Metal wood club

Abstract
A golf club head having indentions provided in a transition zone of the club head. The transition zone of the club head is provided between a first portion of the club head having a first thickness and a second portion of the club head having a second thickness. The indentations are provided at non-structural areas to reduce the weight of the transition zone. The mass can then be moved to a more desirable location in the club head, thereby improving the playability characteristics of the club head, including center of gravity and moment of inertia. The transition zone may be provided at different areas of the club head including the hosel, between the face and the body of the club head and between the crown and sole of the club head. The indentations are provided with the desired height, length and width to achieve weight reduction without effecting the structural integrity of the club head.
Description
FIELD OF THE INVENTION

The present invention relates to an improved golf club head. More particularly, the present invention relates to a golf club head with a transition zone that has a reduced mass, such that the mass can be moved in the club head to provide improved playability characteristics for the golf club head.


BACKGROUND

The complexities of golf club design are well known. The specifications for each component of the club (i.e., the club head, shaft, grip, and subcomponents thereof) directly impact the performance of the club. Thus, by varying the design specifications, a golf club can be tailored to have specific performance characteristics.


The design of club heads has long been studied. Among the more prominent considerations in club head design are loft, lie, face angle, horizontal face bulge, vertical face roll, center of gravity, inertia, material selection, and overall head weight. While this basic set of criteria is generally the focus of golf club engineering, several other design aspects must also be addressed. The interior design of the club head may be tailored to achieve particular characteristics, such as the inclusion of hosel or shaft attachment means, perimeter weights on the club head, and fillers within hollow club heads.


Golf club heads must also be strong to withstand the repeated impacts that occur during collisions between the golf club and the golf ball. The loading that occurs during this transient event can create a peak force of over 2,000 lbs. Thus, a major challenge is designing the club face and body to resist permanent deformation or failure by material yield or fracture. Conventional hollow metal wood drivers made from titanium typically have a uniform face thickness exceeding 2.5 mm to ensure structural integrity of the club head.


Players generally seek a metal wood driver and golf ball combination that delivers maximum distance and landing accuracy. The distance a ball travels after impact is dictated by the magnitude and direction of the ball's translational velocity and the ball's rotational velocity or spin. Environmental conditions, including atmospheric pressure, humidity, temperature, and wind speed, further influence the ball's flight. However, these environmental effects are beyond the control of the golf equipment manufacturer. Golf ball landing accuracy is driven by a number of factors as well. Some of these factors are attributed to club head design, such as center of gravity and club face flexibility.


The United States Golf Association (USGA), the governing body for the rules of golf in the United States, has specifications for the performance of golf balls. These performance specifications dictate the size and weight of a conforming golf ball. One USGA rule limits the golf ball's initial velocity after a prescribed impact to 250 feet per second±2% (or 255 feet per second maximum initial velocity). To achieve greater golf ball travel distance, ball velocity after impact and the coefficient of restitution of the ball-club impact must be maximized while remaining within this rule.


Generally, golf ball travel distance is a function of the total kinetic energy imparted to the ball during impact with the club head, neglecting environmental effects. During impact, kinetic energy is transferred from the club and stored as elastic strain energy in the club head and as viscoelastic strain energy in the ball. After impact, the stored energy in the ball and in the club is transformed back into kinetic energy in the form of translational and rotational velocity of the ball, as well as the club. Since the collision is not perfectly elastic, a portion of energy is dissipated in club head vibration and in viscoelastic relaxation of the ball. Viscoelastic relaxation is a material property of the polymeric materials used in all manufactured golf balls.


Viscoelastic relaxation of the ball is a parasitic energy source, which is dependent upon the rate of deformation. To minimize this effect, the rate of deformation must be reduced. This may be accomplished by allowing more club face deformation during impact. Since metallic deformation may be purely elastic, the strain energy stored in the club face is returned to the ball after impact thereby increasing the ball's outbound velocity after impact.


A variety of techniques may be utilized to vary the deformation of the club face, including uniform face thinning, thinned faces with ribbed stiffeners and varying thickness, among others. These designs should have sufficient structural integrity to withstand repeated impacts without permanently deforming the club face. In general, conventional club heads also exhibit wide variations in initial ball speed after impact, depending on the impact location on the face of the club. Hence, there remains a need in the art for a club head that has a larger “sweet zone” or zone of substantially uniform high initial ball speed.


SUMMARY OF THE INVENTION

The present invention relates to a golf club head adapted for attachment to a shaft. An embodiment of the present invention is a golf club head that includes a first club portion having a first thickness, a second club portion having a second thickness, a transition zone having a mass and connecting the first club portion to the second club portion, and at least two indentations provided in the transition zone. The indentations reduce the mass of the transition zone. The mass may then be moved to a more desirable location within the club head to improve playability characteristics such as center of gravity and moment of inertia.


The indentations may be provided on a non-visible portion of the club head. Preferably, the club head is hollow and the indentations are provided on an interior surface of the hollow club head.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:



FIG. 1 is a front view of a striking face of the golf club head disclosed in the parent patent application; FIGS. 1a and 1b are cross-sectional views of the striking face of FIG. 1 taken along lines 1A-1A and 1B-1B, respectively; FIG. 1c is an alternate embodiment from the priority patent;



FIG. 2 is a front, exploded view of an alternate embodiment of the parent patent invention;



FIG. 3 is a front plan view of an embodiment of a hitting face of the present invention;



FIG. 3A is a cross-sectional view of the hitting face of FIG. 3 taken along line 3A-3A;



FIG. 3B is an exploded cross-sectional view of the hitting face of FIG. 3;



FIG. 4 is a cross-sectional view of an alternate embodiment of a hitting face of the present invention;



FIG. 5 is a cross-sectional view of another alternate embodiment of a hitting face of the present invention;



FIG. 6 is a cross-sectional view of another alternate embodiment of a hitting face of the present invention;



FIG. 7 is a cross-sectional view of another alternate embodiment of a hitting face of the present invention;



FIG. 8 is a cross-sectional view of another alternate embodiment of a hitting face of the present invention;



FIG. 8A is an exploded cross-sectional view of the hitting face of FIG. 8;



FIG. 9 is a front exploded view of an alternate embodiment of a club head;



FIG. 10 is a perspective view of another alternate embodiment of a club head of the present invention;



FIG. 11 is a perspective view of another alternate embodiment of a club head of the present invention;



FIG. 12
a is a top perspective view of another alternate embodiment of a club head of the present invention;



FIG. 12
b is a bottom perspective view of the club head shown in FIG. 12a;



FIG. 13
a is a top perspective view of another alternate embodiment of a club head of the present invention;



FIG. 13
b is a bottom perspective view of the club head shown in FIG. 13a;



FIG. 14 is a graph of inertance versus frequency for a conventional club head;



FIG. 15 is a graph of inertance versus frequency for the inventive club head discussed in priority case;



FIG. 16A is a cross sectional view of a prior art transition zone of a golf club head;



FIG. 16B is a cross-sectional view of a transition zone of a golf club head according to the present invention;



FIG. 17A is a another cross-sectional view of a portion of a transition zone of a golf club head according to the present invention;



FIG. 17B is another cross-sectional view of a portion of a transition zone of a golf club head according to the present invention;



FIG. 18 is a perspective view of the inside of a club head showing an embodiment of the transition zone according to the present invention;



FIG. 19 is a perspective view of the inside of a club head showing another embodiment of the transition zone according to the present invention;



FIG. 20 is a perspective view of the inside of a club head showing another embodiment of the transition zone according to the present invention; and



FIGS. 21A-B are cross-sectional views of the embodiment of the transition zone of FIG. 20.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Priority U.S. Pat. No. 6,605,007, which has been incorporated herein in its entirety, discloses an improved golf club that also produces a relatively large “sweet zone” or zone of is substantially uniform high initial velocity or high coefficient of restitution (COR).


