Heating, ventilating and air conditioning (HVAC) system with an auxiliary controller

Information

  • Patent Grant
  • 8788104
  • Patent Number
    8,788,104
  • Date Filed
    Monday, July 30, 2012
    13 years ago
  • Date Issued
    Tuesday, July 22, 2014
    11 years ago
Abstract
The disclosure provides a method of starting a heating, ventilation and air conditioning (HVAC) system, a method of manufacturing a HVAC system, a HVAC system, and an integrated controller thereof. In one embodiment, the method of starting includes: (1) receiving an initiation signal at a main system controller of the HVAC system, (2) determining if main controller application information associated with the main system controller is stored thereon, (3) querying an auxiliary controller of the HVAC system when determining the main controller application information is not stored on the main system controller, (4) sending the main controller application information to the main system controller from the auxiliary controller when the auxiliary controller includes the main controller application information and (5) initiating the HVAC system based on the initiation signal and employing the main controller application information sent to the main system controller from the auxiliary controller.
Description
TECHNICAL FIELD

This application is directed, in general, to heating, ventilating and air conditioning (HVAC) systems and, more specifically, to maintaining model specific information or identification data for a main system controller of an HVAC system.


BACKGROUND

HVAC systems can be used to regulate the environment within an enclosure. Typically, an air blower is used to pull air from the enclosure into the HVAC system through ducts and push the air back into the enclosure through additional ducts after conditioning the air (e.g., heating or cooling the air). In HVAC systems, whether a furnace or a coil blower unit, a single integrated electronic controller may be used to direct the operation.


The integrated electronic controllers of the HVAC systems may be used in different HVAC systems of varying sizes and may be used with various brands of products. As such, an electronic controller may require different feature sets depending on the HVAC system in which the integrated electronic controllers are used. As such, different feature sets can be loaded on an electronic controller for a HVAC system that are tailored for the specific HVAC system and/or installation of the specific HVAC system. To provide the proper feature sets for an electronic controller for a specific HVAC system or application, a manufacturer of the HVAC system may load model identification data and/or model specific information on the electronic controller.


SUMMARY

The disclosure provides, in one aspect, a method of starting a HVAC system. In one embodiment, the method includes: (1) receiving an initiation signal at a main system controller of the HVAC system, (2) determining if main controller application information associated with the main system controller is stored thereon, (3) querying an auxiliary controller of the HVAC system when determining the main controller application information is not stored on the main system controller, (4) sending the main controller application information to the main system controller from the auxiliary controller when the auxiliary controller includes the main controller application information and (5) initiating the HVAC system based on the initiation signal and employing the main controller application information sent to the main system controller from the auxiliary controller.


In another aspect, a method of manufacturing a HVAC system is disclosed. In one embodiment, the method of manufacturing includes: (1) storing main controller application information for a main system controller of the HVAC system in the main system controller during manufacturing of the HVAC system and (2) storing a copy of the main controller application information in an auxiliary controller of the main system controller during the manufacturing.


In yet another aspect, a HVAC system is disclosed. In one embodiment, the HVAC system includes: (1) a main system controller having a main non-volatile memory and configured to direct operation of the HVAC system and store main controller application information associated therewith on the main non-volatile memory (2) an auxiliary controller having (2A) an interface coupled to the main system controller and configured to communicate therewith, (2B) a processor, coupled to the interface and configured to direct the operation of a component of the HVAC system and (2C) an auxiliary non-volatile memory configured to receive a copy of the main controller application information via the interface and store the main controller application information thereon.


In still another aspect, an integrated controller for a HVAC system is disclosed. In one embodiment, the integrated controller includes: (1) an interface coupled to an auxiliary controller of the HVAC system and configured to communicate therewith, the auxiliary controller having an auxiliary non-volatile memory, (2) a processor, coupled to the interface and configured to direct the operation of the HVAC system and (3) a main non-volatile memory coupled to the processor and configured to receive a copy of main controller application information associated with the main system controller via the interface and store the main controller application information, the processor further configured to automatically send a copy of the main controller application information during manufacturing of the HVAC system to the auxiliary controller of the HVAC system to store as back-up data on the auxiliary non-volatile memory of the auxiliary controller.





BRIEF DESCRIPTION

Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a block diagram of an embodiment of a HVAC system constructed according to the principles of the disclosure;



FIG. 2 is a system diagram of an embodiment of a HVAC system constructed according to the principles of the disclosure;



FIG. 3 is a flow diagram of an embodiment of a method of manufacturing a HVAC system carried out according to the principles of the disclosure; and



FIG. 4 is a flow diagram of an embodiment of a method of starting a HVAC system carried out according to the principles of the disclosure.





DETAILED DESCRIPTION

An Original Equipment Manufacturer (OEM) can load the associated model information or model identification data on the main integrated electronic controller of an HVAC system eliminate the need for additional external hardware that could be required to identify the controller. As such, the cost of construction can be decreased and the ability for standardization can be improved. A negative outcome, however, of storing unit specific information on the main integrated electronic (i.e., main system controller) may be evident during failure and ultimate replacement of the main system controller. In this case, after installing the new controller, the installer or technician can experience an error code upon initial start-up due to missing unit information which will require additional action by the installer to manually select the unit ID. The additional action required by the technician can delay starting an out-of-service HVAC system. Additionally, by relying on the technician to enter the proper model information for the controller, the technician may incorrectly enter the model information. As such, the proper feature set or sets for the main system controller may not be loaded. This may result in improper operation and additional failures of the HVAC system.


Accordingly, the present disclosure provides a copy of main controller application information associated with the main system controller of a HVAC system in at least one auxiliary controller of the HVAC system. The main controller application information is data for the main system controller. The associated data may include model specific information, model identification data, application information for the HVAC system (i.e., information associated with a specific installation of the HVAC system), and feature sets for the HVAC system (general for the HVAC system or specific for the application). By providing a back-up copy of the main controller application information, upon initial power up of a replacement main system controller or a corrupted main system controller, the new or corrupted main controller will realize the model ID or model specific information is not available and will query a controller of an auxiliary component to determine if the needed information is stored thereon. For example, an auxiliary component may be an indoor blower motor and the auxiliary controller a motor controller for the indoor blower motor. If the information is found in the auxiliary controller, then it is sent to the main system controller memory and the operation of the HVAC system can proceed as normal. No error code needs to be displayed and no manual intervention is required by the technician. The specification, therefore, provides embodiments that provide a back-up for the main controller application information and eliminate the need for additional external hardware. As such, the cost of construction can be decreased, the ability for standardization can be improved and the robustness of the system improved.


Typically, each HVAC system will include a designated controller, a main system controller, which is configured to direct the overall operation thereof. As such, the main system controllers disclosed herein are configured to provide control functionality beyond the scope of the present disclosure. The main system controllers may be one or more electric circuit boards including at least one micro-processor or micro-controller integrated circuit. The main system controllers also include the support circuitry for power, signal conditioning, and associated peripheral devices. In addition to a processor, the main system controllers may include a memory having a program or series of operating instruction (i.e., firmware or software) that executes in such a way as to implement at least some of the features described herein when initiated by the processor. The memory includes a non-volatile memory. The auxiliary controllers may be similarly configured and also include a non-volatile memory.


The main controller application information may be copied from the main system controller to the auxiliary controller during manufacturing of the HVAC system. The main controller application information may be automatically copied when the main system controller is loaded with the controller application information. The auxiliary controller may be predetermined. In some embodiments, the auxiliary controller may be a designated auxiliary controller for each type of HVAC system. In some embodiments, the auxiliary controller may vary and could be selected by, for example, a manufacturer.



FIG. 1 is a block diagram of an embodiment of a HVAC system 100 constructed according to the principles of the disclosure. The HVAC system 100 may be, for example, a furnace or a coil blower unit. The HVAC system 100 includes a main system controller 110, an auxiliary controller 120 and a HVAC component 130. In addition to the illustrated component 130, the HVAC system 100 includes additional components as may be typically included in a conventional HVAC system. For example, one skilled in the art will understand that the HVAC system 100 may include heating, cooling and blower (HCB) components that are typically included in a HVAC unit. The additional HCB components are not presently illustrated or discussed but are typically included in an HVAC unit, such as, a compressor, an indoor air blower, an outdoor fan and an electrical heating element. Typical components may also include a power supply, a temperature sensor, etc. The various components of the HVAC system 100 may be contained within a single enclosure (e.g., a cabinet).


