Heat exchanger fin retention feature

Information

  • Patent Grant
  • 10139172
  • Patent Number
    10,139,172
  • Date Filed
    Thursday, August 28, 2014
    10 years ago
  • Date Issued
    Tuesday, November 27, 2018
    6 years ago
Abstract
A fin characterized by a corrugated shape and configured to be interposed between adjacent instances of tubes of a heat exchanger assembly includes a plurality of planar portions, a radiused portion, and a retention feature. The plurality of planar portions is configured to extend between the adjacent instances of the tubes. The radiused portion is located between adjacent planar portions and is configured to be in thermal contact with a tube proximate thereto. The retention feature is located substantially mid-way between a leading edge and a trailing edge of the fin. The retention feature is configured to contact the tube in a manner effective to prevent fall-out of the fin prior to brazing of the heat exchanger assembly.
Description
TECHNICAL FIELD OF INVENTION

This disclosure generally relates to a fin for a heat exchanger assembly, and more particularly relates to a retention feature in the middle of the fin configured to engage with a tube to prevent fall-out of the fin prior to brazing of the heat exchanger.


BACKGROUND OF INVENTION

Heat exchangers such as radiators, evaporators, and condensers are commonly formed by an arrangement of alternating tubes and corrugated fins. A known method of manufacturing such heat exchangers places the tubes and fins in a stacker that pressed the arrangement to a desired dimension, and then subjects the arrangement to a brazing process. If not adequately retained, a fin can undesirable drop below the bottom face of the heat exchanger during the brazing process.


SUMMARY OF THE INVENTION

In accordance with one embodiment, a fin characterized by a corrugated shape configured to be interposed between adjacent instances of tubes of a heat exchanger assembly is provided. The fin includes a plurality of planar portions, a radiused portion, and a retention feature. The plurality of planar portions is configured to extend between the adjacent instances of the tubes. The radiused portion is located between adjacent planar portions and is configured to be in thermal contact with a tube proximate thereto. The retention feature is located substantially mid-way between a leading edge and a trailing edge of the fin. The retention feature is configured to contact the tube in a manner effective to prevent fall-out of the fin prior to brazing of the heat exchanger assembly.


In another embodiment, a heat exchanger assembly is provided. The assembly includes a plurality of parallel spaced apart tubes, and a fin. The tubes are configured to convey coolant therethrough. The fin is characterized by a corrugated shape and is interposed between adjacent instances of the tubes. The fin defines a plurality of planar portions configured to extend between the adjacent instances of the tubes. Each planer portion is joined to an adjacent planer portion by a radiused portion that is in thermal contact with a tube proximate thereto. The radiused portion includes a retention feature located substantially mid-way between a leading edge and a trailing edge of the fin. The retention feature is configured to contact the tube in a manner effective to prevent fall-out of the fin prior to brazing of the heat exchanger assembly.


Further features and advantages will appear more clearly on a reading of the following detailed description of the preferred embodiment, which is given by way of non-limiting example only and with reference to the accompanying drawings.





BRIEF DESCRIPTION OF DRAWINGS

The present invention will now be described, by way of example with reference to the accompanying drawings, in which:



FIG. 1 is a perspective front view of a heat exchanger assembly equipped with fins in accordance with one embodiment;



FIGS. 2A and 2B are perspective views of a known fin;



FIGS. 3A and 3B are perspective views of a fin of the assembly of FIG. 1 in accordance with one embodiment; and



FIGS. 4A and 4B are perspective views of a fin of the assembly of FIG. 1 in accordance with one embodiment.