COR or coefficient of restitution is a measure of collision efficiency. COR is the ratio of the velocity of separation to the velocity of approach. In this model, therefore, COR was determined using the following formula:

(vclub-post-vball-post)/(vball-pre-vclub-pre)

where, vclub-post represents the velocity of the club after impact;

    • vball-post represents the velocity of the ball after impact;
    • vclub-pre represents the velocity of the club before impact (a value of zero for USGA COR conditions); and
    • vball-pre represents the velocity of the ball before impact.


COR, in general, depends on the shape and material properties of the colliding bodies. A perfectly elastic impact has a COR of one (1.0), indicating that no energy is lost, while a perfectly inelastic or perfectly plastic impact has a COR of zero (0.0), indicating that the colliding bodies did not separate after impact resulting in a maximum loss of energy. Consequently, high COR values are indicative of greater ball velocity and distance.


As shown in FIGS. 1, 1a and 1b, the accuracy of the club and the club's large zone of uniform high initial velocity are produced by hitting face 2, having central zone 4, a surrounding intermediate zone 6, and an optional perimeter zone 8. Preferably, the area of central zone 4 comprises about 15% to about 60% of the total area of the hitting face 2, and more preferably about 20% to about 50%.


Central zone 4 is comparatively rigid and intermediate zone 6 is relatively flexible so that upon ball impact, intermediate zone 6 of face 2 deforms to provide high ball velocity, while central zone 4 is substantially undeformed so that the ball flies on-target. Thus, upon ball impact the deformation of intermediate zone 6 allows central zone 4 to move into and out of a club head 10 as a unit. Surrounding intermediate zone 6 may be located adjacent to central zone 4, and optional perimeter zone 8 may be located adjacent to intermediate zone 6. As a result, the head exhibits a coefficient of restitution greater than about 0.81.


The above is accomplished by providing central zone 4 with a first flexural stiffness and intermediate zone 6 with a second flexural stiffness. Flexural stiffness (FS) is defined as each portion's average elastic modulus (E) times each portion's average thickness (t) cubed or (FS=Et3). The calculation of averages of modulus and thickness is fully disclosed in the parent application and in the '007 patent, which have already been incorporated by reference in their entireties. The determination of FS when the thickness varies or when the material is anisotropic is also fully discussed in the parent patent application and in the '007 patent.


Since the flexural stiffness is a function of material and thickness, the following techniques can be used to achieve the substantial difference between the flexural stiffness of central zone 4 and intermediate zone 6: 1) different materials can be used for each portion, 2) different thicknesses can be used for each portion, or 3) different materials and thickness can be used for each portion. For example, in a preferred embodiment, the thickness of the central zone is greater than the thickness of the intermediate zone and the material for both portions is the same.


In club head 10, the above flexural stiffness relationships can be achieved by selecting a certain material with a particular elastic modulus and varying the thickness of the zones. In another embodiment, the flexural stiffness relationships can be achieved by varying the materials of the zones with respect to one another so that the zones have different elastic moduli and the thickness is changed accordingly. Thus, the thickness of the zones can be the same or different depending on the elastic modulus of the material of each zone. It is also possible to obtain the required flexural stiffness ratio through the use of structural ribs, reinforcing plates, and thickness parameters. The parent case application and the grandparent '007 patent describe in detail the preferred ranges of ratios of flexural stiffness between central zone 4 and intermediate zone 6.


Further, as discussed in the '007 patent, two or more different homogeneous materials may be used to form hitting face 2. For example, central zone 4 may be of generally uniform thickness and made from a stainless steel having a Young's Modulus of 30.0×106 lbs/in2. The adjacent intermediate zone 6 has a continuously tapering thickness from the pace perimeter toward central zone 4. The thickness of intermediate zone 6 is defined to change linearly. Intermediate zone 6 is made from a titanium alloy having a Young's Modulus of 16.5×106 lbs/in2. Alternatively, as shown in FIG. 1c, which corresponds to FIG. 10 from the '007 patent, central zone 4 may include ribs 4a made of stainless steel having a Young's Modulus of 30.0×106 lbs/in2 with a titanium alloy having a Young's Modulus of 16.5×106 lbs/in2 in the interstitial spaces 4b. Intermediate zone 6 is made from the same titanium alloy. The flexural stiffness ratio between central zone 4 and intermediate zone 6 is calculated in detail in the '007 patent.


Optional perimeter zone 8 preferably increases in thickness compared to intermediate zone 6 to increase the flexural stiffness thereof. Alternatively, optional perimeter zone 8 may increase in flexural stiffness compared to intermediate zone by forming perimeter zone 8 out of a different material than that of intermediate zone 6. For example, perimeter zone 8 may be made of the same material as central zone 4. Alternatively, perimeter zone 8 may be made of an entirely different material than that of central zone 4 or intermediate zone 6. Perimeter zone 8 would then be attached to intermediate zone 6, such as by welding.


Referring now to FIG. 2, which corresponds to FIG. 8 from the parent case, hitting face 2 may comprise a face insert 42, which is welded onto a cavity defined on the face. Hitting face 2 may comprise a face insert 42 and face support 30. In this embodiment, hitting face 2 is delineated from crown 14, toe 18, sole 22 and heel 32 by parting line 46. Central zone 4 is preferably disposed on the inner-cavity-facing surface of face insert 42, and, as shown, has a generally elliptical shape. The elliptical central zone 4 is fully disclosed in the parent patent application. Central zone 4 is preferably aligned in the direction of the low toe to high heel, so that a high COR zone can be established in the direction of high tow to low heel. This high COR zone advantageously coincides with the typical impact patterns created by golfers.


As defined in the parent case, the term “ellipse” or “elliptical” refers to non-circular shapes that have discernable major axis and minor axis, and include, but are not limited to, any quadrilateral shapes, geometrical ellipses, quadrilateral shapes with one or more rounded corner(s) and unsymmetrical elliptical shapes. The “major axis” is defined as the axis coinciding with the longest length that can be drawn through the non-circular shapes without intersecting the perimeter of the shapes at more than two locations, i.e., at the start and end points of said length. The “minor axis” is orthogonal to the major axis at or near its midpoint. As used herein, the term “concentric” refers to shapes that substantially encircle or surround other shapes.


Intermediate zone 6, designated as 61 and 62, can be disposed partially on face insert 42 and partially on face support 30. A transition zone 7 having variable thickness is disposed between central zone 4 and intermediate zone 6. Preferably, the thickness of central zone 4 is reduced to the lesser thickness of intermediate zone 6 within transition zone 7. This reduces any local stress-strain caused by impacts with golf balls due to abrupt changes in thickness. Face support 30 defines hole 48, which is bordered by rim 49. Face insert 42 can be attached to face support 30 by welding at or around rim 49.