The main system controller 110 is configured to direct the operation of the various HCB components. The main system controller 110 includes a communications interface 112, a processor 114 and a memory 116. The communications interface 112 is configured to communicate with the various components of the HVAC system 100. The processor 114 is configured to direct operation of the various components via the communications interface 112. The memory 110 is configured to store a series of operating instructions that direct the operation of the processor 114 when initiated thereby. The memory 116 is non-volatile memory or at least includes a portion that is non-volatile. The memory 116 also includes main controller application information for the main system controller 110. The main controller application information may be loaded in the memory 116 during manufacturing. In some embodiments, the main controller application information may be loaded during the final functional OEM testing of the HVAC system 100. In other embodiments, the main controller application information may be loaded during final functional testing of the main system controller 116 (e.g., a furnace controller). In one embodiment, the main system controller 116 may include information for applicable HVAC system models that was loaded during final functional testing of the main system controller. During final functional testing of the HVAC system 100, the applicable main controller application information that is used (or even an index of a table of the information that was used) may be stored in the memory 116.


A factory programmer (e.g., a computer) may be used to load the main controller application information on the memory 116 at the manufacturer via the interface 112. In some embodiments, the factory programmer may automatically load main controller application information after or as part of the functional testing. In addition to a factory programmer, other computing devices such as a portable computer (e.g., a laptop) or a portable memory device may be used to manually load the main controller application information to the memory 116. The portable memory device may be a “pen drive.” As is widely known, a pen drive, also called a “memory stick” or a “jump drive,” is a solid-state device containing non-volatile computer memory, typically flash random-access memory (RAM), and a Universal Serial Bus (USB) port that allows external access to the non-volatile memory.


The auxiliary controller 120 also includes an interface 122, a processor 124 and a memory 126. The memory 126 is a non-volatile memory or at least includes a portion that is non-volatile. The interface 122 is coupled to the main system controller 110 via the interface 112 and is configured to communicate therewith. The interface 122 is also coupled to the HVAC component 130 and configured to communicate therewith.


The interfaces 112, 122, may be conventional communication ports and may be coupled via a system bus. The system bus may be a typical bus that is employed in HVAC systems. The processor 124 is coupled to the interface 122 and is configured to direct the operation of the HVAC component 130. The memory 126 is configured to store a series of operating instructions that direct the operation of the processor 124 when initiated thereby. The memory 126 may also include various parameters associated with the HVAC component 130 that are employed to operate the HVAC component 130. In addition, the memory 126 is also configured to receive the main controller application information from the main system controller 110 via the interfaces 112, 122, and store the main controller application information in the non-volatile memory of the auxiliary controller 120. The main controller application information may be automatically copied to the non-volatile memory of the memory 126 at the manufacturer of the HVAC system 100. In some embodiments, the controller application information may be manually loaded on the auxiliary controller 120 via the interface 122 employing a computing or memory device.


The HVAC component 130 may be an indoor blower motor for the HVAC system 100. In such an embodiment, the auxiliary controller 120 is an indoor blower motor controller. FIG. 2 provides an embodiment of an HVAC system wherein the auxiliary component is an indoor blower motor.



FIG. 2 is a system diagram of an embodiment of HVAC system 200 constructed according to the principles of the disclosure. The HVAC system 200 includes a return duct 202, a return plenum 204, a supply duct 206 and a supply plenum 208. Additionally, the HVAC system 200 may include a refrigeration circuit having a compressor system 212, evaporator coils 214 and condenser coils 216, an indoor air blower 220, a motor controller 225, an outdoor fan 230 and a main system controller 240. Each of the components of the refrigeration circuit 210 is fluidly coupled together. In this embodiment, the compressor system 212, the evaporator coils 214, and the condenser coils 216 each include two units as denoted by the numbers 1-2 in FIG. 2. The multiple units of the refrigeration system 210 represent two cooling stages of the HVAC system 200. One skilled in the art will understand that this disclosure also applies to other HVAC embodiments having a single cooling stage, more than two cooling stages or no cooling stages. For example, one skilled in the art will also understand that this disclosure and the main system controller applies to other HVAC systems such as a furnace.


One skilled in the art will also understand that the HVAC system 200 may include additional components and devices that are not presently illustrated or discussed but are typically included in an HVAC system, such as, a power supply, a temperature sensor, a humidity sensor, etc. A thermostat (not shown) is also typically employed with the HVAC system 200 and used as a user interface. The various illustrated components of the HVAC system 200 may be contained within a single enclosure (e.g., a cabinet). In one embodiment, the HVAC system 200 may be a rooftop unit.


The refrigeration circuit 210, the indoor air blower 220, the outdoor fan system 230 and the humidity sensor 240 may be conventional devices that are typically employed in HVAC systems. At least some of the operation of the HVAC system 200 can be controlled by the main system controller 240 based on inputs from various sensors of the HVAC system 200 including a temperature sensor or a humidity sensor. For example, the main system controller 240 can employ the motor controller 225 to cause the indoor air blower 220 to move air across the evaporator coils 214 and into an enclosed space.


The motor controller 225 includes an interface, a processor and a non-volatile memory that is used to store a copy of the main controller application information for the main system controller 240. The copy of the main controller application information may be used as a back-up if, for example, the controller application information on the main system controller 240 becomes corrupted. Additionally, the main controller application information stored on the motor controller 225 may be use when a new main system controller is installed. The new main system controller can query the motor controller 225 to determine if the main controller application information is stored thereon and obtain the main controller application information therefrom.


The main system controller 240 may include a processor, such as a microprocessor, configured to direct the operation of the HVAC system 200. Additionally, the main system controller 240 may include an interface and a memory section, having a non-volatile memory, coupled thereto. The interface and memory section may be configured to communicate (i.e., receive and transmit) and store main controller application information for the main system controller 240. The main controller application information for the main system controller 240 can include model specific information and model identification data. The model specific information may include feature sets that are applicable to the particular HVAC system 200. In addition to being uniquely tailored for the HVAC system 200, the main controller application information may also be uniquely tailored to an application of the HVAC system 200 for the customer.


The interfaces of the motor controller 225 and the main system controller 240 may include multiple ports for transmitting and receiving data. The ports may be conventional receptacles for communicating data via various means such as, a portable memory device, a PC or portable computer or a communications network. The interfaces are coupled to the memory sections of the controllers, which may be designed as a conventional memory that is constructed to store data and computer programs and include a non-volatile memory.


As illustrated in FIG. 2, the main system controller 240 is coupled to the various components of the HVAC system 200. In some embodiments, the connections therebetween are through a wired-connection. A conventional cable and contacts may be used to couple the main system controller 240 to the various components of the HVAC system 200. In other embodiments, a wireless connection may also be employed to provide at least some of the connections.



FIG. 3 is a flow diagram of an embodiment of a method 300 of manufacturing a HVAC system carried out according to the principles of the disclosure. The HVAC system may be a furnace, a coil blower unit, a commercial unit, a residential unit, a rooftop unit, etc. The method begins in a step 305.


Main controller application information for a main system controller of the HVAC system is stored in the main system controller during manufacturing of the HVAC system in a step 310. In some embodiments, the main controller application information may be loaded onto the main system controller during final functional testing. The main controller application information may be automatically loaded on the main system controller. The main controller application information may be automatically loaded after the final functional testing or may be loaded as part of the final functional testing. A factory programmer may automatically load the main controller application information.


In a step 320, a copy of the main controller application information is automatically provided to the auxiliary controller. In one embodiment, the copy may be automatically transferred from the main system controller to the auxiliary controller. The main system controller may be configured to automatically transfer the main controller application information upon receipt thereof. As such, the main system controller may be programmed to automatically transfer a copy of the main controller application information to a designated auxiliary controller having a non-volatile memory after receiving the main controller application information. The copy may be transferred via a system bus that couples the main system controller and the auxiliary controller. The system bus may be wireless or wired. In some embodiments, a copy of the main controller application information may be sent to more than one auxiliary controller employing, for example, the system bus.


