick | Dec 1981 | A |
4311011 | Lewis | Jan 1982 | A |
4316096 | Syverson | Feb 1982 | A |
4317439 | Emmerling | Mar 1982 | A |
4335867 | Bihlmaier | Jun 1982 | A |
4340822 | Gregg | Jul 1982 | A |
4341072 | Clyne | Jul 1982 | A |
4348863 | Taylor et al. | Sep 1982 | A |
4353214 | Gardner | Oct 1982 | A |
4354420 | Bianchetta | Oct 1982 | A |
4355956 | Ringrose et al. | Oct 1982 | A |
4358250 | Payne | Nov 1982 | A |
4367786 | Hafner et al. | Jan 1983 | A |
4368692 | Kita | Jan 1983 | A |
4368775 | Ward | Jan 1983 | A |
4370559 | Langley, Jr. | Jan 1983 | A |
4372114 | Burnham | Feb 1983 | A |
4375387 | deFilippi et al. | Mar 1983 | A |
4380419 | Morton | Apr 1983 | A |
4392062 | Bervig | Jul 1983 | A |
4393752 | Meier | Jul 1983 | A |
4411136 | Funk | Oct 1983 | A |
4416114 | Martini | Nov 1983 | A |
4421661 | Claar et al. | Dec 1983 | A |
4428711 | Archer | Jan 1984 | A |
4435131 | Ruben | Mar 1984 | A |
4444011 | Kolin | Apr 1984 | A |
4446698 | Benson | May 1984 | A |
4447738 | Allison | May 1984 | A |
4449372 | Rilett | May 1984 | A |
4452046 | Valentin | Jun 1984 | A |
4452047 | Hunt et al. | Jun 1984 | A |
4454429 | Buonome | Jun 1984 | A |
4454720 | Leibowitz | Jun 1984 | A |
4455834 | Earle | Jun 1984 | A |
4462213 | Lewis | Jul 1984 | A |
4474002 | Perry | Oct 1984 | A |
4476851 | Brugger et al. | Oct 1984 | A |
4478553 | Leibowitz et al. | Oct 1984 | A |
4489554 | Otters | Dec 1984 | A |
4491739 | Watson | Jan 1985 | A |
4492539 | Specht | Jan 1985 | A |
4493189 | Slater | Jan 1985 | A |
4496847 | Parkins | Jan 1985 | A |
4498848 | Petrovsky | Feb 1985 | A |
4502284 | Chrisoghilos | Mar 1985 | A |
4503673 | Schachle | Mar 1985 | A |
4514979 | Mohr | May 1985 | A |
4515516 | Perrine et al. | May 1985 | A |
4520840 | Michel | Jun 1985 | A |
4525631 | Allison | Jun 1985 | A |
4530208 | Sato | Jul 1985 | A |
4547209 | Netzer | Oct 1985 | A |
4574592 | Eskeli | Mar 1986 | A |
4585039 | Hamilton | Apr 1986 | A |
4589475 | Jones | May 1986 | A |
4593202 | Dickinson | Jun 1986 | A |
4619225 | Lowther | Oct 1986 | A |
4624623 | Wagner | Nov 1986 | A |
4648801 | Wilson | Mar 1987 | A |
4651525 | Cestero | Mar 1987 | A |
4653986 | Ashton | Mar 1987 | A |
4671742 | Gyimesi | Jun 1987 | A |
4676068 | Funk | Jun 1987 | A |
4679396 | Heggie | Jul 1987 | A |
4691524 | Holscher | Sep 1987 | A |
4693080 | Van Hooff | Sep 1987 | A |
4706456 | Backe | Nov 1987 | A |
4707988 | Palmers | Nov 1987 | A |
4710100 | Laing et al. | Dec 1987 | A |
4735552 | Watson | Apr 1988 | A |
4738101 | Kubik | Apr 1988 | A |
4739620 | Pierce | Apr 1988 | A |
4751818 | Kubik | Jun 1988 | A |
4760697 | Heggie | Aug 1988 | A |
4761118 | Zanarini et al. | Aug 1988 | A |
4765142 | Nakhamkin | Aug 1988 | A |
4765143 | Crawford et al. | Aug 1988 | A |
4767938 | Bervig | Aug 1988 | A |
4792700 | Ammons | Dec 1988 | A |
4849648 | Longardner | Jul 1989 | A |
4870816 | Nakhamkin | Oct 1989 | A |
4872307 | Nakhamkin | Oct 1989 | A |
4873828 | Laing et al. | Oct 1989 | A |
4873831 | Dehne | Oct 1989 | A |
4876992 | Sobotowski | Oct 1989 | A |
4877530 | Moses | Oct 1989 | A |
4885912 | Nakhamkin | Dec 1989 | A |
4886534 | Castan | Dec 1989 | A |
4907495 | Sugahara | Mar 1990 | A |
4936109 | Longardner | Jun 1990 | A |
4942736 | Bronicki | Jul 1990 | A |
4947977 | Raymond | Aug 1990 | A |
4955195 | Jones et al. | Sep 1990 | A |
4984432 | Corey | Jan 1991 | A |
5016441 | Pinto | May 1991 | A |
5048292 | Kubik | Sep 1991 | A |
5056601 | Grimmer | Oct 1991 | A |
5058385 | Everett, Jr. | Oct 1991 | A |
5062498 | Tobias | Nov 1991 | A |
5107681 | Wolfbauer, III | Apr 1992 | A |
5133190 | Abdelmalek | Jul 1992 | A |
5138838 | Crosser | Aug 1992 | A |
5140170 | Henderson | Aug 1992 | A |
5152260 | Erickson et al. | Oct 1992 | A |
5161449 | Everett, Jr. | Nov 1992 | A |
5169295 | Stogner et al. | Dec 1992 | A |
5182086 | Henderson et al. | Jan 1993 | A |
5203168 | Oshina | Apr 1993 | A |
5209063 | Shirai et al. | May 1993 | A |
5213470 | Lundquist | May 1993 | A |
5239833 | Fineblum | Aug 1993 | A |
5259345 | Richeson | Nov 1993 | A |
5271225 | Adamides | Dec 1993 | A |
5279206 | Krantz | Jan 1994 | A |
5296799 | Davis | Mar 1994 | A |
5309713 | Vassallo | May 1994 | A |
5321946 | Abdelmalek | Jun 1994 | A |
5327987 | Abdelmalek | Jul 1994 | A |
5339633 | Fujii et al. | Aug 1994 | A |
5341644 | Nelson | Aug 1994 | A |
5344627 | Fujii et al. | Sep 1994 | A |
5364611 | Iijima et al. | Nov 1994 | A |
5365980 | Deberardinis | Nov 1994 | A |