Preferably, face insert 42 is made by milling or stamping and forming. In the manufacturing process, a malleable metal suitable for use as a hitting face, such as titanium, titanium alloy, carbon steel, stainless steel, beryllium copper, and other forgeable metals, is heated and then hammered into the desired shape of the face cup. Examples of some appropriate metals include but are not limited to titanium 6-4 alloy, titanium 15-3-3-3 alloy, titanium 20-4-1 alloy, and DAT 55 and DAT 55G, titanium alloys available from Diado Steel of Tokyo, Japan.


The preferred forging process is die or billet forging, in which a pre-measured rod of forgeable metal is heated and placed between a die, which contains the desired shape of face insert 42, and a hammer. The heated metal is then hammered into the desired shape. An advantage of forging face insert 42 is that the thickness of the face can be as thin as about 0.060 inch (or about 1.5 mm) around the perimeter or edge thereof.


Referring now to FIGS. 3-8, alternate embodiments of hitting face insert 42 are shown. In these embodiments, the flexural stiffness of central zone 4 is higher than the flexural stiffness of intermediate area 6 due to a dense insert 52 made of a material of greater density than that of the material forming the remainder of face insert 42. A cross-sectional view of a preferred embodiment of the present invention is shown in FIG. 3A, wherein face insert 42 includes a plate-like face 50 and an insert 52.


Plate-like face 50 is preferably elliptical in shape with a slightly curved profile, although any shape may be used, such as polygonal, circular or irregular.


The size of plate-like face 50 depends upon the overall size of golf club head 10. However, in a preferred embodiment, plate-like face 50 measures between 80 and 100 mm along the long axis of the ellipse and between 35 and 60 mm along the short axis of the ellipse. More preferably, plate-like face 50 measures 90 mm along the long axis of the ellipse and 50 mm along the short axis. Plate-like face 50 may be of uniform or non-uniform thickness 53. In one embodiment, thickness 53 ranges from 2-5 mm. Preferably, thickness 53 is 2.7 mm gradually tapering to a maximum thickness of 4.5 mm.


Plate-like face 50 preferably includes a cavity 51, shown in the exploded view of FIG. 3B, formed on the surface 55 that faces the inner cavity of golf club head 10. Further, in the vicinity of cavity 51, plate-like face 50 preferably increases in thickness, so as to combine the effects of a thickened central zone as described above with the effects of the denser material of dense insert 52. In this embodiment, cavity 51 is circular in shape, although the shape of cavity 51 is preferably chosen to correspond to the cross-sectional shape of dense insert 52. Although cavity 51 may be made of any size sufficient to accommodate dense insert 52, in one embodiment, cavity 51 has an interior width of approximately 14 mm and a depth of approximately 2 mm.


As discussed above, plate-like face 50 is preferably forged, although stamping and casting are also suitable manufacturing techniques. Plate-like face 50 may be made of any material discussed herein that is suitable for forming hitting face 2, such as titanium, titanium alloy, carbon steel, stainless steel, beryllium copper. The more preferred metal is titanium 6-4 alloy, as described above.


Dense insert 52 is shown as being a conical frusta that is relatively small in cross-sectional surface area compared to plate-like face 50. Dense insert 52 may take on any shape that is convenient for manufacturing, for example a cylinder or a circular, elliptical or quadrilateral disk. Dense insert 52 is made of a material of greater density than that of plate-like face 50, preferably tungsten or stainless steel, although any material of greater density than plate-like face 50 is appropriate for use in the present invention, including copper, nickel, and bronze. Dense insert 52 may be milled, stamped from sheet metal, forged, die cut, cast, or made using any technique known in the art.


Dense insert 52 is preferably small compared to the size of plate-like face 50. In the preferred embodiment, dense insert 52 is approximately 10 mm in diameter at its widest point and approximately 7 mm in height. As such, dense insert 52 protrudes from surface 55 of plate-like face 50, as dense insert 52 is of a greater height than the depth of cavity 51. The size of dense insert 52 may be varied so as to control the effective size of central zone 4.


Dense insert 52 may be directly or indirectly affixed to plate-like face 50. In the preferred embodiment, dense insert 52 is contained within a cap 56 made of the same material as that used to make plate-like face 50 so that cap 56 may be readily welded to plate-like face 50. Dense insert 52 may be affixed to an interior surface of cap 56, adhered to at least one interior surface of cap 56, or simply rest within cap 56. As shown, cap 56 is a conical frusta having an interior cavity shaped so that dense insert 52 fits tightly within cap 56. Cap 56 may be made using any method known in the art, such as casting, stamping or forging.


As such, dense insert 52 is indirectly fixedly attached to plate-like face 50, in that dense insert 52 is contained within cap 56 which is joined to plate-like face 50 by a weld bead 58 so that dense insert 52 is not dislodged from its position during the repeated impacts of hitting face 2 with golf balls. Alternately, at least a portion of the combination of dense insert 52 and cap 56 may be secured within cavity 51 using an adhesive, for example hot melt adhesives, epoxy adhesives, polyurethane adhesives, sealants, thermoset adhesives, UV curing adhesives, silicon adhesives, acrylic and cyanoacrylic adhesives.


Referring to FIG. 4, an alternate embodiment of face insert 42 having a dense insert 52 is shown. In this embodiment, dense insert 52 is a circular disk that is adhered directly to the inner cavity-facing surface 55 of plate-like face 50. Alternatively, dense insert 52 may also be welded to the surface of plate-like face 50.


Referring to FIG. 5, another alternate embodiment of face insert 42 having a dense insert 52 is shown. In this embodiment, plate-like face 50 includes a cavity 51 into which dense insert 52 in the shape of a circular disk in inserted. Dense insert 52 may or may not be affixed to the surface of cavity 51, such as with an adhesive. A flange portion 54 extends over dense insert 52 to hold dense insert 52 within cavity 51, i.e., to prevent dense insert 52 from being ejected from cavity 51 during repeated impacts with golf balls. Flange portion 54 may be a piece of material welded to plate-like face 50. Alternatively, flange portion 54 may be formed during manufacturing of plate-like face 50. Face insert 42 is preferably milled and/or stamped. During the manufacturing process, cavity 51 is formed in a thickened central zone of plate-like face 50. Cavity 51 is formed to a height that is slightly higher than the height of dense insert 52. Dense insert 52 is then positioned within cavity 51 and preferably adhered to an inner surface of cavity 51. The surface of plate-like face 50 is then forcibly struck or hammered to deform the portion cavity 51 protruding over dense insert 52, thereby forming flange portion 54.


Referring to FIG. 6, another alternate embodiment of multiple-material face insert 42 is shown. This embodiment includes a plate-like face 50 similar to the plate-like faces of earlier-described embodiments. However, in this embodiment, plate-like face includes a thin-walled cup-like protrusion 60 extending outward from the inner cavity-facing surface 55 of plate-like face 50. Cup-like protrusion 60 is shown as a frusta, although it may have any shape, such as a hollow cylinder, three-dimensional polygon, or an irregular shape.


Dense insert 52, similar to the dense inserts described above, is sized and dimensioned to fit tightly within cup-like protrusion 60. Dense insert 52 may be affixed to the interior of cup-like protrusion 60 using, for example, an adhesive. However, dense insert 52 is held within cup-like protrusion 60 by flange portion 54, similar to earlier-discussed flange portions. In this embodiment, however, if the stamping technique is used to form flange portion 54, the excess material comes from the excess height of cup-like protrusion 60.