A copy of the main controller application information is then stored in a memory of the auxiliary controller in a step 330. The main controller application information is stored in a non-volatile memory of the auxiliary controller. In some embodiments, the main controller application information may be stored simultaneously or substantially simultaneously on the main system controller and the auxiliary controller. As such, in these embodiments the main controller application information can also be sent simultaneously or substantially simultaneously to the main system controller and the auxiliary controller. The factory programmer may be configured to send the main controller application information to both of the controllers at the same or substantially the same time.


In a step 340, final functional testing of the HVAC system is performed. The functional testing may be performed by the manufacturer to ensure each component is working correctly and each of the components is working together. The functional testing may also be applied to assess the response to and the recovery from a power failure. Final functional testing is typically performed on a HVAC system before shipment from the manufacturer. The final functional testing for a particular component, such as a main system controller, may be performed by the OEM of that component. Final functioning of the HVAC system may be performed by the manufacturer of the HVAC system or HVAC unit. The method 300 then ends in a step 350.



FIG. 4 is a flow diagram of an embodiment of a method 400 of starting a HVAC system carried out according to the principles of the disclosure. The HVAC system may be turned-on simply after being turned-off. Alternatively, the HVAC system may be started after being out-of-service due to repairs or maintenance. In some embodiments, the HVAC system may be turned-on after replacing the main system controller. The method 400 may be reflected as a series of operating instructions representing an algorithm for starting the HVAC system. The operating instructions or some of the operating instructions may be stored on a main system controller and an auxiliary controller. Thus, a processor or processors may be configured to perform the various steps of the method 400. The method 400 starts in a step 405.


In a step 410, an initiation signal is received at a main system controller of the HVAC system. The initiation signal is a power-up signal that can be generated via the operation of a switch. A technician may start the initiation signal by depressing a switch.


After powering-up, a determination is made in a step 420 if the main controller application information associated with the main system controller is stored thereon. The determination may be automatically started based on receipt of the initiation signal. If the main controller application information is not stored on the main system controller, an auxiliary controller is queried in a step 430 to determine if the auxiliary controller includes the main controller application information. If the auxiliary controller includes the main controller application information, the auxiliary controller sends the main controller application information to the main system controller in a step 440. Both the querying and the sending are performed automatically. The main system controller and the auxiliary controller can be programmed accordingly to automatically perform these steps. The HVAC system is then initiated in a step 450 employing the controller application information. The method 400 ends in a step 460.


Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments. One skilled in the art will understand that the order of the steps of the various methods disclosed herein may vary unless specifically noted otherwise.

Claims
  • 1. A heating, ventilating and air conditioning (HVAC) system, comprising: a main system controller having a main non-volatile memory and configured to direct operation of said HVAC system and store main controller application information associated therewith on said main non-volatile memory; andan auxiliary controller, including: an interface coupled to said main system controller and configured to communicate therewith;a processor, coupled to said interface and configured to direct the operation of a component of said HVAC system; andan auxiliary non-volatile memory configured to receive a copy of said main controller application information via said interface and store said main controller application information thereon.
  • 2. The HVAC system as recited in claim 1 further comprising an indoor blower motor configured to move air through said HVAC system, wherein said auxiliary controller is a blower motor controller for said blower motor.
  • 3. The HVAC system as recited in claim 1 wherein said HVAC system includes a furnace and said main system controller is an integrated furnace controller.
  • 4. The HVAC system as recited in claim 1 wherein said HVAC system includes a coil blower unit and said main system controller is an integrated blower controller.
  • 5. The HVAC system as recited in claim 1 wherein said main system controller is configured to store said main controller application information thereon and automatically provide said copy of said controller application information to said auxiliary controller as back-up data.
  • 6. The HVAC system as recited in claim 1 wherein said main controller application information includes model identification data or model specific data for said main system controller.
  • 7. The HVAC system as recited in claim 1 wherein said main controller application information includes application specific data for said main system controller.
  • 8. The HVAC system as recited in claim 1 wherein said interface is configured to receive said main controller application information from said main system controller during manufacturing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of U.S. application Ser. No. 12/707,509 filed on Feb. 17, 2010 now U.S. Pat. No. 8,260,444, to Glen Will Kowald, entitled “AUXILIARY CONTROLLER OF A HVAC SYSTEM,” currently allowed for issuance, commonly assigned with the present disclosure and incorporated herein by reference.