DETAILED DESCRIPTION


FIG. 1 illustrates a non-limiting example of a heat exchanger assembly, hereafter referred to as the assembly 20. The assembly 20 includes a first manifold 22 and a second manifold 24 spaced apart from and in a substantially parallel relationship with the first manifold 22. The first manifold 22 and the second manifold 24 are configured to receive a plurality of parallel spaced apart tubes 28 configured to convey, for example, coolant through the tubes 28 between the first manifold 22, and the second manifold 24. The tubes 28 are typically inserted into slots 26 of the first manifold 22 and the second manifold 24 and sealed to the manifolds by, for example, brazing, as will be recognized by those in the art. A plurality of corrugated fins, hereafter the fin 32, is disposed between and in thermal contact with adjacent instances of the tubes 28 for increased heat transfer efficiency between the fluid in the tubes 28 and the airflow 30 through the assembly 20, which may be urged by a fan (not shown). The tubes 28 and the fin 32 between the tubes 28 generally cooperate to define a core 34 of the assembly 20. Spaces between adjacent planar portions of the fin 32 and the tubes 28 cooperate to define a plurality of channels 36 that direct the airflow 30 through the core 34.



FIGS. 2A and 2B illustrate a portion of a prior art corrugated fin, hereafter the known fin 250. The known fin 250 is formed from a thin strip of heat conductive material such as aluminum. The shape of the known fin 250 includes radiused portions 256 and planar portions 254 that are alternately continuously arranged to define a corrugation. Each of the planar portions 254 includes a leading edge 258 oriented into the oncoming direction of the airflow 30, a trailing edge 260 spaced and opposite from the leading edge 258, and a plurality of louvers 252 therebetween. A known means to hold the known fin 250 in position during the brazing process was to form a raised lip 262 on both ends (e.g. the leading edge 258 and the trailing edge) of the radiused portion 256. The height of the raised lip 262 is selected to contact the tubes such that the known fin 250 stays in place during the brazing process. If the radiused lip 262 is too high, the material used for the known fin 250 may tear. If the radiused lip 262 is too low, the known fin 250 may drop during brazing. Another problem occurs if a known fin 250 is not precisely centered on the adjacent tube. When this happens, the leading or trailing edge of the known fin 250 can be distorted giving the edge an undesirable ‘candy ribbon’ appearance.


Referring again to FIG. 1, the heat exchanger assembly (the assembly 20) includes a plurality of parallel spaced apart tubes (the tubes 28) configured to convey, for example, coolant, refrigerant, oil, or other suitable fluid through the tubes 28. The fin 32 is characterized by a corrugated shape and the fin 32 is interposed between adjacent instances of the tubes 28.



FIGS. 3A, 3B, 4A, and 4B illustrate non-limiting details of one embodiment to the fin 32. In general, the fin 32 defines a plurality of planar portions 40 configured to extend between adjacent instances of the tubes 28 (see FIG. 1) when the fin 32 is part of the assembly 20. Each planer portion 40 is joined to an adjacent planer portion by a radiused portion 42. The radiused portion 42 is in thermal contact with a tube when the fin 32 is part of the assembly 20. In order to maintain the position of the fin 32 relative to the tube 28 after the fins and tubes have been stacked in an alternating arrangement but before brazing, the radiused portion includes a retention feature 44 located substantially mid-way between a leading edge 46 and a trailing edge 48 of the fin 32. As used herein, mid-way between the leading edge 46 and the trailing edge 48 means that the retention feature is far enough away from the leading edge 46 and the trailing edge 48 so that the undesirable ‘candy ribbon’ affect is not imparted onto the planar portion 40 at the leading edge 46 and the trailing edge 48. That is, if there is any distortion of the planar portion 40 caused by the stack of fins and tubes being pressed together prior to brazing, the distortion is far enough away from the leading edge 46 and the trailing edge 48 that the distortion is hidden from view by casual inspection of the assembly 20. In general, the retention feature 44 is configured to contact the tube 28 (see FIG. 1) in a manner effective to prevent fall-out of the fin 32 from a stack of fins and tubes prior to brazing of the assembly 20.



FIGS. 3A and 3B shows a non-limiting example of the retention feature 44 that includes a sharp edge 52 configured to deform to make an engaged contact with the tube 28 when the arrangement of tubes and fins are pressed together prior to brazing. As used herein, an engaged contact means that there is an intent to gouge or scratch the tube 28 by the sharp edge 52 so that the sharp edge 52 is not easily moved relative to the tube 28, but not so much that the tube is damaged and, for example, at risk of developing a leak. The use of the sharp edge to make an engaged contact is generally preferable when the tubes are constructed in such a way as to not be significantly damaged or deformed by deflection of the sharp edge 52 during assembly.