5375417 | Barth | Dec 1994 | A |
5379589 | Cohn et al. | Jan 1995 | A |
5384489 | Bellac | Jan 1995 | A |
5387089 | Stogner et al. | Feb 1995 | A |
5394693 | Plyter | Mar 1995 | A |
5427194 | Miller | Jun 1995 | A |
5436508 | Sorensen | Jul 1995 | A |
5439829 | Anderson et al. | Aug 1995 | A |
5448889 | Bronicki | Sep 1995 | A |
5454408 | DiBella et al. | Oct 1995 | A |
5454426 | Moseley | Oct 1995 | A |
5467722 | Meratla | Nov 1995 | A |
5473899 | Viteri | Dec 1995 | A |
5477677 | Krnavek | Dec 1995 | A |
5491969 | Cohn et al. | Feb 1996 | A |
5491977 | Cho | Feb 1996 | A |
5522212 | Kubik | Jun 1996 | A |
5524821 | Yie et al. | Jun 1996 | A |
5537822 | Shnaid et al. | Jul 1996 | A |
5544698 | Paulman | Aug 1996 | A |
5557934 | Beach | Sep 1996 | A |
5561978 | Buschur | Oct 1996 | A |
5562010 | McGuire | Oct 1996 | A |
5579640 | Gray, Jr. et al. | Dec 1996 | A |
5584664 | Elliott et al. | Dec 1996 | A |
5592028 | Pritchard | Jan 1997 | A |
5595587 | Steed | Jan 1997 | A |
5598736 | Erskine | Feb 1997 | A |
5599172 | Mccabe | Feb 1997 | A |
5600953 | Oshita et al. | Feb 1997 | A |
5616007 | Cohen | Apr 1997 | A |
5634340 | Grennan | Jun 1997 | A |
5641273 | Moseley | Jun 1997 | A |
5674053 | Paul et al. | Oct 1997 | A |
5685154 | Bronicki et al. | Nov 1997 | A |
5685155 | Brown | Nov 1997 | A |
5768893 | Hoshino et al. | Jun 1998 | A |
5769610 | Paul et al. | Jun 1998 | A |
5771693 | Coney | Jun 1998 | A |
5775107 | Sparkman | Jul 1998 | A |
5778669 | Kubik | Jul 1998 | A |
5778675 | Nakhamkin | Jul 1998 | A |
5794442 | Lisniansky | Aug 1998 | A |
5797980 | Fillet | Aug 1998 | A |
5819533 | Moonen | Oct 1998 | A |
5819635 | Moonen | Oct 1998 | A |
5831757 | DiFrancesco | Nov 1998 | A |
5832728 | Buck | Nov 1998 | A |
5832906 | Douville et al. | Nov 1998 | A |
5839270 | Jirnov et al. | Nov 1998 | A |
5845479 | Nakhamkin | Dec 1998 | A |
5863186 | Green et al. | Jan 1999 | A |
5873250 | Lewis | Feb 1999 | A |
5901809 | Berkun | May 1999 | A |
5924283 | Burke, Jr. | Jul 1999 | A |
5934063 | Nakhamkin | Aug 1999 | A |
5934076 | Coney | Aug 1999 | A |
5937652 | Abdelmalek | Aug 1999 | A |
5971027 | Beachley et al. | Oct 1999 | A |
6012279 | Hines | Jan 2000 | A |
6023105 | Youssef | Feb 2000 | A |
6026349 | Heneman | Feb 2000 | A |
6029445 | Lech | Feb 2000 | A |
6073445 | Johnson | Jun 2000 | A |
6073448 | Lozada | Jun 2000 | A |
6085520 | Kohno | Jul 2000 | A |
6090186 | Spencer | Jul 2000 | A |
6119802 | Puett, Jr. | Sep 2000 | A |
6132181 | Mccabe | Oct 2000 | A |
6145311 | Cyphelly | Nov 2000 | A |
6148602 | Demetri | Nov 2000 | A |
6153943 | Mistr, Jr. | Nov 2000 | A |
6158499 | Rhodes | Dec 2000 | A |
6170443 | Hofbauer | Jan 2001 | B1 |
6178735 | Frutschi | Jan 2001 | B1 |
6179446 | Sarmadi | Jan 2001 | B1 |
6188182 | Nickols et al. | Feb 2001 | B1 |
6202707 | Woodall et al. | Mar 2001 | B1 |
6206660 | Coney et al. | Mar 2001 | B1 |
6210131 | Whitehead | Apr 2001 | B1 |
6216462 | Gray, Jr. | Apr 2001 | B1 |
6225706 | Keller | May 2001 | B1 |
6276123 | Chen et al. | Aug 2001 | B1 |
6327858 | Negre et al. | Dec 2001 | B1 |
6327994 | Labrador | Dec 2001 | B1 |
6349543 | Lisniansky | Feb 2002 | B1 |
RE37603 | Coney | Mar 2002 | E |
6352576 | Spencer et al. | Mar 2002 | B1 |
6360535 | Fisher | Mar 2002 | B1 |
6367570 | Long, III | Apr 2002 | B1 |
6372023 | Kiyono et al. | Apr 2002 | B1 |
6389814 | Viteri et al. | May 2002 | B2 |
6397578 | Tsukamoto | Jun 2002 | B2 |
6401458 | Jacobson | Jun 2002 | B2 |
6407465 | Peltz et al. | Jun 2002 | B1 |
6419462 | Horie et al. | Jul 2002 | B1 |
6422016 | Alkhamis | Jul 2002 | B2 |
6453659 | Van Liere et al. | Sep 2002 | B1 |
6478289 | Trewin | Nov 2002 | B1 |
6484498 | Bonar, II | Nov 2002 | B1 |
6512966 | Lof | Jan 2003 | B2 |
6513326 | Maceda et al. | Feb 2003 | B1 |
6516615 | Stockhausen et al. | Feb 2003 | B1 |
6516616 | Carver et al. | Feb 2003 | B2 |
6554088 | Severinsky et al. | Apr 2003 | B2 |
6598392 | Majeres | Jul 2003 | B2 |
6598402 | Kataoka et al. | Jul 2003 | B2 |
6606860 | McFarland | Aug 2003 | B2 |
6612348 | Wiley | Sep 2003 | B1 |
6619930 | Jansen et al. | Sep 2003 | B2 |
6626212 | Morioka et al. | Sep 2003 | B2 |
6629413 | Wendt et al. | Oct 2003 | B1 |
6637185 | Hatamiya et al. | Oct 2003 | B2 |
6652241 | Alder | Nov 2003 | B1 |
6652243 | Krasnov | Nov 2003 | B2 |
6666024 | Moskal | Dec 2003 | B1 |
6670402 | Lee et al. | Dec 2003 | B1 |
6672056 | Roth et al. | Jan 2004 | B2 |
6675765 | Endoh | Jan 2004 | B2 |
6688108 | Van Liere | Feb 2004 | B1 |