US Referenced Citations (897)
Number Name Date Kind
4296464 Woods et al. Oct 1981 A
4501125 Han Feb 1985 A
4694394 Costantini Sep 1987 A
4698628 Herkert et al. Oct 1987 A
4703325 Chamberlin et al. Oct 1987 A
4706247 Yoshioka Nov 1987 A
4723239 Schwartz Feb 1988 A
4841450 Fredriksson Jun 1989 A
4873649 Grald et al. Oct 1989 A
4884214 Parker et al. Nov 1989 A
4887262 van Veldhuizen Dec 1989 A
4888728 Shirakawa et al. Dec 1989 A
4889280 Grald et al. Dec 1989 A
4931948 Parker et al. Jun 1990 A
4941143 Twitty et al. Jul 1990 A
4942613 Lynch Jul 1990 A
4947484 Twitty et al. Aug 1990 A
4947928 Parker et al. Aug 1990 A
4953083 Takata et al. Aug 1990 A
4955018 Twitty et al. Sep 1990 A
4978896 Shah Dec 1990 A
4991770 Bird et al. Feb 1991 A
4996513 Mak et al. Feb 1991 A
5006827 Brueton et al. Apr 1991 A
5018138 Twitty et al. May 1991 A
5042997 Rhodes Aug 1991 A
5058388 Shaw et al. Oct 1991 A
5103896 Saga Apr 1992 A
5105366 Beckey Apr 1992 A
5115967 Wedekind May 1992 A
5180102 Gilbert et al. Jan 1993 A
5181653 Foster et al. Jan 1993 A
5184122 Decious et al. Feb 1993 A
5191643 Alsenz Mar 1993 A
5195327 Kim Mar 1993 A
5197666 Wedekind Mar 1993 A
5197668 Ratz et al. Mar 1993 A
5203497 Ratz et al. Apr 1993 A
5220260 Schuler Jun 1993 A
5230482 Ratz et al. Jul 1993 A
5276630 Baldwin et al. Jan 1994 A
5277036 Dieckmann et al. Jan 1994 A
5279458 DeWolf et al. Jan 1994 A
5297143 Fridrich et al. Mar 1994 A
5314004 Strand et al. May 1994 A
5323385 Jurewicz et al. Jun 1994 A
5323619 Kim Jun 1994 A
5327426 Dolin, Jr. et al. Jul 1994 A
5329991 Mehta et al. Jul 1994 A
5337952 Thompson Aug 1994 A
5355323 Bae Oct 1994 A
5383116 Lennartsson Jan 1995 A
5384697 Pascucci Jan 1995 A
5414337 Schuler May 1995 A
5417368 Jeffery et al. May 1995 A
5420572 Dolin, Jr. et al. May 1995 A
5440895 Bahel et al. Aug 1995 A
5444626 Schenk Aug 1995 A
5444851 Woest Aug 1995 A
5448180 Kienzler et al. Sep 1995 A
5448561 Kaiser et al. Sep 1995 A
5449047 Schivley, Jr. Sep 1995 A
5452201 Pieronek et al. Sep 1995 A
5460327 Hill et al. Oct 1995 A
5463735 Pascucci et al. Oct 1995 A
5469150 Sitte Nov 1995 A
5481661 Kobayashi Jan 1996 A
5488834 Schwarz Feb 1996 A
5491649 Friday, Jr. et al. Feb 1996 A
5502818 Lamberg Mar 1996 A
5513324 Dolin, Jr. et al. Apr 1996 A
5515267 Alsenz May 1996 A
5520328 Bujak, Jr. May 1996 A
5530643 Hodorowski Jun 1996 A
5537339 Naganuma et al. Jul 1996 A
5539778 Kienzler et al. Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5544809 Keating et al. Aug 1996 A
5551053 Nadolski et al. Aug 1996 A
5555269 Friday, Jr. et al. Sep 1996 A
5555509 Dolan et al. Sep 1996 A
5559407 Dudley et al. Sep 1996 A
5559412 Schuler Sep 1996 A
5566879 Longtin Oct 1996 A
5572658 Mohr et al. Nov 1996 A
5574848 Thomson Nov 1996 A
5579221 Mun Nov 1996 A
5581478 Cruse et al. Dec 1996 A
5592058 Archer et al. Jan 1997 A
5592059 Archer Jan 1997 A
5592628 Ueno et al. Jan 1997 A
5596437 Heins Jan 1997 A
5598566 Pascucci et al. Jan 1997 A
5600782 Thomson Feb 1997 A
5613369 Sato et al. Mar 1997 A
5617282 Rall et al. Apr 1997 A
5628201 Bahel et al. May 1997 A
5630325 Bahel et al. May 1997 A
5634590 Gorski et al. Jun 1997 A
5675830 Satula Oct 1997 A
5684717 Beilfuss et al. Nov 1997 A
5699243 Eckel et al. Dec 1997 A
5711480 Zepke et al. Jan 1998 A
5720604 Kelly et al. Feb 1998 A
5722822 Wilson et al. Mar 1998 A
5726900 Walter et al. Mar 1998 A
5737529 Dolin, Jr. et al. Apr 1998 A
5748923 Eitrich May 1998 A
5751572 Maciulewicz May 1998 A
5751948 Dolan et al. May 1998 A
5754779 Dolin, Jr. et al. May 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764146 Baldwin et al. Jun 1998 A
5772326 Batko et al. Jun 1998 A
5772732 James et al. Jun 1998 A
5774322 Walter et al. Jun 1998 A
5774492 Orlowsik, Jr. et al. Jun 1998 A
5774493 Ross Jun 1998 A
5777837 Eckel et al. Jul 1998 A
5782296 Mehta Jul 1998 A
5786993 Frutiger et al. Jul 1998 A
5787027 Dolan et al. Jul 1998 A
5791332 Thompson et al. Aug 1998 A
5802485 Koelle et al. Sep 1998 A
5809063 Ashe et al. Sep 1998 A
5809556 Fujisawa et al. Sep 1998 A
5816492 Charles et al. Oct 1998 A
5818347 Dolan et al. Oct 1998 A
5819845 Ryu et al. Oct 1998 A
5826038 Nakazumi Oct 1998 A
5829674 Vanostrand et al. Nov 1998 A
5841654 Verissimo et al. Nov 1998 A
5848887 Zabielski et al. Dec 1998 A
5854744 Zeng et al. Dec 1998 A
5856972 Riley et al. Jan 1999 A
5860411 Thompson et al. Jan 1999 A
5860473 Seiden Jan 1999 A
5862411 Kay et al. Jan 1999 A
5864581 Alger-Meunier et al. Jan 1999 A
5873519 Beilfuss Feb 1999 A
5878236 Kleineberg et al. Mar 1999 A
5883627 Pleyer Mar 1999 A
5892690 Boatman et al. Apr 1999 A
5896304 Tiemann et al. Apr 1999 A
5900674 Wojnarowski et al. May 1999 A
5903454 Hoffberg et al. May 1999 A
5912877 Shirai et al. Jun 1999 A
5914453 James et al. Jun 1999 A
5915101 Kleineberg et al. Jun 1999 A
5927398 Maciulewicz Jul 1999 A
5930249 Stademann et al. Jul 1999 A
5933655 Vrabec et al. Aug 1999 A
5934554 Charles et al. Aug 1999 A
5937942 Bias et al. Aug 1999 A
5946209 Eckel et al. Aug 1999 A
5971597 Baldwin et al. Oct 1999 A
5973594 Baldwin et al. Oct 1999 A
5983646 Grothe et al. Nov 1999 A
5993195 Thompson Nov 1999 A
6006142 Seem et al. Dec 1999 A
6011821 Sauer et al. Jan 2000 A
6021252 Faris et al. Feb 2000 A
6028864 Marttinen et al. Feb 2000 A
6032178 Bacigalupo et al. Feb 2000 A
6035024 Stumer Mar 2000 A
6046410 Wojnarowski et al. Apr 2000 A
6049817 Schoen et al. Apr 2000 A
6053416 Specht et al. Apr 2000 A
6061603 Papadopoulos et al. May 2000 A
6078660 Burgess Jun 2000 A
6082894 Batko et al. Jul 2000 A
6092280 Wojnarowski Jul 2000 A
6095674 Verissimo et al. Aug 2000 A
6098116 Nixon et al. Aug 2000 A
6101824 Meyer et al. Aug 2000 A
6110260 Kubokawa Aug 2000 A
6138227 Thewes et al. Oct 2000 A
6141595 Gloudeman et al. Oct 2000 A
6145501 Manohar et al. Nov 2000 A
6145751 Ahmed Nov 2000 A
6147601 Sandelman et al. Nov 2000 A
6151298 Bernhardsson et al. Nov 2000 A
6151529 Batko Nov 2000 A
6151625 Swales et al. Nov 2000 A
6151650 Birzer Nov 2000 A
6155341 Thompson et al. Dec 2000 A
6160477 Sandelman et al. Dec 2000 A
6160484 Spahl et al. Dec 2000 A
6160795 Hosemann Dec 2000 A