FIGS. 4A and 4B shows an alternative non-limiting example of the retention feature 44 that includes a coil portion 54 configured to deform to make a spring-biased contact with the tube 28. As used herein, a spring-biased contact means that the retention feature 44 is intended to not cause a substantial alteration to the contacting surface of the tube. A spring-biased contact may be preferable if the tube is relatively delicate and easily damaged. The coil portion 54 spreads any contact force applied against the tube by providing a greater contact area when compared to the sharp edge 52, and by more readily deflecting.


While the examples set forth herein show a single retention feature on each radiused portion, multiple retention features are contemplated. Furthermore, other shapes of retention features are contemplate such as a sharp edge provided by a ‘birds-mouth’ feature formed by piercing the radiused portion, or an S-shaped coil portion.


Advantages of the fin 32 described herein include: (1) reduces cosmetic damage on the outside face of the heat exchanger caused by the candy ribbon effect on the edges (leading or trailing) of the fin 32, (2) reduces the need to limit the height of the raised portion to within the elasticity limits of the material, (3) reduces the sensitivity of the relative position between the tube 28 and fin 32, and (4) the retention feature is controllably collapsible to create a secure fit between the tube and fin that holds its position during the cooling and heating cycles of the brazing process.


The retention feature 44 may be formed within a form roll station. The traditional stripper discs in the middle position of the form roll assembly may be replaced with a neutral form disc that will have a larger diameter than the adjacent discs next to it. As the form rolls are driven, the engagement of the neutral form disc at the larger diameter will pierce through the material as it rolls through its mating discs root diameter. The material as it is pierced will curl back thus protruding above the radiused portion 42. The collapsible raised middle margin created by a retention feature 44 on the top and bottom radiused portions creates the interference required with the tube during the stacking process to hold the fin in position during the brazing process.


When the assembly 20 is assembled, the fins and tubes are arranged in an alternating manner. Once completed, an operator activates the core assembly machine to “squeeze” the fin and tube arrangement to a final set dimension to allow the headers to be placed onto the heat exchanger assembly. When squeezed, the retention feature 44 collapses on itself to create interference between the tube and the fin effective to hold the fin in position during the brazing process.


The fin 32 described herein improves the present manufacturing process by: (1) eliminates the need to minimize the height of the raised margin as the retention feature if formed by piercing the material of the fin; (2) eliminates the candy ribbon cosmetic effect of the fin at the core face since any collapsing of the fin is internal to the heat exchanger assembly and visually unnoticeable; (3) eliminates the exact position requirements of the fin relative to the tube to eliminate the candy ribbon effect as the collapsible middle margin formed by the retention feature 44 can shift position on the tube internally to the core and not create cosmetic damage; and (4) the material collapsing on itself creates a solid interference between the tube and fin to allow it to hold its position during the brazing process.


Accordingly, a heat exchanger assembly (the assembly 20) and a fin 32 for the assembly 20 is provided. The retention feature 44 deforms or collapses during the stacking process to create a “material jam” between the fin and tube to hold the center in position during the braze process. Having retention feature 44 located about mid-way on the fin 32 is advantageous if the internal convolutions or louvers buckle during the stacking process it is unnoticeable on the face of the core as not to create a visual quality defect. The fin 32 being held in position by the retention feature 44 eliminates dropped fins in the brazing process. The tooling to create the retention feature 44 can be used with either flush face cores or offset cores. The retention feature 44 can be used with both welded and extruded tubes, and can be adapted to prevent damage to delicate tubes. Moving the anti-drop feature (e.g. the retention feature 44) from the outside edge of the fin (e.g. the raised lip 262) to the internal portion of the fin eliminates a source of visual quality defects.


While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.