Referring to FIG. 7, a cross-sectional view of another alternate embodiment of a face insert 42 of the present invention is shown. In this embodiment, plate-like face 50 is similar to the plate-like face described above with respect to the preferred embodiment. In this embodiment, however, cap 56 is a hollow cylinder having an outer diameter that is less than the diameter of cavity 51. Dense insert 52 is a cylindrical plug that fits tightly within cap 56, preferably affixed therewithin.


Cap 56 includes a brim 64 that is sized and dimensioned to fit snugly within cavity 51. As such, a small amount of clearance exists between the outer diameter of cap 56 and the edge of cavity 51. Weld bead 58 is formed around the edge of cavity 51 and the edge of brim 64 to attach cap 56 to plate-like face 50. This geometry of cap 56 increases the surface area to which weld bead 58 may affix, thereby increasing the strength of the joint. As such, the usable life of hitting face 2 increases, as the stronger joint is less likely to suffer failure and eject dense insert 52 into the inner cavity of golf club head 10.


Referring now to FIGS. 8 and 8A, yet another alternate embodiment of a face insert 42 of the present invention is shown. In this embodiment, face insert 42 includes plate-like face 50 and a dense insert 52. However, a void 61 is formed at or near the center of plate-like face 50 extending entirely through the thickness thereof. Dense insert 52 is preferably configured such that at least a portion thereof is fitted into void 61 while a brim portion 63 thereof rests upon or is affixed to a lip or shelf 66 formed in void 61. A flange portion 54, similar to those flange portions described above, holds dense insert 52 securely in place. As such, dense insert 52 is visible from the exterior-facing surface 65 of plate-like face 50. Although the exterior-facing surface of dense insert 52 is shown as being substantially flush with surface 65, this need not be the case and a gap may exist between the edges of void 61 such that dense insert 52 is still visible.


EXAMPLE

Inventive Club W is a hollow metal wood club head made generally in accordance with the embodiment shown in FIG. 7. Club W includes a face insert made of a plate of titanium alloy having a tungsten insert welded to the inner-cavity-facing surface thereof at or near the geometric center of the plate. As such, the thickness of Club W varies in that the central zone of the face insert is thicker than the perimeter thereof. Club W has a COR measured to be 0.812.


A standard King Cobra® SZ 440 club head is also a hollow metal wood club head. The SZ 440 club head has a hitting face having variable thickness. Similar to Club W, the SZ 440 club head is thicker near the geometric center of the hitting face and thinner toward the perimeter thereof. However, the thickness variations of the SZ 440 club head hitting face are manufactured integrally with the hitting face, i.e., the hitting face includes a single plate of material that is machined to remove a portion of the material only around the perimeter of the plate. The SZ 440 club head has a COR of 0.814, approximately equal to that of Club W.


Both clubs were tested using the pendulum test, which is the standard test for club face flexibility or trampoline effect under USGA and international rules. This test entails impacting a specific spot golf club head several times using a small steel pendulum. A characteristic time between the club head and the pendulum is recorded in microseconds (μs), thereby determining the flexibility of the golf club head at that point. In accordance with USGA rules, nine points on the golf club head are so tested. Generally, the longer the characteristic time, the greater the flexibility of the golf club head.


As shown in Table 1, the characteristic time of the pendulum with Club W is greater than that of the SZ 440 club face at all tested points. As such, the flexibility of Club W is greater than that of the SZ 440 club face, even though the COR value is approximately the same for both club heads.









TABLE 1







Nine Point Pendulum Test Results SZ 440, Club W




















PEN
PEN
PEN
PEN
PEN
PEN



PEN
PEN
PEN
High
High
High
Low
Low
Low


Club Model
Center
Toe
Heel
Center
Toe
Heel
Center
Toe
Heel





Comparative
235
238
235
229
244
240
227
226
232


SZ 440


Inventive Club
251
269
250
251
266
263
268
255
235


W









In accordance with another aspect of the present invention, the thickness of intermediate zone 6 or optional perimeter portion 8 on hitting face 2 can be thinly manufactured by removing the weld lines from the hitting face to the crown and sole of the club head. An alternate method for improving the performance of hitting face 2 is to remove weld lines and joints of face insert 42 to another surface of club head 10. As is known in the art, a weld line or joint is an area of discontinuity, where even if two pieces of the same material are joined, the structural properties of the pieces in the vicinity of the joint are altered. Removing weld lines to the crown or the sole of a club head allows the thickness of the hitting face to be controlled more precisely and allows for a thinner overall hitting face. The joints can also be used to alter the properties of the hitting face. In accordance with this aspect of the invention, the face insert may include one or more side walls, wherein the side walls may form part of the crown and/or part of the sole.


Referring to FIG. 9, which corresponds to FIG. 9 from the parent case, face insert 42 comprises central zone 4, transition zone 7, a portion of intermediate zone 6, partial crown portion 54 and partial sole portion 56. Club head 10 correspondingly defines cavity 58 sized and dimensioned to receive face insert 42. Face insert 42 is preferably welded to club head 10. Face insert 42 together with face support 30 forms hitting face 2. Similar to the embodiment illustrated in FIG. 2, intermediate zone 6, designated as 61 and 62, can be disposed partially on face insert 42 and partially on face support 30.


Referring now to FIG. 10, another embodiment according to the present invention is shown. In this embodiment, central zone 4 of hitting face 2 is formed of a face insert 42. Face insert 42 is preferably welded to club head 10 along weld line 20. Face insert 42 includes a polygonal or elliptical main plate 34 and a sidewall or wing 70 that extends into and forms a part of crown 14. As such, an upper portion 71 of weld line 20 is removed to crown 14. As the stress line created by weld line 20 is removed from hitting face 2, the probability of failure along upper portion 21 due to repeated impact with golf balls is reduced.


Face insert 42 is preferably made from the same material as the rest of club head 10, such as titanium, a titanium alloy, steel, or any other material suitable for use as a club head. Face insert 42 is preferably the same thickness as the rest of club head 10, although face insert 42 may be made thicker or thinner in order to affect the flexural stiffness thereof.


The size and shape of face insert 42 may vary. As stated above, preferably, face insert 42 is a modified oval U-cup or L-cup, but it may also be other shapes, such as rectangular, elliptical or circular. Face insert 42 preferably forms nearly the entire surface area of hitting face 2. However, face insert 42 may form a much smaller portion of hitting face. Also, wing 70 may extend into and form a part of sole 22, as shown in FIG. 11, by simply inverting the configuration of face insert 42. In this case, the affected weld line is lower weld line 73.


The material properties of face insert 42 can also be affected by the method chosen to form face insert 42. For example, face insert 42 is preferably stamped from sheet metal after the metal has been cold rolled or cold worked in order to align the crystal grains of the metal. Stamping metal in this fashion produces a stronger hitting face than other manufacturing techniques. Further, face insert 42 is then positioned within hitting face 2 so that the grain flow pattern of face insert 42 runs in a sole-to-crown direction. Alternatively, the grain flow pattern of face insert 42 may run in a heel-to-toe direction or in a diagonal direction. Other methods known in the art may also be used to manufacture face insert 42, such as forging and casting.