6167338 De Wille et al. Dec 2000 A
6169937 Peterson Jan 2001 B1
6177945 Pleyer Jan 2001 B1
6179213 Gibino et al. Jan 2001 B1
6182130 Dolin, Jr. et al. Jan 2001 B1
6188642 Schoniger et al. Feb 2001 B1
6190442 Redner Feb 2001 B1
6208905 Giddings et al. Mar 2001 B1
6208924 Bauer Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6216066 Goebel et al. Apr 2001 B1
6227191 Garloch May 2001 B1
6232604 McDaniel et al. May 2001 B1
6237113 Daiber May 2001 B1
6252890 Alger-Meunier et al. Jun 2001 B1
6254009 Proffitt et al. Jul 2001 B1
6266205 Schreck et al. Jul 2001 B1
6269127 Richards Jul 2001 B1
6282454 Papadopoulos et al. Aug 2001 B1
6285912 Ellison et al. Sep 2001 B1
6292518 Grabb et al. Sep 2001 B1
6298376 Rosner et al. Oct 2001 B1
6298454 Schleiss et al. Oct 2001 B1
6298551 Wojnarowski et al. Oct 2001 B1
6304557 Nakazumi Oct 2001 B1
6324008 Baldwin et al. Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6336065 Gibson et al. Jan 2002 B1
6343236 Gibson et al. Jan 2002 B1
6349883 Simmons et al. Feb 2002 B1
6353775 Nichols Mar 2002 B1
6385510 Hoog et al. May 2002 B1
6390806 Dempsey et al. May 2002 B1
6393023 Shimizu et al. May 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6405104 Dougherty Jun 2002 B1
6408228 Seem et al. Jun 2002 B1
6411701 Stademann Jun 2002 B1
6412435 Timmons, Jr. Jul 2002 B1
6415395 Varma et al. Jul 2002 B1
6418507 Fackler Jul 2002 B1
6423118 Becerra et al. Jul 2002 B1
6424872 Glanzer et al. Jul 2002 B1
6424874 Cofer Jul 2002 B1
6429845 Unseld et al. Aug 2002 B1
6434715 Andersen Aug 2002 B1
6435418 Toth et al. Aug 2002 B1
6437691 Sandelman et al. Aug 2002 B1
6442952 Roh et al. Sep 2002 B2
6448896 Bankus et al. Sep 2002 B1
6449315 Richards Sep 2002 B2
6450409 Rowlette et al. Sep 2002 B1
6454177 Sasao et al. Sep 2002 B1
6462654 Sandelman et al. Oct 2002 B1
6478084 Kumar et al. Nov 2002 B1
6497570 Sears et al. Dec 2002 B1
6498844 Stademann Dec 2002 B1
6504338 Eichorn Jan 2003 B1
6526122 Matsushita et al. Feb 2003 B2
6535123 Sandelman et al. Mar 2003 B2
6535138 Dolan et al. Mar 2003 B1
6539489 Reinert Mar 2003 B1
6540148 Salsbury et al. Apr 2003 B1
6542462 Sohraby et al. Apr 2003 B1
6543007 Bliley et al. Apr 2003 B1
6545660 Shen et al. Apr 2003 B1
6546008 Wehrend Apr 2003 B1
6554198 Hull et al. Apr 2003 B1
6560976 Jayanth May 2003 B2
6567476 Kohl et al. May 2003 B2
6572363 Virgil, Jr. et al. Jun 2003 B1
6574215 Hummel Jun 2003 B2
6574234 Myer et al. Jun 2003 B1
6574581 Bohrer et al. Jun 2003 B1
6575233 Krumnow Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6587039 Woestemeyer et al. Jul 2003 B1
6587739 Abrams et al. Jul 2003 B1
6587884 Papadopoulos et al. Jul 2003 B1
6595430 Shah Jul 2003 B1
6600923 Dzuban Jul 2003 B1
6608560 Abrams Aug 2003 B2
6609127 Lee et al. Aug 2003 B1
6615088 Myer et al. Sep 2003 B1
6615594 Jayanth et al. Sep 2003 B2
6618394 Hilleary Sep 2003 B1
6619555 Rosen Sep 2003 B2
6621507 Shah Sep 2003 B1
6622926 Sartain et al. Sep 2003 B1
6628993 Bauer Sep 2003 B1
6633781 Lee et al. Oct 2003 B1
6636771 Varma et al. Oct 2003 B1
6640145 Hoffberg et al. Oct 2003 B2
6640890 Dage et al. Nov 2003 B1
6643689 Rode et al. Nov 2003 B2
6647317 Takai et al. Nov 2003 B2
6650949 Fera et al. Nov 2003 B1
6651034 Hedlund et al. Nov 2003 B1
6658373 Rossi et al. Dec 2003 B2
RE38406 Faris et al. Jan 2004 E
6681215 Jammu Jan 2004 B2
6688387 Wellington et al. Feb 2004 B1
6704688 Aslam et al. Mar 2004 B2
6708239 Ellerbrock et al. Mar 2004 B1
6715120 Hladik et al. Mar 2004 B1
6715302 Ferragut, II Apr 2004 B2
6715690 Hull et al. Apr 2004 B2
6717513 Sandelman et al. Apr 2004 B1
6718384 Linzy Apr 2004 B2
6722143 Moon et al. Apr 2004 B2
6725180 Mayer et al. Apr 2004 B2
6725398 Varma et al. Apr 2004 B1
6728369 Burgess Apr 2004 B2
6732191 Baker et al. May 2004 B1
6735196 Manzardo May 2004 B1
6735282 Matsushita et al. May 2004 B2
6735965 Moon et al. May 2004 B2
6738676 Hirayama May 2004 B2
6741915 Poth May 2004 B2
6744771 Barber et al. Jun 2004 B1
6745106 Howard et al. Jun 2004 B2
6758050 Jayanth et al. Jul 2004 B2
6758051 Jayanth et al. Jul 2004 B2
6763040 Hite et al. Jul 2004 B1
6763272 Knepper Jul 2004 B2
6765993 Cueman Jul 2004 B2
6768732 Neuhaus Jul 2004 B1
6774786 Havekost et al. Aug 2004 B1
6779176 Chambers, II et al. Aug 2004 B1
6783079 Carey et al. Aug 2004 B2
6789739 Rosen Sep 2004 B2
6791530 Vernier et al. Sep 2004 B2
6795935 Unkle et al. Sep 2004 B1
6798341 Eckel et al. Sep 2004 B1
6801524 Eteminan Oct 2004 B2
6804564 Crispin et al. Oct 2004 B2
6810333 Adedeji et al. Oct 2004 B2
6814299 Carey Nov 2004 B1
6814660 Cavett Nov 2004 B1
6816071 Conti Nov 2004 B2
6819802 Higgs et al. Nov 2004 B2
6822202 Atlas Nov 2004 B2
6823680 Jayanth Nov 2004 B2
6824069 Rosen Nov 2004 B2
6826454 Sulfstede Nov 2004 B2
6826590 Glanzer et al. Nov 2004 B1
6832118 Heberlein et al. Dec 2004 B1
6833844 Shiota et al. Dec 2004 B1
6840052 Smith et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6842808 Weigl et al. Jan 2005 B2
6845918 Rotondo Jan 2005 B2
6850992 Heinrich et al. Feb 2005 B2
6851948 Dempsey et al. Feb 2005 B2
6853291 Aisa Feb 2005 B1
6854444 Plagge et al. Feb 2005 B2
6865449 Dudley Mar 2005 B2
6865596 Barber et al. Mar 2005 B1
6865898 Yamanashi et al. Mar 2005 B2
6866375 Leighton et al. Mar 2005 B2
6868900 Dage et al. Mar 2005 B2
6874693 Readio et al. Apr 2005 B2
6876891 Schuler et al. Apr 2005 B1
6879881 Attridge, Jr. Apr 2005 B1
6888441 Carey May 2005 B2
6892121 Schmidt May 2005 B2
6894703 Vernier et al. May 2005 B2
6900808 Lassiter et al. May 2005 B2
6901316 Jensen et al. May 2005 B1
6901439 Bonasia et al. May 2005 B1
6907329 Junger et al. Jun 2005 B2
6909948 Mollmann et al. Jun 2005 B2
6918064 Mueller et al. Jul 2005 B2
6920318 Brooking et al. Jul 2005 B2
6925360 Yoon et al. Aug 2005 B2
6931645 Murching et al. Aug 2005 B2
6938106 Ellerbrock et al. Aug 2005 B2
6941193 Frecska et al. Sep 2005 B2
6954680 Kreidler et al. Oct 2005 B2
6955060 Homan et al. Oct 2005 B2
6955302 Erdman, Jr. Oct 2005 B2
6956424 Hohnel Oct 2005 B2
6957696 Krumnow Oct 2005 B1
6963288 Sokol et al. Nov 2005 B1
6963922 Papadopoulos et al. Nov 2005 B2
6965802 Sexton Nov 2005 B2