6698472 | Camacho et al. | Mar 2004 | B2 |
6711984 | Tagge et al. | Mar 2004 | B2 |
6712166 | Rush et al. | Mar 2004 | B2 |
6715514 | Parker, III | Apr 2004 | B2 |
6718761 | Merswolke et al. | Apr 2004 | B2 |
6739131 | Kershaw | May 2004 | B1 |
6739419 | Jain et al. | May 2004 | B2 |
6745569 | Gerdes | Jun 2004 | B2 |
6745801 | Cohen et al. | Jun 2004 | B1 |
6748737 | Lafferty | Jun 2004 | B2 |
6762926 | Shiue et al. | Jul 2004 | B1 |
6786245 | Eichelberger | Sep 2004 | B1 |
6789387 | Brinkman | Sep 2004 | B2 |
6789576 | Umetsu et al. | Sep 2004 | B2 |
6797039 | Spencer | Sep 2004 | B2 |
6815840 | Aldendeshe | Nov 2004 | B1 |
6817185 | Coney et al. | Nov 2004 | B2 |
6834737 | Bloxham | Dec 2004 | B2 |
6840309 | Wilson et al. | Jan 2005 | B2 |
6848259 | Keller-sornig | Feb 2005 | B2 |
6857450 | Rupp | Feb 2005 | B2 |
6874453 | Coney et al. | Apr 2005 | B2 |
6883775 | Coney et al. | Apr 2005 | B2 |
6886326 | Holtzapple et al. | May 2005 | B2 |
6892802 | Kelly et al. | May 2005 | B2 |
6900556 | Provanzana | May 2005 | B2 |
6922991 | Polcuch | Aug 2005 | B2 |
6925821 | Sienel | Aug 2005 | B2 |
6927503 | Enis et al. | Aug 2005 | B2 |
6931848 | Maceda et al. | Aug 2005 | B2 |
6935096 | Haiun | Aug 2005 | B2 |
6938415 | Last | Sep 2005 | B2 |
6938654 | Gershtein et al. | Sep 2005 | B2 |
6946017 | Leppin et al. | Sep 2005 | B2 |
6948328 | Kidwell | Sep 2005 | B2 |
6952058 | Mccoin | Oct 2005 | B2 |
6959546 | Corcoran | Nov 2005 | B2 |
6963802 | Enis | Nov 2005 | B2 |
6964165 | Uhl et al. | Nov 2005 | B2 |
6964176 | Kidwell | Nov 2005 | B2 |
6974307 | Antoune et al. | Dec 2005 | B2 |
7000389 | Lewellin | Feb 2006 | B2 |
7007474 | Ochs et al. | Mar 2006 | B1 |
7017690 | Burke | Mar 2006 | B2 |
7028934 | Burynski, Jr. | Apr 2006 | B2 |
7040083 | Horii et al. | May 2006 | B2 |
7040108 | Flammang | May 2006 | B1 |
7040859 | Kane | May 2006 | B2 |
7043920 | Viteri et al. | May 2006 | B2 |
7047744 | Robertson et al. | May 2006 | B1 |
7055325 | Wolken | Jun 2006 | B2 |
7067937 | Enish et al. | Jun 2006 | B2 |
7075189 | Heronemus | Jul 2006 | B2 |
RE39249 | Link, Jr. | Aug 2006 | E |
7084520 | Zambrano | Aug 2006 | B2 |
7086231 | Pinkerton | Aug 2006 | B2 |
7093450 | Jimenez Haertel et al. | Aug 2006 | B2 |
7093626 | Li et al. | Aug 2006 | B2 |
7098552 | Mccoin | Aug 2006 | B2 |
7107766 | Zacche′ et al. | Sep 2006 | B2 |
7107767 | Frazer et al. | Sep 2006 | B2 |
7116006 | Mccoin | Oct 2006 | B2 |
7124576 | Cherney et al. | Oct 2006 | B2 |
7124586 | Negre et al. | Oct 2006 | B2 |
7127887 | Nakamura et al. | Oct 2006 | B2 |
7127895 | Pinkerton et al. | Oct 2006 | B2 |
7128777 | Spencer | Oct 2006 | B2 |
7134279 | White | Nov 2006 | B2 |
7155912 | Enis et al. | Jan 2007 | B2 |
7168928 | West | Jan 2007 | B1 |
7168929 | Siegel et al. | Jan 2007 | B2 |
7169489 | Redmond | Jan 2007 | B2 |
7177751 | Froloff | Feb 2007 | B2 |
7178337 | Pflanz | Feb 2007 | B2 |
7191603 | Taube | Mar 2007 | B2 |
7197871 | Yoshino | Apr 2007 | B2 |
7201095 | Hughey | Apr 2007 | B2 |
7218009 | Hendrickson et al. | May 2007 | B2 |
7219779 | Bauer et al. | May 2007 | B2 |
7225762 | Mahlanen | Jun 2007 | B2 |
7228690 | Barker | Jun 2007 | B2 |
7230348 | Poole | Jun 2007 | B2 |
7231998 | Schechter | Jun 2007 | B1 |
7240812 | Kamikozuru | Jul 2007 | B2 |
7249617 | Musselman et al. | Jul 2007 | B2 |
7254944 | Goetzinger et al. | Aug 2007 | B1 |
7273122 | Rose | Sep 2007 | B2 |
7281371 | Heidenreich | Oct 2007 | B1 |
7308361 | Enis et al. | Dec 2007 | B2 |
7317261 | Rolt | Jan 2008 | B2 |
7322377 | Baltes | Jan 2008 | B2 |
7325401 | Kesseli et al. | Feb 2008 | B1 |
7328575 | Hedman | Feb 2008 | B2 |
7329099 | Hartman | Feb 2008 | B2 |
7347049 | Rajendran et al. | Mar 2008 | B2 |
7353786 | Scuderi et al. | Apr 2008 | B2 |
7353845 | Underwood et al. | Apr 2008 | B2 |
7354252 | Baatrup et al. | Apr 2008 | B2 |
7364410 | Link, Jr. | Apr 2008 | B2 |
7392871 | Severinsky et al. | Jul 2008 | B2 |
7406828 | Nakhamkin | Aug 2008 | B1 |
7407501 | Zvuloni | Aug 2008 | B2 |
7415835 | Cowans et al. | Aug 2008 | B2 |
7415995 | Plummer et al. | Aug 2008 | B2 |
7417331 | De La Torre et al. | Aug 2008 | B2 |
7418820 | Harvey et al. | Sep 2008 | B2 |
7436086 | Mcclintic | Oct 2008 | B2 |
7441399 | Utamura | Oct 2008 | B2 |
7448213 | Mitani | Nov 2008 | B2 |
7453164 | Borden et al. | Nov 2008 | B2 |
7469527 | Negre et al. | Dec 2008 | B2 |
7471010 | Fingersh | Dec 2008 | B1 |
7481337 | Luharuka et al. | Jan 2009 | B2 |
7488159 | Bhatt et al. | Feb 2009 | B2 |
7527482 | Ursan et al. | May 2009 | B2 |