Claims
  • 1. A fin characterized by a corrugated shape configured to be interposed between adjacent instances of tubes of a heat exchanger assembly, said fin comprising: a plurality of planar portions configured to extend between the adjacent instances of the tubes;a radiused portion located between adjacent planar portions and configured to be in thermal contact with a tube proximate thereto; anda retention feature located between a leading edge and a trailing edge of the fin and remote from both the leading edge and the trailing edge, said retention feature configured to contact the tube in a manner effective to prevent fall-out of the fin prior to brazing of the heat exchanger assembly, wherein the retention feature includes a curled coil portion forming a loop protruding from the radiused portion and configured to deform to make a spring-biased contact with the tube and to spread a contact force over a contact area of the tube, wherein the curled coil portion is curling away from the radiused portion.
  • 2. The fin according to claim 1, wherein the retention feature is pierced out of the fin and curled back such that it protrudes outward from the radiused portion.
  • 3. The fin according to claim 1, wherein the curled coil portion is offset from the radiused portion away from one of the adjacent planar portions toward the other one of the adjacent planar portions.
  • 4. A heat exchanger assembly, said assembly comprising: a plurality of parallel spaced apart tubes configured to convey coolant therethrough; and a fin characterized by a corrugated shape interposed between adjacent instances of the tubes, wherein the fin defines a plurality of planar portions extending between the adjacent instances of the tubes, each planar portion joined to an adjacent planar portion by a radiused portion in thermal contact with a proximate one of the tubes, wherein the radiused portion includes a retention feature located between a leading edge and a trailing edge of the fin and remote from both the leading edge and the trailing edge, said retention feature being pierced out of the radiused portion, protruding outward from the radiused portion, and contacting the proximate tube in a manner effective to prevent fall-out of the fin prior to brazing of the heat exchanger assembly, wherein the retention feature includes a coil portion forming a loop configured to deform to make a spring-biased contact with the tube, wherein the coil portion is curling away from the radiused portion.
  • 5. The fin according to claim 4, wherein the coil portion is offset from the radiused portion away from one of the adjacent planar portions toward the other one of the adjacent planar portions.
US Referenced Citations (41)
Number Name Date Kind
1950500 Loprich Mar 1934 A
3003749 Morse Oct 1961 A
3265127 Nickol Aug 1966 A
3266567 Kinal Aug 1966 A
3422777 Plegat Jan 1969 A
3537517 Doyle Nov 1970 A
4034453 Tomita Jul 1977 A
4067219 Bianchi Jan 1978 A
4086959 Habdas May 1978 A
4311193 Verhaeghe Jan 1982 A
4535839 Sacca Aug 1985 A
4538677 Bodas Sep 1985 A
4676304 Koisuka Jun 1987 A
5056586 Bemisderfer Oct 1991 A
5183629 Canat Feb 1993 A
5271458 Yamamoto Dec 1993 A
5386629 Ouchi Feb 1995 A
5390731 Selm Feb 1995 A
5505257 Goetz, Jr. Apr 1996 A
5558155 Ito Sep 1996 A
5617737 Christensen Apr 1997 A
5669438 Beales Sep 1997 A
5738169 Stoynoff Apr 1998 A
5765634 Martins Jun 1998 A
5787972 Beamer Aug 1998 A
5867904 Harris Feb 1999 A
6247527 Paulman Jun 2001 B1
6397939 Swiger Jun 2002 B1
6439300 Falta Aug 2002 B1
6494254 Laveran Dec 2002 B2
6662615 Hunt Dec 2003 B2
6799630 Kato Oct 2004 B1
6874345 Stoynoff, Jr. Apr 2005 B2
7913750 Huang et al. Mar 2011 B2
8881797 Melo Nov 2014 B2
20020195235 Falta Dec 2002 A1
20060175047 Hattori Aug 2006 A1
20080302131 Higashiyama Dec 2008 A1
20090025916 Meshenky Jan 2009 A1
20090242180 Gonzales Oct 2009 A1
20150034289 Seo Feb 2015 A1
Foreign Referenced Citations (3)
Number Date Country
4026988 Feb 1992 DE
19808202 Sep 1999 DE
1 295 288 Nov 1972 GB
Non-Patent Literature Citations (2)
Entry
English Translation of DE19808202.
https://www.wikipedia.org/ Wikipedia Deformation (Engineering) Accessed: Mar. 27, 2018.
Related Publications (1)
Number Date Country
20160061537 A1 Mar 2016 US