6968295 Carr Nov 2005 B1
6973366 Komai Dec 2005 B2
6975219 Eryurek et al. Dec 2005 B2
6975913 Kreidler et al. Dec 2005 B2
6975958 Bohrer et al. Dec 2005 B2
6980796 Cuellar et al. Dec 2005 B1
6981266 An et al. Dec 2005 B1
6983271 Morrow et al. Jan 2006 B2
6983889 Alles Jan 2006 B2
6988011 Varma et al. Jan 2006 B2
6988671 DeLuca Jan 2006 B2
6990381 Nomura et al. Jan 2006 B2
6990540 Dalakuras et al. Jan 2006 B2
6993414 Shah Jan 2006 B2
RE38985 Boatman et al. Feb 2006 E
6994620 Mills Feb 2006 B2
6999473 Windecker Feb 2006 B2
6999824 Glanzer et al. Feb 2006 B2
7000849 Ashworth et al. Feb 2006 B2
7003378 Poth Feb 2006 B2
7006460 Vollmer et al. Feb 2006 B1
7006881 Hoffberg et al. Feb 2006 B1
7013239 Hedlund et al. Mar 2006 B2
7017827 Shah et al. Mar 2006 B2
7020798 Meng et al. Mar 2006 B2
7022008 Crocker Apr 2006 B1
7024282 Coogan et al. Apr 2006 B2
7024283 Bicknell Apr 2006 B2
7025281 DeLuca Apr 2006 B2
7029391 Nagaya et al. Apr 2006 B2
7032018 Lee et al. Apr 2006 B2
7035719 Howard et al. Apr 2006 B2
7035898 Baker Apr 2006 B1
7036743 Shah May 2006 B2
7043339 Maeda et al. May 2006 B2
7044397 Bartlett et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7051282 Marcjan May 2006 B2
7058459 Weiberle et al. Jun 2006 B2
7058477 Rosen Jun 2006 B1
7058693 Baker, Jr. Jun 2006 B1
7058737 Ellerbrock et al. Jun 2006 B2
7062927 Kwon et al. Jun 2006 B2
7068612 Berkcan et al. Jun 2006 B2
7076962 He et al. Jul 2006 B2
7082339 Murray et al. Jul 2006 B2
7082352 Lim Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7085626 Harrod et al. Aug 2006 B2
7089087 Dudley Aug 2006 B2
7089088 Terry et al. Aug 2006 B2
7092772 Murray et al. Aug 2006 B2
7092794 Hill et al. Aug 2006 B1
7096078 Burr et al. Aug 2006 B2
7096285 Ellerbrock et al. Aug 2006 B2
7099965 Ellerbrock et al. Aug 2006 B2
7100382 Butler et al. Sep 2006 B2
7103000 Rode et al. Sep 2006 B1
7103016 Duffy et al. Sep 2006 B1
7103420 Brown et al. Sep 2006 B2
7110835 Blevins et al. Sep 2006 B2
7114088 Horbelt Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7117050 Sasaki et al. Oct 2006 B2
7117051 Landry et al. Oct 2006 B2
7117395 Opaterny Oct 2006 B2
7120036 Kyono Oct 2006 B2
7123428 Yeo et al. Oct 2006 B2
7123774 Dhavala et al. Oct 2006 B2
7127305 Palmon Oct 2006 B1
7130409 Beyda Oct 2006 B2
7130719 Ehlers et al. Oct 2006 B2
7133407 Jinzaki et al. Nov 2006 B2
7133748 Robinson Nov 2006 B2
7133749 Goldberg et al. Nov 2006 B2
7135982 Lee Nov 2006 B2
7139550 Cuellar et al. Nov 2006 B2
7146230 Glanzer et al. Dec 2006 B2
7146231 Schleiss et al. Dec 2006 B2
7146253 Hoog et al. Dec 2006 B2
7150408 DeLuca Dec 2006 B2
7155318 Sharma et al. Dec 2006 B2
7155499 Soemo et al. Dec 2006 B2
7156316 Kates Jan 2007 B2
7162512 Amit et al. Jan 2007 B1
7162883 Jayanth et al. Jan 2007 B2
7163156 Kates Jan 2007 B2
7163158 Rossi et al. Jan 2007 B2
7167762 Glanzer et al. Jan 2007 B2
7168627 Kates Jan 2007 B2
7171579 Weigl et al. Jan 2007 B2
7172132 Proffitt et al. Feb 2007 B2
7174239 Butler et al. Feb 2007 B2
7174728 Jayanth Feb 2007 B2
7175086 Gascoyne et al. Feb 2007 B2
7175098 DeLuca Feb 2007 B2
7177926 Kramer Feb 2007 B2
7181317 Amundson et al. Feb 2007 B2
7185262 Barthel et al. Feb 2007 B2
7186290 Sheehan et al. Mar 2007 B2
7187354 Min et al. Mar 2007 B2
7187986 Johnson et al. Mar 2007 B2
7188002 Chapman, Jr. et al. Mar 2007 B2
7188207 Mitter Mar 2007 B2
7188482 Sadegh et al. Mar 2007 B2
7188779 Alles Mar 2007 B2
7191028 Nomura et al. Mar 2007 B2
7194663 Fletcher et al. Mar 2007 B2
7195211 Kande et al. Mar 2007 B2
7197717 Anderson et al. Mar 2007 B2
7200450 Boyer et al. Apr 2007 B2
7203165 Kowalewski Apr 2007 B1
7203575 Maturana et al. Apr 2007 B2
7203776 Junger et al. Apr 2007 B2
7206646 Nixon et al. Apr 2007 B2
7206647 Kumar Apr 2007 B2
7209485 Guse Apr 2007 B2
7209748 Wong et al. Apr 2007 B2
7212825 Wong et al May 2007 B2
7213044 Tjong et al. May 2007 B2
7216016 Van Ostrand et al. May 2007 B2
7216017 Kwon et al. May 2007 B2
7216497 Hull et al. May 2007 B2
7218589 Wisnudel et al. May 2007 B2
7218996 Beitelmal et al. May 2007 B1
7219141 Bonasia et al. May 2007 B2
7222152 Thompson et al. May 2007 B1
7222493 Jayanth et al. May 2007 B2
7222494 Peterson et al. May 2007 B2
7224366 Kessler et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
7225356 Monitzer May 2007 B2
7228187 Ticky et al. Jun 2007 B2
7232058 Lee Jun 2007 B2
7233229 Stroupe et al. Jun 2007 B2
7239623 Burghardt et al. Jul 2007 B2
7242988 Hoffberg et al. Jul 2007 B1
7243004 Shah et al. Jul 2007 B2
7244294 Kates Jul 2007 B2
7246753 Hull et al. Jul 2007 B2
7248576 Hoffmann Jul 2007 B2
7251534 Walls et al. Jul 2007 B2
7257813 Mayer et al. Aug 2007 B1
7260084 Saller Aug 2007 B2
7260451 Takai et al. Aug 2007 B2
7260609 Fuehrer et al. Aug 2007 B2
7260948 Jayanth et al. Aug 2007 B2
7261241 Eoga Aug 2007 B2
7261243 Butler et al. Aug 2007 B2
7261762 Kang et al. Aug 2007 B2
7266775 Patitucci Sep 2007 B2
7266960 Shah Sep 2007 B2
7269962 Bachmann Sep 2007 B2
7272154 Loebig Sep 2007 B2
7272452 Coogan et al. Sep 2007 B2
7272457 Glanzer et al. Sep 2007 B2
7274972 Amundson et al. Sep 2007 B2
7274973 Nichols et al. Sep 2007 B2
7277280 Peng Oct 2007 B2
7277970 Ellerbrock et al. Oct 2007 B2
7278103 Clark et al. Oct 2007 B1
7287062 Im et al. Oct 2007 B2
7287708 Lucas et al. Oct 2007 B2
7287709 Proffitt et al. Oct 2007 B2
7289458 Gila et al. Oct 2007 B2
7292900 Kreidler et al. Nov 2007 B2
7293422 Parachini et al. Nov 2007 B2
7295099 Lee et al. Nov 2007 B2
7296426 Butler et al. Nov 2007 B2
7299279 Sadaghiany Nov 2007 B2
7299996 Garrett et al. Nov 2007 B2
7301699 Kanamori et al. Nov 2007 B2
7305495 Carter Dec 2007 B2
7306165 Shah Dec 2007 B2
7310559 Walko, Jr. Dec 2007 B2
7313716 Weigl et al. Dec 2007 B2
7313923 Jayanth et al. Jan 2008 B2
7315768 Dang et al. Jan 2008 B2
7317970 Pienta et al. Jan 2008 B2
7320110 Shah Jan 2008 B2
7324874 Jung Jan 2008 B2
7327376 Shen et al. Feb 2008 B2
7327815 Jurisch Feb 2008 B1
7330512 Frank et al. Feb 2008 B2
7331191 He et al. Feb 2008 B2
7334161 Williams et al. Feb 2008 B2
7336650 Franz et al. Feb 2008 B2
7337369 Barthel et al. Feb 2008 B2
7337619 Hsieh et al. Mar 2008 B2
