Laboratory sample distribution system and laboratory automation system

Information

  • Patent Grant
  • 10416183
  • Patent Number
    10,416,183
  • Date Filed
    Tuesday, November 28, 2017
    6 years ago
  • Date Issued
    Tuesday, September 17, 2019
    4 years ago
  • Inventors
    • Hassan; Ahmed
  • Original Assignees
  • Examiners
    • Woodward; Nathaniel T
    Agents
    • Roche Diagnostics Operations, Inc.
Abstract
A laboratory sample distribution system is presented. The system comprises a number of sample container carriers to carry one or more sample containers. Each sample container carrier comprises at least one magnetically active device. The system also comprises a transport plane to support the sample container carriers and a number of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators move the sample container carriers on top of the transport plane by applying a magnetic force to the sample container carriers. The system also comprises a rotating device comprising a rotating surface and a rotating drive to cause a rotational movement of the rotating surface. The system also comprises a control device to drive the electro-magnetic actuators, such that a sample container carrier to be rotated moves on the rotating surface, and to control the rotating drive such that a rotation of the sample container carrier is caused.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based on and claims priority to EP 16201805.5, filed Dec. 1, 2016, which is hereby incorporated by reference.


BACKGROUND

The present disclosure relates to a laboratory sample distribution system and a laboratory automation system.


Known laboratory sample distribution systems are typically used in laboratory automation systems in order to transport samples contained in sample containers between different laboratory stations. A typical laboratory sample distribution system provides for a high throughput and for reliable operation.


Sample containers distributed by a laboratory sample distribution system may contain barcodes or other identification tags in order to identify a sample contained in the sample container. Such identification tags may be read out by optical recognition devices, for example by barcode readers or cameras.


However, it has been found that reading such identification tags is complicated in certain situations, because the identification tags usually do not span a whole circumference of the sample container. As the sample containers can typically rotate freely on a transport plane of a laboratory sample distribution system, it is possible that a reading device is not able to identify a sufficient portion of the identification tag when a sample container is placed at a certain position in order to read the identification tag.


Therefore, there is a need for a laboratory sample distribution system and a laboratory automation system for identifying a sufficient portion of the identification tag of the sample container.


SUMMARY

According to the present disclosure, a laboratory sample distribution system. The laboratory sample distribution system can comprise a number of sample container carriers adapted to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. The laboratory sample distribution system can also comprise a transport plane adapted to support the sample container carriers and a number of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators can be adapted to move the sample container carriers on top of the transport plane by applying a magnetic force to the sample container carriers and a rotating device comprising a rotating surface and a rotating drive adapted to cause a rotational movement of the rotating surface. The laboratory sample distribution system can also comprise a control device configured to drive the electro-magnetic actuators such that a sample container carrier to be rotated moves on the rotating surface and configured to control the rotating drive such that a rotation of the sample container carrier is caused.


Accordingly, it is a feature of the embodiments of the present disclosure to provide a laboratory sample distribution system and a laboratory automation system for identifying a sufficient portion of the identification tag of the sample container. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates schematically a laboratory sample distribution system comprising a rotary plate according to an embodiment of the present disclosure.



FIG. 2 illustrates schematically a laboratory sample distribution system comprising electro-magnetic actuators having a vertically moveable ferromagnetic core according to an embodiment of the present disclosure.



FIG. 3 illustrates schematically an electro-magnetic actuator of FIG. 2 comprising a vertically moveable ferromagnetic core in more detail according to an embodiment of the present disclosure.



FIG. 4 illustrates schematically depicts a laboratory sample distribution system according to another embodiment of the present disclosure.



FIG. 5 illustrates schematically a laboratory automation system comprising a sample distribution system according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A laboratory sample distribution system can comprise a number of sample container carriers. The number of sample container carriers may e.g. be a number in the range of 1 up to 1,000,000. The sample container carriers can be adapted to carry and/or hold and/or store one or more sample containers. The sample container can typically be designed as a tube made of glass or transparent plastic and typically can have an opening at an upper end. The laboratory sample container may be used to contain, store and transport the laboratory sample such as a blood sample, (blood) serum or plasma sample, a urine sample, separation gel, cruor (blood cells) or a chemical sample. The sample container may be rotationally symmetric.