FIGS. 12
a and 12b show another embodiment of club head 10 similar to the embodiment shown in FIG. 10. In this embodiment, face insert 42 includes a main plate 34, an upper sidewall or wing 70 that extends into and forms part of crown 14 as well as a lower wing 72 that extends into and forms part of sole 22. As such, upper weld line 71 and lower weld line 73 are removed to crown 14 and sole 22, respectively, so as to reduce the potential for failure thereof. All other aspects of face insert 42 are as described above with respect to FIG. 10.



FIGS. 13
a and 13b show yet another embodiment of club head 10 similar to the embodiment shown in FIG. 10. In this embodiment, face insert 42 includes an upper sidewall or wing 70 that extends into and forms part of crown 14, a lower sidewall or wing 72 that extends into and forms part of sole 22, a heel extension 74, and a toe extension 75. Upper wing 70 and lower wing 72 are as described above with respect to FIGS. 10, 12a, and 12b. Heel extension 74 and toe extension 75 are extensions of the main plate of face insert 42 along the horizontal axis 76 thereof at or near the center of the vertical axis 78 thereof. This alteration of the geometry of face insert increases the deflection capabilities of face insert 42 along horizontal axis 76 while vertical axis 78 has a different, lesser deflection capability.


Face insert 42 is preferably of a size and general shape as described above with respect to the embodiment shown in FIGS. 10, 12a and 12b, i.e., a polygonal or elliptical main plate that forms much of the surface area of hitting face 2. Upper wing 70 and lower wing 73 are preferably generally elliptical or polygonal, although other shapes are contemplated by the present invention. Similarly, heel extension 74 and toe extension 75 are preferably semi-elliptical in shape, although other shapes such as semi-circular are contemplated by the present invention. As such, the preferred geometry of face insert 42 is a central oval having a long axis along horizontal axis 76 of hitting face 2 and generally rectangular extensions stretching along vertical axis 78 of hitting face 2. Further, one of heel extension 74 and toe extension 75 may be eliminated. Also, one or both of upper wing 70 and lower wing 73 may be eliminated. Further, face insert 42 may incorporate a dense insert as shown in any of the embodiments shown in FIGS. 3-8 for increased performance effects. Face insert 42 may also contain central zone 4 and intermediate zone 6, where the flexural stiffness of central zone 4 is higher then the flexural stiffness of intermediate zone 6, as described above and as described in the parent application and in the grandparent '007 patent. Additionally, central zone 4 may also include a dense insert 52 as described above.


Hitting face 2 is preferably milled or stamped and milled. The body of club 10 is preferably cast. The inner cavity of club head 10 may be empty, or alternatively may be filled with foam or other low specific gravity material. It is preferred that the inner cavity has a volume greater than 250 cubic centimeters, and more preferably greater than 275 cubic centimeters, and most preferably 350 cubic centimeters or more. Preferably, the mass of the inventive club head is greater than 150 grams but less than 220 grams. Further part and manufacturing details and additional test results regarding the COR values of inventive club heads are discussed in detail in the parent case.


Yet another parameter that reflects the stiffness of a structure is inertance. Generally, inertance is a frequency response. More specifically, inertance reflects the stiffness of a structure, in this instance the club face, at various frequencies of vibration. The units of inertance are acceleration units over force units. A preferred first resonant frequency for the inventive club face described herein is located where inertance is maximized. The testing methodology and apparatus for determining inertance are described in further detail in the parent patent, U.S. Pat. No. 6,605,007, which patent is incorporated herein in its entirety by reference.


Referring to FIG. 14, a graph of inertance versus frequency for a conventional club head is shown. The conventional club head is a Callaway Great Big Bertha War Bird with an eight degree loft. The point I1 at a frequency of 3330 Hertz represents the first primary resonant frequency which occurs at the first primary maxima inertance for the inertance function I. A maxima which does not represent a primary resonant natural frequency of the face is also present in FIG. 14 at a frequency of 2572 Hertz, which is designated as point I2. These secondary maxima I2 are characterized by inertance transitions of a magnitude of less than 10 decibels. These secondary maxima may be due to crown, sole or skirt vibrations that are not acting perpendicular to the plane of the club face. Secondary maxima do not correlate with COR and ball velocity, since the vibration response is either small in magnitude or alternately not coincident with ball response. The COR for the convention club head tested was measured in accordance with USGA, Rule 4-1e Appendix II Revision 2 dated Feb. 8, 1999 and was found to be 0.785. The preferred first primary resonant frequency of vibration is defined by the following relationship:

1/(2*contact duration)<I1<3/(2*contact duration)


The contact duration is the time interval during which the ball is in contact with the club face. The contact duration for a typical driver impact is about 500 microseconds. Thus, the preferred primary resonant frequency of vibration for the conventional club head is between about 1000 and 3000 Hertz. The closer the COR is to the lower limit, the higher the COR and thus the higher the rebound ball velocity. More preferably, the first primary resonant frequency is less than 2900.



FIG. 15 illustrates the inertance function of the inventive club head described and claimed in priority U.S. Pat. No. 6,605,007 (“the '007 club”). The first primary resonant frequency of vibration for the club head is at 2632 Hertz, and the COR of the '007 club was measured to be 0.824. The COR of the '007 club was measured to be 0.824. The COR of the '007 club is greater than the conventional club of FIG. 14, and therefore will provide greater ball rebound velocity.


The overall flexural stiffness of a club head and the distribution of the flexural stiffness across the face of the club head impact the resonant frequency of a club head. Furthermore, the swing speed will determine if the club and/or a golf ball vibrates at the resonant frequency upon impact. As such, by altering the structural design and properties of a club head, a club designer may alter the resonant frequency of the club head to coordinate with the resonant frequency of a particular golf ball so as to maximize the distance traveled by the ball when struck at a certain swing speed. Also, if the club is designed with a particular golfer in mind, the club can be designed to resonate upon striking a particular golf ball at the golfer's average swing speed. For example, if the club and the ball resonate at a similar frequency, if they strike each other so as to produce resonance, then the vibrations of both club and ball act to push the ball off of the club face faster. Preferably, the resonance frequency of the club is 0-20% greater than the resonant frequency of the ball. More preferably, the resonance frequency of the club is 0-10% greater than the resonant frequency of the ball.


A portion 100 of a club head 101 is shown in FIG. 16A, the portion 100 includes a first portion 102 have a first thickness t1 and a second portion 103 having a second thickness t2. A transition zone 104 connects the first and second portions. Preferably, the first thickness t1 does not equal the second thickness t2. The transition zone 104 generally has additional mass or material that is not needed for structural integrity of the club head 101. The transition zone 104 generally has a non-uniform thickness as the club head transitions from the first portion 102 having the first thickness t1 to the second portion 103 having the second thickness t2. As shown in FIG. 16B, according to the invention, an indentation or scallop 105 is included in the transition zone 104. The indentation or scallop 105 removes some of the material in the transition zone 104. The removal of material reduces the weight of the transition zone. This mass may then be moved to desired areas of the club head, such as low and/or back in the club head to improve the playability characteristics of the club head, including center of gravity and the moment of inertia of the club head. Preferably, the center of gravity is moved at least 0.5 mm lower in the club head, 0.5 mm back in the club head or both. For example, the center of gravity may be moved below a horizontal center line of the club head by at least 1 mm. One or more of these indentations or scallops 105 may be placed within one or more transition zones 104 of the club head. The indentations 105 do not appreciably effect the structural integrity and do not create stress risers or concentrations in the transition zones 104. The indentations 105 of the transition zones 104 of FIGS. 16-21 may be combined with a club head having any type of strike face. Moreover, the indentations 105 of the transition zones 104 of FIGS. 16-21 may be combined with the improved striking faces disclosed in FIGS. 1-13b.


