The invention generally relates to geared systems for a resistance training machine.
Resistance training is a form of exercise undergone to build muscular strength and endurance by working against a weight or applied force. While some resistance training routines can be accomplished without external equipment, i.e., bodyweight exercises, many others require the use of specialized equipment, such as but not limited to free weights, weight machines, cable machines, resistance bands, and the like.
Traditional resistance training equipment is often specialized and, while each piece of equipment may offer distinct advantages, each may also suffer from drawbacks and inefficiencies. For example, free weights and weight machines are commonly employed for isotonic exercises, i.e., exercises requiring muscle activation against a constant force across a given range of motion. However, adjusting the weight or force for such exercises can be inconvenient, often requiring a user to add or remove plates, install clips, swap out dumbbells, etc. Furthermore, initiating an exercise with free weights and weight machines can create undue strain on a user's body, since the force applied by such equipment acts as a step function-jumping from zero to the full resistance. Perhaps more importantly, traditional resistance training equipment is usually designed for specific exercises or specific exercise modes only, requiring an individual to own a plurality of equipment in order to access a variety of well-rounded exercises.
More recently, ‘smart’ exercise machines have been developed that claim to offer a number of different exercises in a single machine. These machines commonly operate by providing resistive forces through electronic motors, which may be adjusted to the user's strength level. However, the exercise machines disclosed by the prior art have consistently failed to provide a range of exercise modes or can provide some modes but fail in others. Moreover, such machines tend to be limited in the amount of force they produce; they are usually unwieldy and difficult to install or transport; and many fail to provide adequate safety measures for the user. Finally, neither traditional resistance training equipment nor newer exercise machines offer feedback regarding both user form and user balance during workouts.
In the perfect world, the gear shifts during workouts have perfect mechanical, angular alignment of the splines and shifts every time. In practice, this is not the case as the center spline male can get stuck on the female alignment spline. Accordingly, there remains a need in the art for a geared system to control shifting of gears in a resistance training machine.
Provided herein are Geared Systems for a Resistance Training Machines, Systems, and Methods of Use.
The methods, systems, and apparatuses are set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the methods, apparatuses, and systems. The advantages of the methods, apparatuses, and systems will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the methods, apparatuses, and systems, as claimed.
Accordingly, it is an object of the invention not to encompass within the invention any previously known product, process of making the product, or method of using the product such that Applicants reserve the right and hereby disclose a disclaimer of any previously known product, process, or method. It is further noted that the invention does not intend to encompass within the scope of the invention any product, process, or making of the product or method of using the product, which does not meet the written description and enablement requirements of the USPTO (35 U.S.C. § 112, first paragraph) or the EPO (Article 83 of the EPC), such that Applicants reserve the right and hereby disclose a disclaimer of any previously described product, process of making the product, or method of using the product. It may be advantageous in the practice of the invention to be in compliance with Art. 53 (c) EPC and Rule 28 (b) and (c) EPC. All rights to explicitly disclaim any embodiments that are the subject of any granted patent(s) of applicant in the lineage of this application or in any other lineage or in any prior filed application of any third party is explicitly reserved. Nothing herein is to be construed as a promise.
In the accompanying figures, like elements are identified by like reference numerals among the several preferred embodiments of the present invention.
The foregoing and other features and advantages of the invention are apparent from the following detailed description of exemplary embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof.
Embodiments of the invention will now be described with reference to the Figures, wherein like numerals reflect like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive way, simply because it is being utilized in conjunction with detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes, or which is essential to practicing the invention described herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. The word “about,” when accompanying a numerical value, is to be construed as indicating a deviation of up to and inclusive of 10% from the stated numerical value. The use of any and all examples, or exemplary language (“e.g.,” or “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any nonclaimed element as essential to the practice of the invention.
References to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” etc., may indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an exemplary embodiment,” do not necessarily refer to the same embodiment, although they may.
As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the mechanical, software, and electrical arts. Unless otherwise expressly stated, it is in no way intended that any method or aspect set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not specifically state in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect. This holds for any possible non-express basis for interpretation, including matters of logic with respect to arrangement of steps or operational flow, plain meaning derived from grammatical organization or punctuation, or the number or type of aspects described in the specification.
Referring now to the drawings and with specific reference to
The resistance training machine provides high torque, constant velocity, variable force in the Isokinetic mode and constant force, variable speed, lower torque in the Isotonic Mode. In order to switch between modes, the modes require that there are at least two gear trains for each unique mode. This resistance training machine includes an electronic actuator where a center gear moves to engage one mode or the other mode. If the shift has perfect mechanical, angular alignment of the splines and shifts every time. However, if the center spline male get stuck on the female alignment spline, the geared system makes the proper corrective action to make the second shift work 100% of the time.
As shown in
As shown in
In one embodiment, the low gear is between about 1.6:1 and about 4.8:1 and the high gear is between about 22:1 to about 66:1. In one embodiment, the actuator is operably coupled to the machine controller. In one embodiment, the higher gear operates in an isokinetic mode and the lower gear operates in an isotonic mode or a calibration mode. In one embodiment, the motor system further comprises a neutral gear between the higher gear and the lower gear.
In operation, the actuator is activated to move from the first actuator position to the second actuator position or move from the second actuator position to the first actuator position. If the actuator reports that the actuator did not travel to the first actuator position from the second actuator position, then the controller operates a geared system module 350. The actuator is operably coupled to the machine controller. The higher gear operates in an isokinetic mode and the lower gear operates in an isotonic mode or a calibration mode. The motor system further comprises a neutral gear between the higher gear and the lower gear.
As shown in
While the invention has been described in connection with various embodiments, it will be understood that the invention is capable of further modifications. This application is intended to cover any variations, uses or adaptations of the invention following, in general, the principles of the invention, and including such departures from the present disclosure as, within the known and customary practice within the art to which the invention pertains.
The application claims priority to U.S. provisional application Ser. No. 63/589,441, filed Oct. 11, 2023, herein incorporated by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 63589441 | Oct 2023 | US |