Each sample container carrier can comprise at least one magnetically active device. The magnetically active device may be a permanent magnet or an electromagnet.


The laboratory sample distribution system can further comprise a transport plane adapted to support or carry the sample container carriers. The transport plane may be a planar plane and the sample container carriers can be placed on top of the transport plane.


The laboratory sample distribution system can further comprise a number of electro-magnetic actuators. The number of electro-magnetic actuators may e.g. be a number in the range of 1 up to 1,000,000.


The electro-magnetic actuators can be stationary arranged below the transport plane, e.g. in rows and columns forming a grid. The electro-magnetic actuators may be coils having a ferromagnetic core. The coils may be adapted to generate a magnetic field. The magnetic field generated by the electro-magnetic actuators may penetrate the transport plane. The magnetic field may interact with the magnetic field of the magnetically active devices of the sample container carriers. The magnetic force applied on the sample container carriers may be a result of this field interaction. Due to the magnetic force, the sample container carriers may slide and/or move over the transport plane. Thus, the electro-magnetic actuators can be adapted to move the sample container carriers on top of the transport plane by applying a magnetic force to the magnetically active devices of the sample container carriers.


The laboratory sample distribution system further comprises a rotating device. The rotating device can comprise a rotating surface. The rotating surface may be a circular surface. The rotating surface may be smaller in its dimensions compared to the dimensions of the transport plane. The rotating surface may be embodied as a specific side, e.g. an upper side, of a rotary element. The rotary element may be rotatably mounted. The rotating device can further comprise a rotating drive adapted to cause a rotational movement of the rotating surface. The rotating drive may be an electric motor or a pneumatic motor. Additionally or alternatively, the electro-magnetic actuators arranged below the transport plane may form the rotating drive.


The laboratory sample distribution system can further comprise a control device, e.g. in form of a Personal Computer (PC) or a microprocessor based control device. The control device can be configured to drive the electro-magnetic actuators. Each sample container carrier may move along a path in response to the driven electro-magnetic actuators. The path of the sample container carriers may be individual paths. The control device can be configured to drive the electro-magnetic actuators such that a sample container carrier to be rotated can move onto the rotating surface. The control device can be further configured to control the rotating drive such that a rotation of the sample container carrier can be caused.


The rotating surface may be larger in its dimensions compared to a footprint of the sample container carrier to be rotated. The rotating surface may be adapted to support or carry the sample container carrier to be rotated. The sample container carrier to be rotated may be placed above or on top of the rotating surface. When placed on the rotating surface, the sample container carrier can rotate together with the carried sample container.


In one embodiment, a (vertical) level of the rotating surface and a level of the transport plane can be identical. The level may be a height having the identical reference point. The identical level of the rotating surface and of the transport plane may prevent tilting of the sample container carrier when the sample container carrier to be rotated moves onto the rotating surface.


In one embodiment, the rotating device can comprise a rotary plate. The rotary plate may be a circular cylinder. An upper side of the rotary plate may form the rotating surface. The upper side may be a facing surface of the rotary plate. The rotating drive can be adapted to cause a rotational movement of the rotary plate. The rotational movement may be caused by a force generated by the rotating drive and applied to the rotary plate. The force may be applied to the rotary plate via a positive connection or a friction-type connection.


In one embodiment, the transport plane can comprise a recess. The recess may have a circular shape. The rotary plate may be arranged inside the recess. The rotary plate may be placed in a rotatable manner inside the recess. Elements defining the recess and the transport plane may be one piece.


In one embodiment, the rotary plate can comprise a magnetically active device having anisotropic magnetic properties such as, for example, an anisotropic magnetic field. A rotating force can be generated by an externally generated magnetic field interacting with a magnetic field of the magnetically active device located in the rotary plate. The magnetically active device located in the rotary plate may be embodied as a permanent magnet, e.g. a bar magnet, or ferromagnetic material.