7527483 | Glauber | May 2009 | B1 |
7579700 | Meller | Aug 2009 | B1 |
7603970 | Scuderi et al. | Oct 2009 | B2 |
7607503 | Schechter | Oct 2009 | B1 |
7693402 | Hudson et al. | Apr 2010 | B2 |
7694514 | Smith et al. | Apr 2010 | B2 |
7802426 | Bollinger | Sep 2010 | B2 |
7827787 | Cherney et al. | Nov 2010 | B2 |
7832207 | McBride et al. | Nov 2010 | B2 |
7843076 | Gogoana et al. | Nov 2010 | B2 |
7874155 | McBride et al. | Jan 2011 | B2 |
7900444 | McBride et al. | Mar 2011 | B1 |
7958731 | McBride et al. | Jun 2011 | B2 |
7963110 | Bollinger et al. | Jun 2011 | B2 |
8037678 | McBride et al. | Oct 2011 | B2 |
8046990 | Bollinger et al. | Nov 2011 | B2 |
8104274 | McBride et al. | Jan 2012 | B2 |
8109085 | McBride et al. | Feb 2012 | B2 |
8117842 | McBride et al. | Feb 2012 | B2 |
8122718 | McBride et al. | Feb 2012 | B2 |
8171728 | Bollinger et al. | May 2012 | B2 |
8191362 | McBride et al. | Jun 2012 | B2 |
8225606 | McBride et al. | Jul 2012 | B2 |
8234862 | McBride et al. | Aug 2012 | B2 |
8234863 | McBride et al. | Aug 2012 | B2 |
8234868 | Bollinger et al. | Aug 2012 | B2 |
8240140 | McBride et al. | Aug 2012 | B2 |
8240146 | Bollinger | Aug 2012 | B1 |
8245508 | Bollinger et al. | Aug 2012 | B2 |
8250863 | Bollinger et al. | Aug 2012 | B2 |
8272212 | Blieske | Sep 2012 | B2 |
8359856 | McBride et al. | Jan 2013 | B2 |
8448433 | McBride et al. | May 2013 | B2 |
8468815 | McBride et al. | Jun 2013 | B2 |
8474255 | McBride et al. | Jul 2013 | B2 |
8479502 | McBride et al. | Jul 2013 | B2 |
8479505 | McBride et al. | Jul 2013 | B2 |
8495872 | McBride et al. | Jul 2013 | B2 |
8539763 | McBride et al. | Sep 2013 | B2 |
8578708 | Bollinger et al. | Nov 2013 | B2 |
20010045093 | Jacobson | Nov 2001 | A1 |
20030131599 | Gerdes | Jul 2003 | A1 |
20030145589 | Tillyer | Aug 2003 | A1 |
20030177767 | Keller-sornig et al. | Sep 2003 | A1 |
20030180155 | Coney et al. | Sep 2003 | A1 |
20040050042 | Frazer | Mar 2004 | A1 |
20040050049 | Wendt et al. | Mar 2004 | A1 |
20040146406 | Last | Jul 2004 | A1 |
20040146408 | Anderson | Jul 2004 | A1 |
20040148934 | Pinkerton et al. | Aug 2004 | A1 |
20040211182 | Gould | Oct 2004 | A1 |
20040244580 | Coney et al. | Dec 2004 | A1 |
20040261415 | Negre et al. | Dec 2004 | A1 |
20050016165 | Enis et al. | Jan 2005 | A1 |
20050028529 | Bartlett et al. | Feb 2005 | A1 |
20050047930 | Schmid | Mar 2005 | A1 |
20050066655 | Aarestad et al. | Mar 2005 | A1 |
20050072154 | Frutschi | Apr 2005 | A1 |
20050115234 | Asano et al. | Jun 2005 | A1 |
20050155347 | Lewellin | Jul 2005 | A1 |
20050166592 | Larson et al. | Aug 2005 | A1 |
20050274334 | Warren | Dec 2005 | A1 |
20050275225 | Bertolotti | Dec 2005 | A1 |
20050279086 | Hoos | Dec 2005 | A1 |
20050279292 | Hudson et al. | Dec 2005 | A1 |
20050279296 | Coney et al. | Dec 2005 | A1 |
20060055175 | Grinblat | Mar 2006 | A1 |
20060059912 | Romanelli et al. | Mar 2006 | A1 |
20060059936 | Radke et al. | Mar 2006 | A1 |
20060059937 | Perkins et al. | Mar 2006 | A1 |
20060075749 | Cherney et al. | Apr 2006 | A1 |
20060090467 | Crow | May 2006 | A1 |
20060090477 | Rolff | May 2006 | A1 |
20060107664 | Hudson et al. | May 2006 | A1 |
20060162543 | Abe et al. | Jul 2006 | A1 |
20060162910 | Kelly et al. | Jul 2006 | A1 |
20060175337 | Defosset | Aug 2006 | A1 |
20060201148 | Zabtcioglu | Sep 2006 | A1 |
20060218924 | Mitani | Oct 2006 | A1 |
20060242954 | Welch | Nov 2006 | A1 |
20060248886 | Ma | Nov 2006 | A1 |
20060248892 | Ingersoll | Nov 2006 | A1 |
20060254281 | Badeer et al. | Nov 2006 | A1 |
20060260311 | Ingersoll | Nov 2006 | A1 |
20060260312 | Ingersoll | Nov 2006 | A1 |
20060262465 | Wiederhold | Nov 2006 | A1 |
20060266034 | Ingersoll | Nov 2006 | A1 |
20060266035 | Ingersoll et al. | Nov 2006 | A1 |
20060266036 | Ingersoll | Nov 2006 | A1 |
20060266037 | Ingersoll | Nov 2006 | A1 |
20060280993 | Keefer et al. | Dec 2006 | A1 |
20060283967 | Cho et al. | Dec 2006 | A1 |
20070006586 | Hoffman et al. | Jan 2007 | A1 |
20070022754 | Perkins et al. | Feb 2007 | A1 |
20070022755 | Pinkerton et al. | Feb 2007 | A1 |
20070062194 | Ingersoll | Mar 2007 | A1 |
20070074533 | Hugenroth et al. | Apr 2007 | A1 |
20070095069 | Joshi et al. | May 2007 | A1 |
20070113803 | Froloff et al. | May 2007 | A1 |
20070116572 | Barbu et al. | May 2007 | A1 |
20070137595 | Greenwell | Jun 2007 | A1 |
20070151528 | Hedman | Jul 2007 | A1 |
20070158946 | Annen et al. | Jul 2007 | A1 |
20070181199 | Weber | Aug 2007 | A1 |
