1. Technical Field
The present disclosure relates to high-speed telecommunication technologies and, particularly to a low power electro-optic modulator for use in high-speed telecommunication.
2. Description of Related Art
Electro-optic modulators include a substrate, a waveguide, and electrodes. The waveguide is implanted in the substrate. A drive voltage is applied to the electrodes to form electric modulating fields. The electric modulating fields effect a change in the refractive index of the waveguide and thus alter a phase of lightwaves traversing the waveguide, which is known as electro-optic effect, thus permitting modulation of an output optical signal from the waveguide. However, a power consumption of the electro-optic modulator is often less than satisfactory as the electrodes are not reasonably configured.
Therefore, it is desirable to provide an electro-optic modulator which can overcome the above-mentioned shortcomings.
Embodiments of the disclosure will be described with reference to the accompanying drawings.
Referring to
In operation, a drive voltage is applied to the electrodes 13 to form an electric modulating field E. The electric modulating field E effects a change of the refractive index of the transmission lines 12 and thus alters phases of lightwaves traversing the transmission lines 12, which is known as electro-optic effect. As such, lightwaves traversing the transmission lines 12 have different phases result in constructive/destructive interference therebetween, permitting modulation of output optical signals from the transmission lines 12.
According to the principle of the electro-optic effect, the drive voltage
wherein k is a constant coefficient, λ is a working wavelength of the lightwaves, G is a gap between the transmission lines 12, n is an effective linear part of the refractive index of the substrate 11, r is an electro-optic coefficient of the substrate 11 of a crystal axis that is parallel with the electric modulating field E, Γ is a filed interaction factor which quantifies a strength of non-linear electric-optic interaction of the electric modulating field E and an optical field in the transmission line 12 in a cross-section of the transmission line 12, and L is a length of the transmission line 12. That is, the drive voltage Vπ a is inversely proportional to the field interaction factor Γ.
The field interaction factor Γ is proportional to an overlap between the electric modulating field E and the optical field in the cross section of the transmission line 12. As the lightwaves is limited within the transmission line 12, the maximum overlap is the cross-section of the transmission line 12. In this embodiment, by constructing and arranging the electrodes 13 as above-described, the electric modulating field E passes the whole cross-section of the transmission line 12. As such, the overlap approaches the maximum value and accordingly the field interaction factor Γ approaches the maximum value. Thereby, the drive voltage Vπ can be reduced to the maximum extent, and a power consumption of the electro-optic modulator 10 is reduced correspondingly.
The substrate 11 can be made from lithium niobate (LiNbO3) to increase the bandwidth of the electro-optic modulator 10 as the LiNbO3 has a relative quick response speed.
The transmission lines 12 constitute a directional coupler. To increase couple efficiency, improve mismatch between wave speeds of the electric modulating field E and the optical field, and increase the field interaction factor Γ, the electric-optic modulator 10 can be a ridge-type directional coupler. In the embodiment, the substrate 11 is substantially cuboid and defines two cutouts 112 in the first surface 110, at two sides of the transmission lines 12, to from a ridge 113 between the cutouts 112. Correspondingly, the transmission lines 12 and the electrodes 13 are positioned on the ridge of the substrate 11.
As the drive voltage Vπ is inversely proportional to the electro-optic coefficient of the substrate 11 of the crystal axis that is parallel to the electric modulating field E, and the electro-optic coefficient of the LiNbO3 of +Z crystal axis r33 is the maximum one (30.8×10−12 m/V), the electro-optic modulator 10 is +Z cut. That is, the +Z crystal axis of the LiNbO3 substrate 11 is substantially parallel with the electric modulating field E.
The electro-optic modulator 10 also includes an isolating layer 14 on the first surface 110 and a bottom surface of the cutouts 112 to further improve mismatch of the wave speeds of the electric modulating field E and the optical field. The electrodes 13 are positioned on the isolating layer 14. The isolating layer 14 can be dioxide silicon (SiO2).
Each of the transmission lines 12 has a semi-cylinder configuration and an output section 15 extending out from one end thereof and for coupling an optical fiber (not shown). One of the transmission lines 12 has an input section 16 extending from another end thereof opposite to the corresponding output section 15 and forms an entrance 162 at a side of the substrate 11.
The electrodes 13 are connected to a direct current (DC) or low-frequency power source 17 and thus have opposite polarities.
Particular embodiments are shown here and described by way of illustration only. The principles and the features of the present disclosure may be employed in various and numerous embodiments thereof without departing from the scope of the disclosure as claimed. The above-described embodiments illustrate the scope of the disclosure but do not restrict the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
101114814 | Apr 2012 | TW | national |