In one embodiment, the electro-magnetic actuators can comprise respective ferromagnetic cores. The ferromagnetic cores may be embodied as circular cylinders of ferromagnetic material. At least one of the ferromagnetic cores can be arranged vertically movable between an upper vertical position and a lower vertical position. In the lower vertical position, the vertically movable ferromagnetic core may be positioned below the transport plane. In the upper vertical position, a top surface of the vertically moveable ferromagnetic core can contact a bottom surface of the sample container carrier placed above the vertically moveable ferromagnetic core. In the lower vertical position, the top surface of the vertically moveable ferromagnetic core typically does not contact the bottom surface of the sample container carrier. The top surface of the vertically moveable ferromagnetic core can form the rotating surface. The top surface may be an upper side of the vertically moveable ferromagnetic core having a shape in form of a circular cylinder.


The rotating drive can be adapted to cause a rotational movement of the vertically moveable ferromagnetic core. The rotating drive may be functionally coupled to the vertically moveable ferromagnetic core. The rotating drive may apply a force to the vertically moveable ferromagnetic core, wherein the force may cause a rotation of the vertically moveable ferromagnetic core.


In one embodiment, the magnetically active device of a sample container carrier placed above the vertically moveable ferromagnetic core and/or the rotating drive and/or the electro-magnetic actuators can be adapted to move the vertically moveable ferromagnetic core from the upper vertical position to the lower vertical position and/or can be adapted to move the vertically moveable ferromagnetic core from the lower vertical position to the upper vertical position. The movement of the vertically moveable ferromagnetic core may be caused by a force originating from an interaction between a magnetic field and the ferromagnetic material of the ferromagnetic core. The control device may be adapted to control and/or initiate the movement of the vertically moveable ferromagnetic core.


In one embodiment, the rotating surface and a surface of the sample container carrier placed on the rotating surface can form a positive connection or a friction-type connection. The positive connection or friction-type connection may prevent slipping of the sample container carrier at the beginning and/or ending of the rotational movement of the sample container carrier.


In one embodiment, the laboratory sample distribution system can further comprise a barcode scanning unit. The barcode scanning unit can be adapted to scan a barcode label placed on a sample container held by the sample container carrier to be rotated. The control device can be adapted to cause a rotational movement of the rotating surface and consequently of the sample container carrier placed on the rotating surface holding the sample container having the barcode label to be scanned, such that the barcode label can be readable by the barcode scanning unit. The rotating surface may rotate the sample container carrier to be rotated. The barcode scanning unit may be adapted to scan the barcode label during the rotational movement of the sample container carrier. The barcode may determine a destination of the sample container carrier to be transported and/or may comprise information concerning the sample contained in the sample container.


The laboratory automation system can comprises the laboratory sample distribution system described above. The laboratory automation system can further comprise a number of laboratory stations. The number of laboratory stations may e.g. be a number in the range from 1 to 100. The laboratory stations may be e.g. pre-analytical, analytical and/or post-analytical stations.


Pre-analytical stations may be adapted to perform any kind of pre-processing of samples and/or laboratory sample containers.


Analytical stations may be adapted to use a sample or part of the sample and/or a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration an analyte exists.


Post-analytical stations may be adapted to perform any kind of post-processing of samples and/or sample containers.


The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.


The laboratory sample distribution system can be adapted to distribute the sample containers between the laboratory stations. The laboratory sample distribution system may be adapted to distribute the sample containers between the laboratory stations in response to the scanned barcode labels.


Referring initially to FIG. 1, FIG. 1 schematically depicts a laboratory sample distribution system 100 comprising a number of sample container carriers 140. For the purpose of explanation, only three sample container carriers 140 are shown as representatives for the number of sample container carriers 140. The number of sample container carriers 140 may e.g. be in the range of 10 to 10000. Each sample container carriers 140 can comprise a magnetically active device 141 in the form of a permanent magnet. Moreover, each sample container carrier 140 can hold a sample container 145. A barcode label 161 can be placed on each sample container 145.