20070182160 | Enis et al. | Aug 2007 | A1 |
20070205298 | Harrison et al. | Sep 2007 | A1 |
20070234749 | Enis et al. | Oct 2007 | A1 |
20070243066 | Baron | Oct 2007 | A1 |
20070245735 | Ashikian | Oct 2007 | A1 |
20070258834 | Froloff et al. | Nov 2007 | A1 |
20080000436 | Goldman | Jan 2008 | A1 |
20080016868 | Ochs et al. | Jan 2008 | A1 |
20080047272 | Schoell | Feb 2008 | A1 |
20080050234 | Ingersoll et al. | Feb 2008 | A1 |
20080072870 | Chomyszak et al. | Mar 2008 | A1 |
20080087165 | Wright et al. | Apr 2008 | A1 |
20080104939 | Hoffmann et al. | May 2008 | A1 |
20080112807 | Uphues et al. | May 2008 | A1 |
20080127632 | Finkenrath et al. | Jun 2008 | A1 |
20080138265 | Lackner et al. | Jun 2008 | A1 |
20080148731 | Cao | Jun 2008 | A1 |
20080155975 | Brinkman | Jul 2008 | A1 |
20080155976 | Smith et al. | Jul 2008 | A1 |
20080157528 | Wang et al. | Jul 2008 | A1 |
20080157537 | Richard | Jul 2008 | A1 |
20080164449 | Gray et al. | Jul 2008 | A1 |
20080185194 | Leone | Aug 2008 | A1 |
20080202120 | Karyambas | Aug 2008 | A1 |
20080211230 | Gurin | Sep 2008 | A1 |
20080228323 | Laumer et al. | Sep 2008 | A1 |
20080233029 | Fan et al. | Sep 2008 | A1 |
20080238105 | Ortiz et al. | Oct 2008 | A1 |
20080238187 | Garnett et al. | Oct 2008 | A1 |
20080250788 | Nuel et al. | Oct 2008 | A1 |
20080251302 | Lynn et al. | Oct 2008 | A1 |
20080265581 | Welch et al. | Oct 2008 | A1 |
20080272597 | Althaus | Nov 2008 | A1 |
20080272598 | Nakhamkin | Nov 2008 | A1 |
20080272605 | Borden et al. | Nov 2008 | A1 |
20080308168 | O'Brien, II et al. | Dec 2008 | A1 |
20080308270 | Wilson | Dec 2008 | A1 |
20080315589 | Malmrup | Dec 2008 | A1 |
20090000290 | Brinkman | Jan 2009 | A1 |
20090007558 | Hall et al. | Jan 2009 | A1 |
20090008173 | Hall et al. | Jan 2009 | A1 |
20090010772 | Siemroth | Jan 2009 | A1 |
20090020275 | Neher et al. | Jan 2009 | A1 |
20090021012 | Stull et al. | Jan 2009 | A1 |
20090056331 | Zhao et al. | Mar 2009 | A1 |
20090071153 | Boyapati et al. | Mar 2009 | A1 |
20090107784 | Gabriel et al. | Apr 2009 | A1 |
20090145130 | Kaufman | Jun 2009 | A1 |
20090158740 | Littau et al. | Jun 2009 | A1 |
20090178409 | Shinnar | Jul 2009 | A1 |
20090200805 | Kim et al. | Aug 2009 | A1 |
20090220364 | Rigal et al. | Sep 2009 | A1 |
20090229902 | Stansbury, III | Sep 2009 | A1 |
20090249826 | Hugelman | Oct 2009 | A1 |
20090282822 | McBride et al. | Nov 2009 | A1 |
20090282840 | Chen et al. | Nov 2009 | A1 |
20090294096 | Mills et al. | Dec 2009 | A1 |
20090301089 | Bollinger | Dec 2009 | A1 |
20090317267 | Gill et al. | Dec 2009 | A1 |
20090322090 | Wolf | Dec 2009 | A1 |
20100018196 | Li et al. | Jan 2010 | A1 |
20100077765 | Japikse | Apr 2010 | A1 |
20100089063 | McBride et al. | Apr 2010 | A1 |
20100133903 | Rufer et al. | Jun 2010 | A1 |
20100139277 | McBride et al. | Jun 2010 | A1 |
20100193270 | Deshaies et al. | Aug 2010 | A1 |
20100199652 | Lemofouet et al. | Aug 2010 | A1 |
20100205960 | McBride et al. | Aug 2010 | A1 |
20100229544 | Bollinger et al. | Sep 2010 | A1 |
20100257862 | Howes et al. | Oct 2010 | A1 |
20100270801 | Liu | Oct 2010 | A1 |
20100307156 | Bollinger | Dec 2010 | A1 |
20100326062 | Fong et al. | Dec 2010 | A1 |
20100326064 | Fong et al. | Dec 2010 | A1 |
20100326066 | Fong et al. | Dec 2010 | A1 |
20100326068 | Fong et al. | Dec 2010 | A1 |
20100326069 | Fong et al. | Dec 2010 | A1 |
20100326075 | Fong et al. | Dec 2010 | A1 |
20100329891 | Fong et al. | Dec 2010 | A1 |
20100329903 | Fong et al. | Dec 2010 | A1 |
20100329909 | Fong et al. | Dec 2010 | A1 |
20110023488 | Fong et al. | Feb 2011 | A1 |
20110023977 | Fong et al. | Feb 2011 | A1 |
20110030359 | Fong et al. | Feb 2011 | A1 |
20110030552 | Fong et al. | Feb 2011 | A1 |
20110056193 | McBride et al. | Mar 2011 | A1 |
20110056368 | McBride et al. | Mar 2011 | A1 |
20110061741 | Ingersoll et al. | Mar 2011 | A1 |
20110061836 | Ingersoll et al. | Mar 2011 | A1 |
20110062166 | Ingersoll et al. | Mar 2011 | A1 |
20110106321 | Cherian et al. | May 2011 | A1 |
20110107755 | McBride et al. | May 2011 | A1 |
20110115223 | Stahlkopf et al. | May 2011 | A1 |
20110131966 | McBride et al. | Jun 2011 | A1 |
20110138797 | Bollinger et al. | Jun 2011 | A1 |
20110167813 | McBride et al. | Jul 2011 | A1 |
20110204064 | Crane et al. | Aug 2011 | A1 |
20110219760 | McBride et al. | Sep 2011 | A1 |
20110219763 | McBride et al. | Sep 2011 | A1 |
20110232281 | McBride et al. | Sep 2011 | A1 |
20110233934 | Crane et al. | Sep 2011 | A1 |