The transition zones 104 may be found in any portion of the club head 101 with a thickness transition from a first thickness t1 to a second thickness t2. Some transition zones 104 of club heads are particularly suited to having indentations 105 for weight reduction, these include between the face and body of the club head, between the crown and skirt and the skirt and sole of the club head and on the hosel of the club head. A transition zone 104 may also be found in the hosel of the club head. Although, generally the indentations 105 are particularly useful in hollow golf clubs, such as metalwoods and utility club heads, they may be used on any type of club head including irons, wedges and putters. The indentations may be used on any surface of the transition zone 104, whether visible, such as on the exterior of the club head 101, or non-visible, such as on the interior of the club head 101.


As described above, if the club head is a wood type club head, it is preferred that the inner cavity has a volume at least 115 cubic centimeters, and more preferably at least 250 cubic centimeters, and most preferably 350 cubic centimeters or more. Preferably, the mass of the inventive club head is greater than 150 grams but less than 300 grams, more preferably greater than 170 g and less than 260 g, and most preferably greater than 185 g and less than 220 g. Further, part and manufacturing details and additional test results regarding the COR values of inventive club heads are discussed in detail in the parent case.


As shown in FIG. 16B, the indentation 105 may have an overall length 1. Generally, the length 1 ranges from about 1 mm to about 20 mm. If multiple indentations 105 are provided in the transition zone 104, they may have the same or different lengths 1. As shown in FIG. 16B, the depth d of the indentation 105 may vary throughout its length 1. As shown in FIG. 17A, the depth d of the indentation 105 is defined as the greatest depth of the indentation. The indentations 105 generally have a depth d of about 0.5 mm to about 2 mm. The indentations 105 may have a depth d that is about 5% to about 90% of the thickness t1. More preferably, the depth d is about to 20% to 80% of the thickness t1. Most preferably, the depth d is about 40% to 60% of the thickness t1. The depth d of the indentations preferably gradually transitions to its greatest depth d. The indentations 105 also have a width w, defined as the greatest width of the indentation, of about 0.5 mm to about 5 mm. It will be appreciated that the overall depths and widths of the indention 105 may vary on the individual indentation and that the depths d and widths w of the indentations 105 may vary relative to each other as shown in FIG. 17B. Additionally, when multiple indentations 105 are provided in a transition zone 104, they may be spaced by distance s along their lengths. The spacing distance s is defined as the smallest distance between adjacent indentations 105. The spacing distance s between the indentations 105 is generally between about 1 mm and 10 mm. The spacing distance s between the indentations 105 in a transition zone 104 may be the same or may be varied. The indentations 105 may have any desired shape, from circular to elliptical to polygonal. Preferably, the indentations 105 are elongated ellipses as shown in FIGS. 18-20. As shown in FIGS. 17A-17B, the cross-sections of the indentations 105 may have a semicircular shape.


The size and number of the indentations 105 provided in the transition zone 104 will determine the weight savings. The indentations 105 in the transition zones 104 generally save from 0.5 g to 10 g, preferably from 1-6 g. Preferably, the mass removed from the transition zone 104 is at least about 0.5% of the mass of club head. More preferably, the mass removed is about 1% to about 10% of the mass of the club head. The mass may then be relocated to improve the playability characteristics of the club head 101 as described further below. The transition zone 104 has a mass. The mass removed from the transition zone 104 by the indentations 105 is preferably at least 5% of the mass of the transition zone. More preferably, the mass removed from the transition zone is between 10 and 40% of the mass of the transition zone 104.


As shown in FIG. 18, the transition zone 104 may be provided proximate the face 106 of the club head 101. In particular, the transition zone 104 is provided between the face 106 and the body 107 of the club head 101. The transition zone 104 features multiple indentations 105. In this embodiment, the indentations 105 may be provided on the toe side transition zone 108 of the club head between the face 106 and body 107 of the club head 101 as shown, or may be provided on one or more of the toe 108, heel 109, crown 110 or sole 111 transition zones between the face 106 and body 107 of the club head 101. It will be appreciated that the indentations 105 may extend onto the face 106 of the club head toward the face insert 112. This embodiment, with the indentations 105 provided on a toe transition zone 108, results in a weight savings of 4-8 g. Placement of this mass toward the rear of the club head 101 moves the center of gravity in the club head rearward by at least 1 mm. It will be appreciated that although this embodiment is shown on the interior surface of the club head, that it could also be provided on the exterior surface of the club head.


As shown in FIG. 19, the transition zone 104 may be provided between the crown 113 and the sole 114 of the club head 101. The transition zone 104 features multiple indentations 105. In this embodiment, the indentations 105 may be provided on the toe side 115 of the club head between the crown 113 and sole 114 of the club head 101 as shown, or may be provided on one or more of the toe 115, heel 116 and rear 117 transition zones between the crown and sole of the club head. This embodiment, with the indentations 105 provided on a toe transition zone 115, results in a weight savings of 3-6 g. Placement of this mass in the sole 114 of the club head 101 moves the center of gravity in the club head below the center line of the club head by at least 1 mm. It will be appreciated that although this embodiment is shown on the interior surface of the club head, that it could also be provided on the exterior surface of the club head.


As shown in FIG. 20, the transition zone 104 may be provided on the hosel 118 of the club head 101 between the face 106 and the heel 119 of the club head 101. The transition zone features multiple indentations 105. In this embodiment, the indentations 105 may be provided on the exterior surface 120 of the hosel within the club head 101 as shown, or may be provided on one or more of the interior 121 and exterior surfaces 120 of the hosel 118 as shown in FIGS. 21A and 21B. In the embodiment of FIG. 20, with the indentations 105 provided on the exterior surface 120 of the hosel 118 within the interior of the club head 101, results in a weight savings of 2-4 g. Placement of this mass toward the rear of the club head 101 moves the center of gravity in the club head rearward by at least 1 mm.


The indentations 105 may be formed as part of the club head 101, such as by being part of the original tooling to form the club head. This may include formation of the indentations during casting. Alternatively, the indentations may be formed post-process, for example by machining or chemical etching the indentations into the transition zone after forming either the respective portion of the club head or the whole club head.


As discussed above, the size and number of the indentations 105 provided in the transition zone 104 will determine the weight savings. The indentations 105 in the transition zones 104 generally save from 0.5 g to 10 g, preferably from 2-8 g. This weight savings may then be moved to a more desirable location in the club head 101, such as low and back within the club head 101 to improve playability characteristics, such as center of gravity, as described above, and moment of inertia. For example, as shown by the coordinate system shown in FIGS. 18-20, a club head 101 according to the present invention preferably has a moment of inertia about the vertical axis through the center of gravity, Iyy, of about 2500 g·cm2 to about 6000 g·cm2. Additionally, a club head 101 according to the present invention preferably has a moment of inertia about the horizontal axis from heel to toe through the center of gravity, Ixx, of about 1500 g·cm2 to about 5000 g·cm2. A club head 101 according to the present invention preferably has a moment of inertia about the horizontal axis through the center of gravity from front to back of the club head, Izz, of about 1500 g·cm2 to about 6000 g·cm2.