The sample container carriers 140 can be placed on a flat transport plane 110 being part of the laboratory sample distribution system 100. The sample container carriers 140 can be adapted to slide and/or move on/over the transport plane 110. Further, a number, or plurality, of electro-magnetic actuators 120 are stationary can be arranged below the transport plane 110. The electro-magnetic actuators 120 can be adapted to generate a magnetic field which can cause a magnetic force on the permanent magnets 141 of the sample container carriers 140. The sample container carriers 140 can move/slide on/over the transport plane 110 as a result of the magnetic force.


The generation of the magnetic field and, therefore, the generation of the magnetic force can be controlled by a control device 150. The control device 150 can be configured to drive the electro-magnetic actuators 120 such that each sample container carrier 140 can slide on an individual path, wherein the path can be planned and/or controlled by the control device 150.


The sample distribution system 100 can further comprise a barcode scanning unit 160. The barcode scanning unit 160 can be adapted to scan the barcode label 161 placed on a respective sample container 145. In order to scan the barcode label 161, the control device 150 can drive the electro-magnetic actuators 120 such that the sample container carrier 140 comprising the sample container 145 having the barcode label 161 to be scanned slides on a rotary plate 133 of a rotating device 130. The rotary plate 133 and the transport plane 110 can have an identical level for preventing that the sample container carrier 140 tilts when sliding from the transport plane 110 on the rotary plate 133.


When the sample container carrier 140 is placed on the rotating surface 131, the control device 150 can control the rotating drive 132 to rotate the sample container carrier 140. The barcode scanning unit 160 can repeatedly try to read the barcode label 161 during the rotation of the sample container carrier 140. When the barcode label 161 is successfully read, the barcode scanning unit 160 can transmit the read barcode to the control device 150 and the control device 150 can stop rotating the rotating surface 131. Then, the control device 150 can drive the electro-magnetic actuators 120 such that the sample container carrier 140 can move off the rotary plate 133.



FIG. 2 shows a further embodiment of a laboratory sample distribution system 100. The laboratory sample distribution system 100 can comprise a transport plane 110 having a cylindrical through hole 125. The through hole 125 can be concentrically arranged with respect to a circular cylindrical vertically moveable ferromagnetic core 121 of an electro-magnetic actuator 120. The through hole 125 can have a diameter that is smaller than a diameter of a respective stand of the sample container carriers 140 and, thus, the sample container carriers 140 can slide and/or move over the opening 125. However, the through hole 125 can have a diameter that is larger than a diameter of the vertically moveable ferromagnetic core 121 and, thus, the vertically moveable ferromagnetic core 121 can penetrate through the transport plane 110.



FIG. 3 shows the electro-magnetic actuator 120 arranged under the through hole 125 in FIG. 2 in more detail. The electro-magnetic actuator 120 can comprise the vertically moveable ferromagnetic core 121 and a coil 122. The vertically moveable ferromagnetic core 121 can be surrounded by the coil 122. The coil 122 can serve to radially fix the ferromagnetic core 121. The front side or upper side of the vertically moveable ferromagnetic core 121 can form the rotating surface 131.


The vertically moveable ferromagnetic core 121 can be functionally coupled to the rotating drive 132, such that the rotating drive 132 may cause a rotation of the ferromagnetic core 121.


The magnetically active device 141 of a sample container carrier 140 placed above the vertically moveable ferromagnetic core can cause a movement of the vertically moveable ferromagnetic core 121 from a lower vertical position to an upper vertical position. When activated, the coil 122 assigned to the vertically moveable ferromagnetic core 121 can cause a movement of the vertically moveable ferromagnetic core 121 from the upper vertical position back to the lower vertical position, such that the vertically moveable ferromagnetic core 121 may transition between its lower and upper vertical position when necessary.


In the lower vertical position, the rotating surface 131 can be located below the transport plane 110. In the upper vertical position, the rotating surface 131 can pass the opening 125 and contact the bottom of the sample container carrier 140 placed above.