20110252777 | Bollinger et al. | Oct 2011 | A1 |
20110258996 | Ingersoll et al. | Oct 2011 | A1 |
20110258999 | Ingersoll et al. | Oct 2011 | A1 |
20110259001 | McBride et al. | Oct 2011 | A1 |
20110259442 | McBride et al. | Oct 2011 | A1 |
20110266810 | McBride et al. | Nov 2011 | A1 |
20110283690 | Bollinger et al. | Nov 2011 | A1 |
20110296821 | Bollinger et al. | Dec 2011 | A1 |
20110296822 | Bollinger et al. | Dec 2011 | A1 |
20110296823 | McBride et al. | Dec 2011 | A1 |
20110314800 | Fong et al. | Dec 2011 | A1 |
20110314804 | Fong et al. | Dec 2011 | A1 |
20110314810 | McBride et al. | Dec 2011 | A1 |
20120000557 | McBride et al. | Jan 2012 | A1 |
20120006013 | McBride et al. | Jan 2012 | A1 |
20120017580 | Fong et al. | Jan 2012 | A1 |
20120019009 | Fong et al. | Jan 2012 | A1 |
20120023919 | Fong et al. | Feb 2012 | A1 |
20120042772 | Fong et al. | Feb 2012 | A1 |
20120047884 | McBride et al. | Mar 2012 | A1 |
20120055146 | Baraga et al. | Mar 2012 | A1 |
20120057996 | Fong et al. | Mar 2012 | A1 |
20120057998 | Ingersoll et al. | Mar 2012 | A1 |
20120067036 | Fong et al. | Mar 2012 | A1 |
20120073432 | Ingersoll et al. | Mar 2012 | A1 |
20120085086 | Bollinger et al. | Apr 2012 | A1 |
20120090314 | Fong et al. | Apr 2012 | A1 |
20120096845 | Ingersoll et al. | Apr 2012 | A1 |
20120102935 | Ingersoll et al. | May 2012 | A1 |
20120102954 | Ingersoll et al. | May 2012 | A1 |
20120118137 | Fong et al. | May 2012 | A1 |
20120119513 | McBride et al. | May 2012 | A1 |
20120119514 | Crane et al. | May 2012 | A1 |
20120137668 | McBride et al. | Jun 2012 | A1 |
20120174569 | Ingersoll et al. | Jul 2012 | A1 |
20120197683 | Marcus | Aug 2012 | A1 |
20120210705 | McBride et al. | Aug 2012 | A1 |
20120222424 | Ingersoll et al. | Sep 2012 | A1 |
20120255292 | Fong et al. | Oct 2012 | A1 |
20120260645 | Fong et al. | Oct 2012 | A1 |
20120269651 | Fong et al. | Oct 2012 | A1 |
20120279209 | McBride et al. | Nov 2012 | A1 |
20120285154 | Bollinger et al. | Nov 2012 | A1 |
20120286522 | Stahlkopf et al. | Nov 2012 | A1 |
20120291989 | Fong et al. | Nov 2012 | A1 |
20120297772 | McBride et al. | Nov 2012 | A1 |
20120297776 | Bollinger et al. | Nov 2012 | A1 |
20120299310 | McBride et al. | Nov 2012 | A1 |
20130001958 | Crane et al. | Jan 2013 | A1 |
20130009408 | Crane et al. | Jan 2013 | A1 |
20130032743 | Fong et al. | Feb 2013 | A1 |
20130047597 | Fong et al. | Feb 2013 | A1 |
20130074485 | McBride et al. | Mar 2013 | A1 |
20130074488 | McBride et al. | Mar 2013 | A1 |
20130074940 | McBride et al. | Mar 2013 | A1 |
20130074941 | McBride et al. | Mar 2013 | A1 |
20130074949 | McBride et al. | Mar 2013 | A1 |
20130091834 | McBride et al. | Apr 2013 | A1 |
20130091835 | McBride et al. | Apr 2013 | A1 |
20130091836 | McBride et al. | Apr 2013 | A1 |
20130098027 | Le Roux et al. | Apr 2013 | A1 |
20130104533 | Fong et al. | May 2013 | A1 |
20130108480 | Fong et al. | May 2013 | A1 |
20130111895 | Fong et al. | May 2013 | A1 |
20130126014 | Fong et al. | May 2013 | A1 |
20130139500 | McBride et al. | Jun 2013 | A1 |
20130145764 | McBride et al. | Jun 2013 | A1 |
20130152568 | Modderno et al. | Jun 2013 | A1 |
20130152571 | Modderno et al. | Jun 2013 | A1 |
20130152572 | Madderno et al. | Jun 2013 | A1 |
20130160437 | McBride et al. | Jun 2013 | A1 |
20130168961 | Stahlkopf et al. | Jul 2013 | A1 |
20130186597 | Clark et al. | Jul 2013 | A1 |
20130192216 | Berlin et al. | Aug 2013 | A1 |
20130269330 | McBride et al. | Oct 2013 | A1 |
20130269331 | Fong | Oct 2013 | A1 |
20130276440 | Fong et al. | Oct 2013 | A1 |
20130291529 | Stahlkopf et al. | Nov 2013 | A1 |
20130291960 | Fong et al. | Nov 2013 | A1 |
20130294943 | Fong et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
898225 | Mar 1984 | BE |
1008885 | Aug 1996 | BE |
1061262 | May 1992 | CN |
1171490 | Jan 1998 | CN |
1276308 | Dec 2000 | CN |
1277323 | Dec 2000 | CN |
1412443 | Apr 2003 | CN |
1743665 | Mar 2006 | CN |
2821162 | Sep 2006 | CN |
2828319 | Oct 2006 | CN |
2828368 | Oct 2006 | CN |
1884822 | Dec 2006 | CN |
1888328 | Jan 2007 | CN |
1967091 | May 2007 | CN |
101033731 | Sep 2007 | CN |
101042115 | Sep 2007 | CN |
101070822 | Nov 2007 | CN |
101149002 | Mar 2008 | CN |
101162073 | Apr 2008 | CN |
201103518 | Aug 2008 | CN |
201106527 | Aug 2008 | CN |
101289963 | Oct 2008 | CN |
201125855 | Oct 2008 | CN |
101377190 | Apr 2009 | CN |
101408213 | Apr 2009 | CN |
101435451 | May 2009 | CN |
25 38 870 | Apr 1976 | DE |
19530253 | Nov 1996 | DE |