7343226 Ehlers et al. Mar 2008 B2
7346404 Eryurek et al. Mar 2008 B2
7346835 Lobinger et al. Mar 2008 B1
7349761 Cruse Mar 2008 B1
7354005 Carey et al. Apr 2008 B2
7356050 Reindl et al. Apr 2008 B2
7359345 Chang et al. Apr 2008 B2
7360002 Brueckner et al. Apr 2008 B2
7360370 Shah et al. Apr 2008 B2
7360717 Shah Apr 2008 B2
7364093 Garozzo Apr 2008 B2
7365812 Lee Apr 2008 B2
7366498 Ko et al. Apr 2008 B2
7366944 Oshins et al. Apr 2008 B2
7370074 Alexander et al. May 2008 B2
7377450 Van Ostrand et al. May 2008 B2
7383158 Krocker et al. Jun 2008 B2
7389150 Inoue et al. Jun 2008 B2
7389204 Eryurek et al. Jun 2008 B2
RE40437 Rosen et al. Jul 2008 E
7392661 Alles Jul 2008 B2
7395122 Kreidler et al. Jul 2008 B2
7395137 Robinson Jul 2008 B2
7403128 Scuka et al. Jul 2008 B2
7412839 Jayanth Aug 2008 B2
7412842 Pham Aug 2008 B2
D578026 Roher et al. Oct 2008 S
7433740 Hesse et al. Oct 2008 B2
7434744 Garozzo et al. Oct 2008 B2
7436292 Rourke et al. Oct 2008 B2
7436293 Rourke et al. Oct 2008 B2
7436296 Rourke et al. Oct 2008 B2
7436400 Cheng Oct 2008 B2
7437198 Iwaki Oct 2008 B2
7441094 Stephens Oct 2008 B2
7451937 Flood et al. Nov 2008 B2
7454269 Dushane et al. Nov 2008 B1
7455240 Chapman, Jr. et al. Nov 2008 B2
7460933 Chapman, Jr. et al. Dec 2008 B2
D648641 Wallaert et al. Nov 2011 S
D648642 Wallaert et al. Nov 2011 S
8078326 Harrod et al. Dec 2011 B2
8239066 Jennings et al. Aug 2012 B2
8260444 Kowald et al. Sep 2012 B2
20010034586 Ewert et al. Oct 2001 A1
20010048376 Maeda et al. Dec 2001 A1
20020022894 Eryurek et al. Feb 2002 A1
20020026476 Miyazaki et al. Feb 2002 A1
20020072814 Schuler et al. Jun 2002 A1
20020091784 Baker et al. Jul 2002 A1
20020123896 Diez et al. Sep 2002 A1
20020163427 Eryurek et al. Nov 2002 A1
20020190242 Iillie et al. Dec 2002 A1
20030058863 Oost Mar 2003 A1
20030078677 Hull et al. Apr 2003 A1
20030108064 Bilke et al. Jun 2003 A1
20030115177 Takanabe et al. Jun 2003 A1
20030229784 Cuellar et al. Dec 2003 A1
20040039478 Kiesel et al. Feb 2004 A1
20040095237 Chen et al. May 2004 A1
20040104942 Weigel Jun 2004 A1
20040107717 Yoon et al. Jun 2004 A1
20040111186 Rossi et al. Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040139038 Ehlers et al. Jul 2004 A1
20040143360 Kiesel et al. Jul 2004 A1
20040146008 Conradt et al. Jul 2004 A1
20040156360 Sexton et al. Aug 2004 A1
20040159112 Jayanth et al. Aug 2004 A1
20040189590 Mehaffey et al. Sep 2004 A1
20040204775 Keyes et al. Oct 2004 A1
20040205781 Hill et al. Oct 2004 A1
20040206096 Jayanth Oct 2004 A1
20040210348 Imhof et al. Oct 2004 A1
20040218591 Ogawa et al. Nov 2004 A1
20040236471 Poth Nov 2004 A1
20040266491 Howard et al. Dec 2004 A1
20040267385 Lingemann Dec 2004 A1
20040267790 Pak et al. Dec 2004 A1
20050005249 Hill et al. Jan 2005 A1
20050007249 Eryurek et al. Jan 2005 A1
20050010759 Wakiyama Jan 2005 A1
20050033707 Ehlers et al. Feb 2005 A1
20050034023 Maturana et al. Feb 2005 A1
20050041633 Roeser et al. Feb 2005 A1
20050054381 Lee et al. Mar 2005 A1
20050055427 Frutiger et al. Mar 2005 A1
20050068978 Sexton et al. Mar 2005 A1
20050076150 Lee et al. Apr 2005 A1
20050080879 Kim et al. Apr 2005 A1
20050081156 Clark et al. Apr 2005 A1
20050081157 Clark et al. Apr 2005 A1
20050096872 Blevins et al. May 2005 A1
20050109048 Lee May 2005 A1
20050116023 Amundson et al. Jun 2005 A1
20050118996 Lee et al. Jun 2005 A1
20050119766 Amundson et al. Jun 2005 A1
20050120012 Poth et al. Jun 2005 A1
20050125495 Tjong et al. Jun 2005 A1
20050143138 Lee et al. Jun 2005 A1
20050145705 Shah et al. Jul 2005 A1
20050150967 Chapman et al. Jul 2005 A1
20050161517 Helt et al. Jul 2005 A1
20050166610 Jayanth Aug 2005 A1
20050176410 Brooking et al. Aug 2005 A1
20050193155 Fujita Sep 2005 A1
20050223339 Lee Oct 2005 A1
20050229610 Park et al. Oct 2005 A1
20050235661 Pham Oct 2005 A1
20050235662 Pham Oct 2005 A1
20050235663 Pham Oct 2005 A1
20050258257 Thurman et al. Nov 2005 A1
20050270151 Winick Dec 2005 A1
20050278071 Durham Dec 2005 A1
20050280364 Omura et al. Dec 2005 A1
20050281368 Droba et al. Dec 2005 A1
20050288823 Hesse et al. Dec 2005 A1
20060006244 Morrow et al. Jan 2006 A1
20060021358 Nallapa Feb 2006 A1
20060021359 Hur et al. Feb 2006 A1
20060030954 Bergman et al. Feb 2006 A1
20060041898 Potyrailo et al. Feb 2006 A1
20060048064 Vronay Mar 2006 A1
20060058924 Shah Mar 2006 A1
20060090142 Glasgow et al. Apr 2006 A1
20060090483 Kim et al. May 2006 A1
20060091227 Attridge May 2006 A1
20060092977 Bai et al. May 2006 A1
20060106791 Morrow et al. May 2006 A1
20060108432 Mattheis May 2006 A1
20060111816 Spalink et al. May 2006 A1
20060130497 Kang et al. Jun 2006 A1
20060144055 Ahn Jul 2006 A1
20060144232 Kang et al. Jul 2006 A1
20060149414 Archacki et al. Jul 2006 A1
20060150027 Paden Jul 2006 A1
20060153247 Stumer Jul 2006 A1
20060155398 Hoffberg et al. Jul 2006 A1
20060158051 Bartlett et al. Jul 2006 A1
20060159007 Frutiger et al. Jul 2006 A1
20060168522 Bala Jul 2006 A1
20060186214 Simon et al. Aug 2006 A1
20060190138 Stone et al. Aug 2006 A1
20060192021 Schultz et al. Aug 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060200253 Hoffberg et al. Sep 2006 A1
20060200258 Hoffberg et al. Sep 2006 A1
20060200259 Hoffberg et al. Sep 2006 A1
20060200260 Hoffberg et al. Sep 2006 A1
20060202978 Lee et al. Sep 2006 A1
20060206220 Amundson Sep 2006 A1
20060209208 Kim et al. Sep 2006 A1
20060219799 Schultz et al. Oct 2006 A1
20060229090 LaDue Oct 2006 A1
20060235548 Gaudette Oct 2006 A1
20060236351 Ellerbrock et al. Oct 2006 A1
20060239296 Jinzaki et al. Oct 2006 A1
20060248233 Park et al. Nov 2006 A1
20060276917 Li et al. Dec 2006 A1
20070005191 Sloup et al. Jan 2007 A1
20070008116 Bergman et al. Jan 2007 A1
20070012052 Butler et al. Jan 2007 A1
20070013534 DiMaggio Jan 2007 A1
20070014233 Oguro et al. Jan 2007 A1
20070016311 Bergman et al. Jan 2007 A1
20070016476 Hoffberg et al. Jan 2007 A1
20070025368 Ha et al. Feb 2007 A1
20070032909 Tolbert et al. Feb 2007 A1
20070033310 Kweon Feb 2007 A1
20070040040 Mueller Feb 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070045429 Chapman et al. Mar 2007 A1