A seal 170 may be located between the through hole 125 and the vertically moveable ferromagnetic core 121. The seal 170 can prevent substances from passing the gap between the transport plane 110 and the moveable ferromagnetic core 121. The seal 170 may e.g. be a gap seal, labyrinth seal or profiles interlocking each other.


In order to scan the barcode label 161, in a first step, the vertically moveable ferromagnetic core 121 can be in the lower vertical position and the control device 150 can drive the electro-magnetic actuators 120 such that the sample container carrier 140 carrying the sample container 145 having the barcode label 161 to be scanned slides above the through hole 125.


The magnetically active device 141 of the sample container carrier 140 can cause the vertical movement of the vertically moveable ferromagnetic core 121 to its upper vertical position.


In the upper vertical position, the vertically moveable ferromagnetic core 121 can contact a bottom surface of the sample container carrier 140 like a friction clutch.


The control device 150 can then initiate a rotational movement of the vertically moveable ferromagnetic core 121 by controlling the rotating drive 132.


The barcode scanning unit 160 can then read the barcode label 161 during the rotational movement of the vertically moveable ferromagnetic core 121. When the barcode label 161 is successfully read, the barcode scanning unit 160 can transmit the read barcode to the control device 150. The control device 150 can be adapted to control the rotating drive 132 such that the rotational movement of the vertically moveable ferromagnetic core 121 can stop after the barcode label has been successfully read.


Then, the control device 150 can initiate the movement of the vertically moveable ferromagnetic core 121 back to its lower vertical position.


Further, the control device 150 can drive the electro-magnetic actuators 120 such that the sample container carrier 140 can move off the through hole 125.


Another embodiment of a laboratory sample distribution system 100 is depicted in FIG. 4. The laboratory sample distribution system 100 can comprise a transport plane 110 having a recess 180. The rotary plate 133 can be rotatably inserted into the recess 180. The rotary plate 133 can comprise a magnetically active device 190 in the form of a bar magnet having an anisotropic magnetic field. The bar magnet can extend in a horizontal direction, i.e. parallel to the transport plane 110.


The rotary plate 133 can be rotated by a magnetic force arising from an interaction between the magnetic field of the magnetically active device 190 and the magnetic field of the electro-magnetic actuators 120. The rotary plate 133 including the magnetically active device 190 can form a rotor of an electric motor. The electro-magnetic actuators 120 can form a stator of the electric motor. The electro-magnetic actuators 120 can be controlled such that a rotating magnetic field can be caused, wherein the rotor follows this rotating magnetic field. In other words, the electro-magnetic actuators 120 and the rotary plate 133 can form a synchronous motor.


The rotary plate 133 may contact the bottom surface of the sample container carrier 140 like a friction clutch.


In order to scan the barcode label 161 by the barcode scanning unit 160, the control device 150 can drive the electro-magnetic actuators 120 such that the sample container carrier 140 comprising the sample container 145 having the barcode label 161 to be scanned can slide on the rotary plate 133. Then, the control device 150 can drive the electro-magnetic actuators 120 such that the rotary plate 133 can rotate. The barcode scanning unit 160 can then scan the barcode label 161 during the rotational movement of the rotating device 130, as already discussed with respect to FIGS. 1 to 3.



FIG. 5 schematically depicts a laboratory automation system 10 comprising two laboratory stations 20 and 30. The laboratory stations 20 and 30 can process a sample comprised in a sample container 145. For example, the laboratory station 20 can perform a urinalysis and the laboratory station 30 can perform a blood analysis. The laboratory automation system 10 can further comprise a sample distribution system 100 as e.g. be depicted in FIGS. 1 to 4.