19903907 | Aug 2000 | DE |
19911534 | Sep 2000 | DE |
10042020 | May 2001 | DE |
20118183 | Mar 2003 | DE |
20120330 | Apr 2003 | DE |
10147940 | May 2003 | DE |
10205733 | Aug 2003 | DE |
10212480 | Oct 2003 | DE |
20312293 | Dec 2003 | DE |
10220499 | Apr 2004 | DE |
10334637 | Feb 2005 | DE |
10 2005 047622 | Apr 2007 | DE |
0204748 | Mar 1981 | EP |
0091801 | Oct 1983 | EP |
0097002 | Dec 1983 | EP |
0196690 | Oct 1986 | EP |
0212692 | Mar 1987 | EP |
0364106 | Apr 1990 | EP |
0507395 | Oct 1992 | EP |
0821162 | Jan 1998 | EP |
0 857 877 | Aug 1998 | EP |
1 388 442 | Feb 2004 | EP |
1405662 | Apr 2004 | EP |
1657452 | Nov 2004 | EP |
1726350 | Nov 2006 | EP |
1741899 | Jan 2007 | EP |
1 780 058 | May 2007 | EP |
1988294 | Nov 2008 | EP |
2014896 | Jan 2009 | EP |
2078857 | Jul 2009 | EP |
2449805 | Sep 1980 | FR |
2816993 | May 2002 | FR |
2829805 | Mar 2003 | FR |
722524 | Nov 1951 | GB |
772703 | Apr 1957 | GB |
1449076 | Sep 1976 | GB |
1479940 | Jul 1977 | GB |
1589364 | May 1981 | GB |
2106992 | Apr 1983 | GB |
2223810 | Apr 1990 | GB |
2 300 673 | Nov 1996 | GB |
2373546 | Sep 2002 | GB |
2403356 | Dec 2004 | GB |
57010778 | Jan 1982 | JP |
57070970 | May 1982 | JP |
57120058 | Jul 1982 | JP |
58183880 | Oct 1982 | JP |
58150079 | Sep 1983 | JP |
58192976 | Nov 1983 | JP |
60206985 | Oct 1985 | JP |
62101900 | May 1987 | JP |
63227973 | Sep 1988 | JP |
2075674 | Mar 1990 | JP |
2247469 | Oct 1990 | JP |
3009090 | Jan 1991 | JP |
3281984 | Dec 1991 | JP |
4121424 | Apr 1992 | JP |
6185450 | Jul 1994 | JP |
8145488 | Jun 1996 | JP |
9166079 | Jun 1997 | JP |
10313547 | Nov 1998 | JP |
2000-346093 | Jun 1999 | JP |
11351125 | Dec 1999 | JP |
2000166128 | Jun 2000 | JP |
2000346093 | Dec 2000 | JP |
2002127902 | May 2002 | JP |
2003083230 | Mar 2003 | JP |
2005023918 | Jan 2005 | JP |
2005036769 | Feb 2005 | JP |
2005068963 | Mar 2005 | JP |
2006220252 | Aug 2006 | JP |
2007001872 | Jan 2007 | JP |
2007145251 | Jun 2007 | JP |
2007211730 | Aug 2007 | JP |
2008038658 | Feb 2008 | JP |
840000180 | Feb 1984 | KR |
2004004637 | Jan 2004 | KR |
2101562 | Jan 1998 | RU |
2169857 | Jun 2001 | RU |
2213255 | Sep 2003 | RU |
800438 | Jan 1981 | SU |
69030 | Aug 2004 | UA |
WO-8200319 | Feb 1982 | WO |
WO-8802818 | Apr 1988 | WO |
WO-9941498 | Aug 1990 | WO |
WO-9222741 | Dec 1992 | WO |
WO-9306367 | Apr 1993 | WO |
WO-9311363 | Jun 1993 | WO |
WO-9324754 | Dec 1993 | WO |
WO 9412785 | Jun 1994 | WO |
WO-9525381 | Sep 1995 | WO |
WO-9601942 | Jan 1996 | WO |
WO-9622456 | Jul 1996 | WO |
WO-9634213 | Oct 1996 | WO |
WO-9701029 | Jan 1997 | WO |
WO-9717546 | May 1997 | WO |
WO-9802818 | Jan 1998 | WO |
WO-9817492 | Apr 1998 | WO |
WO-0001945 | Jan 2000 | WO |
WO-0037800 | Jun 2000 | WO |
WO-0065212 | Nov 2000 | WO |
WO-0068578 | Nov 2000 | WO |
WO 0175290 | Oct 2001 | WO |
WO-0175308 | Oct 2001 | WO |
WO-0225083 | Mar 2002 | WO |
WO-0246621 | Jun 2002 | WO |
WO-02103200 | Dec 2002 | WO |
WO-03021702 | Mar 2003 | WO |
WO-03021107 | Mar 2003 | WO |
WO-03078812 | Sep 2003 | WO |
WO-03081011 | Oct 2003 | WO |
WO-2004034391 | May 2004 | WO |
WO-2004059155 | Jul 2004 | WO |
WO-2004072452 | Aug 2004 | WO |
WO-2004074679 | Sep 2004 | WO |
WO-2004109172 | Dec 2004 | WO |
WO-2005044424 | May 2005 | WO |
WO-2005062969 | Jul 2005 | WO |
WO-2005067373 | Jul 2005 | WO |
WO-2005079461 | Sep 2005 | WO |
WO-2005088131 | Sep 2005 | WO |
WO-2005095155 | Oct 2005 | WO |
WO-2006029633 | Mar 2006 | WO |
WO-2006058085 | Jun 2006 | WO |
WO-2006124006 | Nov 2006 | WO |
WO-2007002094 | Jan 2007 | WO |
WO-2007003954 | Jan 2007 | WO |
WO-2007012143 | Feb 2007 | WO |
WO-2007035997 | Apr 2007 | WO |
WO-2007051034 | May 2007 | WO |
WO-2007066117 | Jun 2007 | WO |
WO-2007086792 | Aug 2007 | WO |
WO-2007089872 | Aug 2007 | WO |
WO-2007096656 | Aug 2007 | WO |
WO-2007111839 | Oct 2007 | WO |
WO-2007136765 | Nov 2007 | WO |
WO-2007140914 | Dec 2007 | WO |
WO-2008003950 | Jan 2008 | WO |
WO-2008014769 | Feb 2008 | WO |
WO-2008023901 | Feb 2008 | WO |
WO-2008027259 | Mar 2008 | WO |
WO-2008028881 | Mar 2008 | WO |
WO-2008039725 | Apr 2008 | WO |
WO-2008045468 | Apr 2008 | WO |
WO-2008045468 | Apr 2008 | WO |
WO-2008051427 | May 2008 | WO |
WO-2008074075 | Jun 2008 | WO |
WO-2008084507 | Jul 2008 | WO |
WO-2008091373 | Jul 2008 | WO |
WO 2008102292 | Aug 2008 | WO |
WO-2008106967 | Sep 2008 | WO |
WO-2008108870 | Sep 2008 | WO |
WO-2008109006 | Sep 2008 | WO |
WO-2008110018 | Sep 2008 | WO |
WO-2008115479 | Sep 2008 | WO |