While various descriptions of the present invention are described above, it should be understood that the various features of each embodiment could be used alone or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. For example, the transition zones may be made of a different material than the first and second portions. It will be appreciated that the club head may be made of any suitable metal or non-metal materials, such as those discussed above and any suitable combination thereof to construct the club head. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.

Claims
  • 1. A golf club head comprising: a first club portion having a first thickness;a second club portion having a second thickness;a transition zone having a mass and connecting the first club portion to the second club portion; andat least two indentations provided in the transition zone,wherein the indentations reduce the mass of the transition zone by at least 0.5%, wherein the club head is hollow with a volume of at least 250 cubic centimeters and the indentations are provided on an interior nonvisible surface of the hollow portion of the club head, and wherein the transition zone is provided proximate a face insert of the club head and the first portion of the club head is a face insert, the second portion of the club head is a body of the club head, and the transition zone is provided between the face insert and the body of the club head.
  • 2. The golf club head of claim 1, wherein the indentations reduce the mass of the transition zone by about 10% to about 40%.
  • 3. The golf club head of claim 1, wherein the indentations reduce the mass of the transition zone without the indentations by about 0.5 g to about 10 g.
  • 4. The golf club head of claim 3, wherein the indentations reduce the mass by about 2 g to about 8 g.
  • 5. The golf club head of claim 3, wherein the indentations have a maximum depth between about 0.5 mm to about 2 mm.
  • 6. The golf club head of claim 3, wherein the indentations have lengths ranging from about 1 mm to about 20 mm and widths ranging from about 0.5 mm to about 5 mm.
  • 7. The golf club head of claim 1, wherein the center of gravity is provided below a horizontal center line of the club head by at least 1 mm.
  • 8. The golf club head of claim 1, wherein the center of gravity is moved toward a rear of the club head by at least 0.5 mm and lowered in the club head by at least about 0.2 mm.
  • 9. The golf club head of claim 1, wherein the face insert further comprises: a central zone having a first flexural stiffness; and an intermediate zone concentric with the central zone, the intermediate zone having a second flexural stiffness, and wherein the first flexural stiffness is higher than the second flexural stiffness.
  • 10. The golf club head of claim 1, wherein the moment of inertia about the vertical axis though the center of gravity of the club head, Iyy, is about 2500 g·cm2 to about 6000 g·cm2.
  • 11. The golf club head of claim 1, wherein the moment of inertia about the vertical axis though the center of gravity of the club head, Ixx, is about 1500 g·cm2 to about 5000 g·cm2.
  • 12. The golf club head of claim 1, wherein the moment of inertia about the vertical axis though the center of gravity of the club head, Izz, is about 1500 g·cm2 to about 6000 g·cm2.
  • 13. The golf club head of claim 1, wherein the mass removed from the transition zone is thereafter provided in the perimeter of the club head.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation-in-part of U.S. patent application Ser. No. 12/404,369, filed Mar. 16, 2009, now U.S. Pat. No. 7,850,543, which is a continuation of U.S. patent application Ser. No. 12/059,137, filed Mar. 31, 2008, now U.S. Pat. No. 7,520,819, which is a continuation of U.S. patent application Ser. No. 11/687,137, filed Mar. 16, 2007, now U.S. Pat. No. 7,361,099, which is a continuation of U.S. patent application Ser. No. 10/911,341 filed on Aug. 4, 2004, now U.S. Pat. No. 7,207,898, which is a continuation-in-part of U.S. patent application Ser. No. 10/428,061, filed on May 1, 2003, now U.S. Pat. No. 7,029,403, which is a continuation-in-part of U.S. Pat. No. 6,605,007, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (213)
Number Name Date Kind
1318325 Klin Oct 1919 A
1319233 Mattern Oct 1919 A
1437463 Boye Dec 1922 A
1467435 Kinnear Sep 1923 A
1525352 Aitken Feb 1925 A
1543691 Beat Jun 1925 A
1582836 Link Apr 1926 A
1589363 Butchart Jun 1926 A
1595589 Tyler Aug 1926 A
1605551 Mattern Nov 1926 A
1699874 Buhrke Jan 1929 A
1704119 Buhrke Mar 1929 A
1704165 Buhrke Mar 1929 A
1720867 Webster et al. Jul 1929 A
2034936 Barnhart Mar 1936 A
2087685 Hackney Jul 1937 A
3567228 Lynn Mar 1971 A
3571900 Hardesty Mar 1971 A
3625518 Solheim Dec 1971 A
3659855 Hardesty May 1972 A
3863932 Lezatte Feb 1975 A
3985363 Jepson et al. Oct 1976 A
4021047 Mader May 1977 A
4023802 Jepson et al. May 1977 A
4193601 Reid, Jr. et al. Mar 1980 A
4213613 Nygren Jul 1980 A
4214754 Zebelean Jul 1980 A
D267965 Kobayashi Feb 1983 S
4429879 Schmidt Feb 1984 A
4449707 Hayashi et al. May 1984 A
4451041 Hayashi et al. May 1984 A
4451042 Hayashi et al. May 1984 A
4465221 Schmidt Aug 1984 A
4471961 Masghati et al. Sep 1984 A
4489945 Kobayashi Dec 1984 A
4511145 Schmidt Apr 1985 A
4762324 Anderson Aug 1988 A
4792140 Yamaguchi et al. Dec 1988 A
4826172 Antonious May 1989 A
4842243 Butler Jun 1989 A
4913438 Anderson Apr 1990 A
4915385 Anderson Apr 1990 A
4915386 Antonious Apr 1990 A
4919430 Antonious Apr 1990 A
4919431 Antonious Apr 1990 A