The sample distribution system 100 can be adapted to distribute the sample containers 145 between the laboratory stations 20 and 30. The distribution between the laboratory stations 20 and 30 may be done in response to a scanned barcode label 161 placed on the sample container 145. The distribution may be controlled by the control device 150.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A laboratory sample distribution system, the laboratory sample distribution system comprising: a number of sample container carriers adapted to carry one or more sample containers, each sample container carrier comprising at least one magnetically active device;a transport plane adapted to support the sample container carriers;a number of electro-magnetic actuators stationarily arranged below the transport plane, the electro-magnetic actuators adapted to move the sample container carriers on top of the transport plane by applying a magnetic force to the sample container carriers;a rotating device comprising a rotating surface, anda rotating drive adapted to cause a rotational movement of the rotating surface; anda control device configured to drive the electro-magnetic actuators such that a sample container carrier to be rotated moves on the rotating surface and is configured to control the rotating drive such that a rotation of the sample container carrier is caused.
  • 2. The laboratory sample distribution system according to claim 1, wherein a level of the rotating surface and a level of the transport plane are identical.
  • 3. The laboratory sample distribution system according to claim 1, wherein the rotating device comprises a rotary plate, wherein a side of the rotary plate forms the rotating surface, and wherein the rotating drive is adapted to cause a rotational movement of the rotary plate.
  • 4. The laboratory sample distribution system according to claim 3, wherein the transport plane comprises a recess and wherein the rotary plate is arranged in the recess.
  • 5. The laboratory sample distribution system according to claim 3, wherein the rotary plate comprises a magnetically active device having anisotropic magnetic properties.
  • 6. The laboratory sample distribution system according to claim 1, wherein the electro-magnetic actuators comprise ferromagnetic cores, wherein at least one of the ferromagnetic cores is vertically movable between an upper vertical position and a lower vertical position, wherein in the upper vertical position a top surface of the vertically moveable ferromagnetic core contacts the sample container carrier placed above the vertically moveable ferromagnetic core, wherein the top surface of the vertically moveable ferromagnetic core forms the rotating surface, and wherein the rotating drive is adapted cause a rotational movement of the vertically moveable ferromagnetic core.
  • 7. The laboratory sample distribution system according to claim 6, wherein the magnetically active device of a sample container carrier placed above the vertically moveable ferromagnetic core and/or the rotating drive and/or an electro-magnetic actuator is/are adapted to move the vertically moveable ferromagnetic core from the upper vertical position to the lower vertical position and/or is/are adapted to move the vertically moveable ferromagnetic core from the lower vertical position to the upper vertical position.
  • 8. The laboratory sample distribution system according to claim 1, wherein the rotating surface and a surface of the sample container carrier placed on the rotating surface form a positive connection or a friction-type connection.
  • 9. The laboratory sample distribution system according to claim 1, further comprises, a barcode scanning unit adapted to scan a barcode label placed on a sample container held by the sample container carrier to be rotated, wherein the control device is adapted to cause a rotational movement of the rotating surface such that the barcode label is readable by the barcode scanning unit.
  • 10. A laboratory automation system, the laboratory automation system comprising: a number of laboratory stations; anda laboratory sample distribution system according to claim 1, wherein the laboratory sample distribution system is adapted to distribute the sample containers between the laboratory stations.
Priority Claims (1)
Number Date Country Kind
16201805 Dec 2016 EP regional
US Referenced Citations (173)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9791468 Riether et al. Oct 2017 B2
9952242 Riether Apr 2018 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130034410 Heise et al. Feb 2013 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20140374480 Pollack Dec 2014 A1
20150014125 Hecht Jan 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276776 Riether Oct 2015 A1
20150276778 Riether et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160077120 Riether Mar 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170096307 Mahmudimanesh et al. Apr 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131309 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170160299 Schneider et al. Jun 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180074087 Heise et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180128848 Schneider et al. May 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 Van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180217176 Sinz et al. Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180348244 Ren Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190086433 Hermann et al. Mar 2019 A1
Foreign Referenced Citations (88)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
3064947 Sep 2016 EP
3070479 Sep 2016 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
S85591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated May 23, 2017, in Application No. EP 16201805, 8 pages.
Related Publications (1)
Number Date Country
20180156835 A1 Jun 2018 US