20070045431 Chapman et al. Mar 2007 A1
20070045442 Chapman et al. Mar 2007 A1
20070051818 Atlas Mar 2007 A1
20070055407 Goldberg et al. Mar 2007 A1
20070067496 Deiretsbacher et al. Mar 2007 A1
20070073973 Hazay Mar 2007 A1
20070080235 Fulton Apr 2007 A1
20070083721 Grinspan Apr 2007 A1
20070084937 Ahmed Apr 2007 A1
20070088883 Wakabayashi Apr 2007 A1
20070089090 Riedl et al. Apr 2007 A1
20070090199 Hull et al. Apr 2007 A1
20070093226 Foltyn et al. Apr 2007 A1
20070102149 Kates May 2007 A1
20070109975 Reckamp et al. May 2007 A1
20070113247 Kwak May 2007 A1
20070114291 Pouchak May 2007 A1
20070119957 Kates May 2007 A1
20070119958 Kates May 2007 A1
20070129820 Glanzer et al. Jun 2007 A1
20070129825 Kargenian Jun 2007 A1
20070129826 Kreidler et al. Jun 2007 A1
20070129917 Blevins et al. Jun 2007 A1
20070130834 Kande et al. Jun 2007 A1
20070130969 Peterson et al. Jun 2007 A1
20070135692 Hwang et al. Jun 2007 A1
20070135946 Sugiyama et al. Jun 2007 A1
20070136669 Kwon et al. Jun 2007 A1
20070136687 Pak Jun 2007 A1
20070138307 Khoo Jun 2007 A1
20070138308 Schultz et al. Jun 2007 A1
20070143704 Laird-McConnell Jun 2007 A1
20070143707 Yun et al. Jun 2007 A1
20070158442 Chapman et al. Jul 2007 A1
20070168887 Lee Jul 2007 A1
20070177505 Charrua et al. Aug 2007 A1
20070191024 Kim et al. Aug 2007 A1
20070192731 Townsend et al. Aug 2007 A1
20070204637 Fujii et al. Sep 2007 A1
20070205297 Finkam et al. Sep 2007 A1
20070208461 Chase Sep 2007 A1
20070208549 Blevins et al. Sep 2007 A1
20070213853 Glanzer et al. Sep 2007 A1
20070223500 Lee et al. Sep 2007 A1
20070225868 Terlson et al. Sep 2007 A1
20070225869 Amundson et al. Sep 2007 A1
20070237032 Rhee et al. Oct 2007 A1
20070238413 Coutts Oct 2007 A1
20070239658 Cunningham et al. Oct 2007 A1
20070240226 Song et al. Oct 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070242058 Yamada Oct 2007 A1
20070245306 Dameshek et al. Oct 2007 A1
20070257120 Chapman et al. Nov 2007 A1
20070260978 Oh et al. Nov 2007 A1
20070266329 Gaudette Nov 2007 A1
20070271521 Harriger et al. Nov 2007 A1
20070274093 Haim et al. Nov 2007 A1
20070277013 Rexha et al. Nov 2007 A1
20070278320 Lunacek et al. Dec 2007 A1
20070284452 Butler et al. Dec 2007 A1
20070299857 Gwozdz et al. Dec 2007 A1
20070300064 Isaacs et al. Dec 2007 A1
20080004727 Glanzer et al. Jan 2008 A1
20080005428 Maul et al. Jan 2008 A1
20080006709 Ashworth et al. Jan 2008 A1
20080031147 Fieremans et al. Feb 2008 A1
20080040351 Jin et al. Feb 2008 A1
20080048045 Butler et al. Feb 2008 A1
20080054082 Evans et al. Mar 2008 A1
20080055190 Lee Mar 2008 A1
20080057872 McFarland et al. Mar 2008 A1
20080059682 Cooley et al. Mar 2008 A1
20080062892 Dodgen et al. Mar 2008 A1
20080063006 Nichols Mar 2008 A1
20080065926 Poth et al. Mar 2008 A1
20080072704 Clark et al. Mar 2008 A1
20080073440 Butler et al. Mar 2008 A1
20080077884 Patitucci Mar 2008 A1
20080077886 Eichner Mar 2008 A1
20080083009 Kaler et al. Apr 2008 A1
20080097651 Shah et al. Apr 2008 A1
20080099568 Nicodem et al. May 2008 A1
20080104189 Baker et al. May 2008 A1
20080114500 Hull et al. May 2008 A1
20080128523 Hoglund et al. Jun 2008 A1
20080133033 Wolff et al. Jun 2008 A1
20080133060 Hoglund et al. Jun 2008 A1
20080133061 Hoglund et al. Jun 2008 A1
20080134087 Hoglund et al. Jun 2008 A1
20080134098 Hoglund et al. Jun 2008 A1
20080161977 Takach et al. Jul 2008 A1
20080161978 Shah Jul 2008 A1
20080168356 Eryurek et al. Jul 2008 A1
20080183335 Poth et al. Jul 2008 A1
20080185976 Dickey et al. Aug 2008 A1
20080186160 Kim et al. Aug 2008 A1
20080195254 Jung et al. Aug 2008 A1
20080195687 Jung et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080217418 Helt et al. Sep 2008 A1
20080223944 Helt et al. Sep 2008 A1
20080256475 Amundson et al. Oct 2008 A1
20080264085 Perry et al. Oct 2008 A1
20080294274 Laberge et al. Nov 2008 A1
20080294932 Oshins et al. Nov 2008 A1
20090001180 Siddaramanna et al. Jan 2009 A1
20090001182 Siddaramanna et al. Jan 2009 A1
20090049847 Butler et al. Feb 2009 A1
20090261767 Butler et al. Oct 2009 A1
20100101854 Wallaert et al. Apr 2010 A1
20100102136 Hadzidedic et al. Apr 2010 A1
20100102948 Grohman et al. Apr 2010 A1
20100102973 Grohman et al. Apr 2010 A1
20100106307 Grohman et al. Apr 2010 A1
20100106308 Filbeck et al. Apr 2010 A1
20100106309 Grohman et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100106311 Wallaert Apr 2010 A1
20100106312 Grohman et al. Apr 2010 A1
20100106313 Grohman et al. Apr 2010 A1
20100106314 Grohman Apr 2010 A1
20100106315 Grohman Apr 2010 A1
20100106316 Curry et al. Apr 2010 A1
20100106317 Grohman Apr 2010 A1
20100106318 Grohman et al. Apr 2010 A1
20100106319 Grohman et al. Apr 2010 A1
20100106320 Grohman et al. Apr 2010 A1
20100106321 Hadzidedic Apr 2010 A1
20100106322 Grohman Apr 2010 A1
20100106323 Wallaert et al. Apr 2010 A1
20100106324 Grohman Apr 2010 A1
20100106325 Grohman Apr 2010 A1
20100106326 Grohman Apr 2010 A1
20100106327 Grohman et al. Apr 2010 A1
20100106330 Grohman Apr 2010 A1
20100106333 Grohman et al. Apr 2010 A1
20100106334 Grohman et al. Apr 2010 A1
20100106787 Grohman Apr 2010 A1
20100106809 Grohman Apr 2010 A1
20100106810 Grohman Apr 2010 A1
20100106814 Hadzidedic et al. Apr 2010 A1
20100106815 Grohman et al. Apr 2010 A1
20100106925 Grohman et al. Apr 2010 A1
20100106957 Grohman et al. Apr 2010 A1
20100107007 Grohman et al. Apr 2010 A1
20100107070 Devineni et al. Apr 2010 A1
20100107071 Pavlak et al. Apr 2010 A1
20100107072 Mirza et al. Apr 2010 A1
20100107073 Wallaert et al. Apr 2010 A1
20100107074 Pavlak et al. Apr 2010 A1
20100107076 Grohman et al. Apr 2010 A1
20100107083 Grohman Apr 2010 A1
20100107103 Wallaert et al. Apr 2010 A1
20100107109 Filbeck et al. Apr 2010 A1
20100107110 Mirza et al. Apr 2010 A1
20100107111 Mirza et al. Apr 2010 A1
20100107232 Grohman et al. Apr 2010 A1
20100115364 Grohman May 2010 A1
20100179696 Grohman et al. Jul 2010 A1
20110202180 Kowald et al. Aug 2011 A1
Related Publications (1)
Number Date Country
20120296477 A1 Nov 2012 US
Divisions (1)
Number Date Country
Parent 12707509 Feb 2010 US
Child 13561601 US