WO-2008121378 | Oct 2008 | WO |
WO-2008139267 | Nov 2008 | WO |
WO-2008152432 | Dec 2008 | WO |
WO-2008153591 | Dec 2008 | WO |
WO-2008157327 | Dec 2008 | WO |
WO-2009034421 | Mar 2009 | WO |
WO-2009034548 | Mar 2009 | WO |
WO-2009038973 | Mar 2009 | WO |
WO-2009044139 | Apr 2009 | WO |
WO-2009045110 | Apr 2009 | WO |
WO-2009114205 | Sep 2009 | WO |
WO-2009126784 | Oct 2009 | WO |
WO-2010006319 | Jan 2010 | WO |
WO-2010009053 | Jan 2010 | WO |
WO-2010040890 | Apr 2010 | WO |
WO-2010105155 | Sep 2010 | WO |
WO-2010135658 | Nov 2010 | WO |
WO-2011008321 | Jan 2011 | WO |
WO-2011008325 | Jan 2011 | WO |
WO-2011008500 | Jan 2011 | WO |
WO-2011079267 | Jun 2011 | WO |
WO-2011079271 | Jun 2011 | WO |
Entry |
---|
“Hydraulic Transformer Supplies Continuous High Pressure,” Machine Design, Penton Media, vol. 64, No. 17, (Aug. 1992), 1 page. |
Lemofouet, “Investigation and Optimisation of Hybrid Electricity Storage Systems Based on Compressed Air and Supercapacitors,” (Oct. 20, 2006), 250 pages. |
Cyphelly et al., “Usage of Compressed Air Storage Systems,” BFE-Program “Electricity,” Final Report, May 2004, 14 pages. |
Lemofouet et al., “A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking (MEPT),” IEEE Transactions on Industrial Electron, vol. 53, No. 4, (Aug. 2006) pp. 1105-1115. |
International Search Report and Written Opinion issued Sep. 15, 2009 for International Application No. PCT/US2009/040027, 8 pages. |
International Search Report and Written Opinion issued Aug. 30, 2010 for International Application No. PCT/US2010/029795, 9 pages. |
International Search Report and Written Opinion issued Dec. 3, 2009 for International Application No. PCT/US2009/046725, 9 pages. |
International Search Report and Written Opinion issued Jan. 4, 2011 for International Application No. PCT/US2010/055279, 13 pages. |
International Search Report and Written Opinion mailed May 25, 2011 for International Application No. PCT/US2010/027138, 12 pages. |
Rufer et al., “Energetic Performance of a Hybrid Energy Storage System Based on Compressed Air and Super Capacitors,” Power Electronics, Electrical Drives, Automation and Motion, (May 1, 2006), pp. 469-474. |
Lemofouet et al. “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking,” Industrial Electronics Laboratory (LEI), (2005), pp. 1-10. |
Lemofouet et al. “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking,” The International Power Electronics Conference, (2005), pp. 461-468. |
International Preliminary Report on Patentability mailed Oct. 13, 2011 for International Application No. PCT/US2010/029795 (9 pages). |
Stephenson et al., “Computer Modelling of Isothermal Compression in the Reciprocating Compressor of a Complete Isoengine,” 9th International Conference on Liquid Atomization and Spray Systems (Jul. 13-17, 2003). |
Coney et al., “Development of a Reciprocating Compressor Using Water Injection to Achieve Quasi-Isothermal Compression,” Purdue University International Compressor Engineering Conference (2002). |
Linnemann et al., “The Isoengine—A Novel High Efficiency Engine with Optional Compressed Air Energy Storage (CAES),” International Joint Power Generation Conference (Jun. 16-19, 2003). |
Linnemann et al., “The Isoengine: Realisation of a High-Efficiency Power Cycle Based on Isothermal Compression,” Int. J. Energy Tech. and Policy, vol. 3, Nos. 1-2, pp. 66-84 (2005). |
Winterburn et al., “Mechanisms of Ultrasound Foam Interactions,” Asia-Pac. J. Chem. Eng., vol. 4, pp. 184-190 (2009). |
Number | Date | Country | |
---|---|---|---|
20120036851 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61384814 | Sep 2010 | US | |
61494473 | Jun 2011 | US | |
61145860 | Jan 2009 | US | |
61145864 | Jan 2009 | US | |
61146432 | Jan 2009 | US | |
61148481 | Jan 2009 | US | |
61151332 | Feb 2009 | US | |
61227222 | Jul 2009 | US | |
61256576 | Oct 2009 | US | |
61264317 | Nov 2009 | US | |
61266758 | Dec 2009 | US | |
61148691 | Jan 2009 | US | |
61043630 | Apr 2008 | US | |
61059964 | Jun 2008 | US | |
61166448 | Apr 2009 | US | |
61184166 | Jun 2009 | US | |
61223564 | Jul 2009 | US | |
61251965 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12690513 | Jan 2010 | US |
Child | 12966773 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12966773 | Dec 2010 | US |
Child | 13234239 | US | |
Parent | 12639703 | Dec 2009 | US |
Child | 12690513 | US | |
Parent | 12421057 | Apr 2009 | US |
Child | 12639703 | US | |
Parent | 12481235 | Jun 2009 | US |
Child | 12639703 | US |