The invention relates to a high pressure rotary pump in a pot housing with a pressure cap as well as to a use of this pump.
The pot housing pump is usually a multi-stage rotary pump in which the impellers are arranged in-line or back-to-back on the shaft. High pressures can be produced with this pump. As a rule, a drive unit is coupled to the shaft at the low pressure side. At the opposite side, the housing is terminated by the pressure cap. The pressure cap has a flange part with which sealing takes place against the internal pressure, i.e. against the pressure of a pumped liquid. A pot housing pump of the back-to-back type is known from EP-B-0 248 104, which includes two multi-stage rotary pumps arranged at a common shaft.
In a further development of this known pot housing pump, the pressure cap and the flange part provided for the sealing form a unit, with the flange simultaneously serving as a fastening means. It is fastened to the end face of the housing by means of a plurality of expansion bolts. An annular groove into which an O-ring is placed as a seal is let into a sealing surface of the housing. The pressure of the pumped fluid brings about a load on the pressure cap due to which the sealing flange area can raise so far that a leak occurs. An attempt has been made to remedy this defect in that the sealing surface is reduced to a narrow annular zone at the base of the flange and a contact between the flange and the sealing surface of the housing outside the annular zone is eliminated by cutting back the flange surface. The pressure intensity in the sealing region was thereby increased; however, without achieving the desired effect of a leak-free seal.
It is an object of the invention to provide a pump with a sealing pressure cap in which the seal remains free of leaks.
The high pressure rotary pump in a pot housing includes a pressure cap 3. This has a flange part with a flange with which the pressure cap is fastened to an end-face and annular sealing surface of a housing by being screwed into place. The flange is elastically deformed by the being screwed into place. The sealing surface of the housing in the region of a base zone of the flange stands in contact on this with a second sealing surface. The two sealing surfaces lie on two at least approximately radially extending conical or annular surfaces prior to the being screwed up. These two areas enclose a small angle χ which opens outwardly with respect to a central axis. After the screwing into place of the flange, the two sealing surfaces are pressed onto one another due to its elastic deformations and the angle between the sealing surfaces is thus equal to zero.
The invention will be described in the following with reference to the drawings.
A pot housing pump 1 such as is shown in
The following also applies to a pump of the in-line type which only includes a rotary pump and in which the pressure stub is arranged at the end, i.e. at the pressure cap. In this case, the pressure cap must provide a seal against a pressure pL of 1000 bar.
The pressure cap 3 of the pump 1 has—see also FIG. 2—a flange part with a flange 4 which has a sealing function. The pressure cap 3 supports a terminal shaft bearing in a profiled passage opening 31. An axial thrust relief device is installed in the pressure cap 3 as is a shaft seal with which a liquid discharge into the environment by a pressure reduction is minimized. The pressure cap 3 is screwed into place at an end-face and annular sealing surface 20 of the housing 2 by means of a plurality of expansion bolts 30 (only one drawn, chain-dotted line in
The sealing surface 20 of the housing 2 encloses an angle α with the central axis 101 or with a straight line parallel to this. The second sealing surface 40 correspondingly encloses an angle β. The sum of the three angles α, β, χ amounts to 180°. α is preferably a right angle. χ is equal to zero due to the deformation of the flange 4; thus, for α=90°, β=90° also applies (=β′ in
The sealing surface 20 of the housing 2 contains at least one annular groove 25, with a seal—in particular an O-ring—being placed into each annular groove 25. The sealing ring is indicated by a chain-dotted circle 5′. Due to the contact of the two sealing surfaces 20, 40, each annular groove 25 forms a largely closed chamber with the second sealing surface lying on.
The condition with the flange 4 screwed into place is shown in
Advantageously, two concentric annular grooves 25 with sealing rings 5 are provided (not shown). A sensor can be arranged between the two annular grooves 25 with which liquid can be registered which could flow through the seal lying further inward due to a leak.
The second sealing surface 40 does not necessarily have to lie on a conical surface; it can also be made slightly bulbous (convex).
The housing 2 and/or the pressure cap 3 is as a rule made of a metallic material, in particular of forged steel.
The pump in accordance with the invention can be used for the transport of water or of an aqueous solution—in particular seawater—at a pressure of at least 500 bar. The pressure can also amount up to 1000 bar or more.
Number | Date | Country | Kind |
---|---|---|---|
02405971 | Nov 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2219098 | Dorer | Oct 1940 | A |
2281631 | Spillmann et al. | May 1942 | A |
3118386 | Carswell | Jan 1964 | A |
3135538 | George | Jun 1964 | A |
4098558 | Bush et al. | Jul 1978 | A |
5063661 | Lindsay | Nov 1991 | A |
5230540 | Lewis et al. | Jul 1993 | A |
5511941 | Brandon | Apr 1996 | A |
Number | Date | Country |
---|---|---|
0248104 | Dec 1987 | EP |
Number | Date | Country | |
---|---|---|---|
20040096324 A1 | May 2004 | US |