4921252 Antonious May 1990 A
4928965 Yamaguchi et al. May 1990 A
4930781 Allen Jun 1990 A
4932658 Antonious Jun 1990 A
4955610 Creighton et al. Sep 1990 A
D312858 Anderson et al. Dec 1990 S
5000454 Soda Mar 1991 A
5024437 Anderson Jun 1991 A
5028049 McKeighen Jul 1991 A
5046733 Antonious Sep 1991 A
5056705 Wakita et al. Oct 1991 A
5060951 Allen Oct 1991 A
5067715 Schmidt et al. Nov 1991 A
5090702 Viste Feb 1992 A
5094383 Anderson et al. Mar 1992 A
5106094 Desbiolles et al. Apr 1992 A
5141230 Antonious Aug 1992 A
5163682 Schmidt et al. Nov 1992 A
5180166 Schmidt et al. Jan 1993 A
5183255 Antonious Feb 1993 A
5213328 Long et al. May 1993 A
5221087 Fenton et al. Jun 1993 A
5240252 Schmidt et al. Aug 1993 A
5242167 Antonious Sep 1993 A
5255918 Anderson et al. Oct 1993 A
5261663 Anderson Nov 1993 A
5261664 Anderson Nov 1993 A
5271621 Lo Dec 1993 A
5292129 Long et al. Mar 1994 A
5295689 Lundberg Mar 1994 A
5301945 Schmidt et al. Apr 1994 A
5303922 Lo Apr 1994 A
5318300 Schmidt et al. Jun 1994 A
5328184 Antonious Jul 1994 A
5344140 Anderson Sep 1994 A
5346218 Wyte Sep 1994 A
5351958 Helmstetter Oct 1994 A
5358249 Mendralla Oct 1994 A
5362047 Shaw et al. Nov 1994 A
5362055 Rennie Nov 1994 A
5366223 Werner et al. Nov 1994 A
5380010 Werner et al. Jan 1995 A
5390924 Antonious Feb 1995 A
5395109 Fenton, Jr. Mar 1995 A
5395113 Antonious Mar 1995 A
5397126 Allen Mar 1995 A
5401021 Allen Mar 1995 A
5405136 Hardman Apr 1995 A
5405137 Vincent et al. Apr 1995 A
5407202 Igarashi Apr 1995 A
RE34925 McKeighen May 1995 E
5417419 Anderson et al. May 1995 A
5417559 Schmidt May 1995 A
5423535 Shaw et al. Jun 1995 A
5429357 Kobayashi Jul 1995 A
5431396 Shieh Jul 1995 A
5433440 Lin Jul 1995 A
5447307 Antonious Sep 1995 A
5447309 Vincent Sep 1995 A
5451056 Manning Sep 1995 A
5460376 Schmidt et al. Oct 1995 A
5467983 Chen Nov 1995 A
5470069 Schmidt et al. Nov 1995 A
5474296 Schmidt et al. Dec 1995 A
5482279 Antonious Jan 1996 A
5497993 Shan Mar 1996 A
5505453 Mack Apr 1996 A
5509660 Elmer Apr 1996 A
5522593 Kobayashi et al. Jun 1996 A
5524331 Pond Jun 1996 A
5533729 Leu Jul 1996 A
5536006 Shieh Jul 1996 A
5547630 Schmidt Aug 1996 A
5549297 Mahaffey Aug 1996 A
5564994 Chang Oct 1996 A
5584770 Jensen Dec 1996 A
5586949 Aizawa Dec 1996 A
5595552 Wright et al. Jan 1997 A
5611741 Schmidt et al. Mar 1997 A
5611742 Kobayashi Mar 1997 A
5616088 Aizawa et al. Apr 1997 A
D379393 Kubica et al. May 1997 S
5626530 Schmidt et al. May 1997 A
5643104 Antonious Jul 1997 A
5643108 Cheng Jul 1997 A
5643110 Igarashi Jul 1997 A
5649872 Antonious Jul 1997 A
5651409 Sheehan Jul 1997 A
5655976 Rife Aug 1997 A
5669827 Nagamoto Sep 1997 A
5669829 Lin Sep 1997 A
5674132 Fisher Oct 1997 A
D387113 Burrows Dec 1997 S
5695411 Wright et al. Dec 1997 A
5709614 Horiba Jan 1998 A
5709615 Liang Jan 1998 A
5711722 Miyajima et al. Jan 1998 A
5716292 Huang Feb 1998 A
5718641 Lin Feb 1998 A
5720673 Anderson Feb 1998 A
5743813 Chen et al. Apr 1998 A
5753170 Muang May 1998 A
5755624 Helmstetter May 1998 A
5762567 Antonious Jun 1998 A
5766092 Mimeur et al. Jun 1998 A
5766094 Mahaffey et al. Jun 1998 A
5766095 Antonious Jun 1998 A
5776011 Su et al. Jul 1998 A
5807190 Krumme et al. Sep 1998 A
5827132 Bamber Oct 1998 A
RE35955 Lu Nov 1998 E
D401652 Burrows Nov 1998 S
5830084 Kosmatka Nov 1998 A
5839975 Lundberg Nov 1998 A
5842934 Ezaki et al. Dec 1998 A
5851159 Burrows Dec 1998 A
5863261 Eggiman Jan 1999 A
5873791 Allen Feb 1999 A
5873795 Wozny et al. Feb 1999 A
D406294 Burrows Mar 1999 S
5888148 Allen Mar 1999 A
5890973 Gamble Apr 1999 A
D411272 Burrows Jun 1999 S
5908357 Hsieh Jun 1999 A
5921872 Kobayashi Jul 1999 A
5931746 Soong Aug 1999 A
5935019 Yamamoto Aug 1999 A
5938541 Allen et al. Aug 1999 A
5941782 Cook Aug 1999 A
5944619 Cameron Aug 1999 A
5954596 Noble et al. Sep 1999 A
D415807 Werner et al. Oct 1999 S
5961394 Minabe Oct 1999 A
5967905 Nakahara et al. Oct 1999 A
5971868 Kosmatka Oct 1999 A
5980394 Domas Nov 1999 A
5993329 Shich Nov 1999 A
6007432 Kosmatka Dec 1999 A
6027416 Schmidt et al. Feb 2000 A
6139445 Werner et al. Oct 2000 A
6152833 Werner et al. Nov 2000 A
6248025 Murphy et al. Jun 2001 B1
6319150 Werner et al. Nov 2001 B1
6338683 Kosmatka Jan 2002 B1
6352482 Jacobson et al. Mar 2002 B1
6354962 Galloway et al. Mar 2002 B1
6368234 Galloway Apr 2002 B1
6381828 Boyce et al. May 2002 B1
6390933 Galloway et al. May 2002 B1
6398666 Evans et al. Jun 2002 B1
6435982 Galloway et al. Aug 2002 B1
6506129 Chen Jan 2003 B2
6605007 Bissonnette et al. Aug 2003 B1
6626769 Lin Sep 2003 B1
6648774 Lee Nov 2003 B1
6663501 Chen Dec 2003 B2
6669576 Rice Dec 2003 B1
6783465 Matsunaga Aug 2004 B2
6994636 Hocknell et al. Feb 2006 B2
7029403 Rice et al. Apr 2006 B2
7207898 Rice et al. Apr 2007 B2
7258629 Chen Aug 2007 B2
7361099 Rice et al. Apr 2008 B2
7448964 Schweigert et al. Nov 2008 B2
7520820 Dimarco Apr 2009 B2
7857711 Shear Dec 2010 B2
8235844 Albertsen et al. Aug 2012 B2
20040266548 Cheng et al. Dec 2004 A1
Foreign Referenced Citations (48)
Number Date Country
1114911 Jan 1996 CN
2268693 Jan 1994 GB
59207169 Nov 1984 JP
61033682 Feb 1986 JP
61162967 Jul 1986 JP
61181477 Aug 1986 JP
61185281 Aug 1986 JP
61240977 Oct 1986 JP
1244770 Sep 1989 JP
02130519 May 1990 JP
4020357 Jan 1992 JP
4327864 Nov 1992 JP
5212526 Aug 1993 JP
05237207 Sep 1993 JP
6007487 Jan 1994 JP
06031016 Feb 1994 JP
6114126 Apr 1994 JP
6126002 May 1994 JP
6154367 Jun 1994 JP
6182005 Jul 1994 JP
6269518 Sep 1994 JP
8168541 Jul 1996 JP
8243194 Sep 1996 JP
8280853 Oct 1996 JP
8280854 Oct 1996 JP
8294550 Nov 1996 JP
9028842 Feb 1997 JP
9047531 Feb 1997 JP
9154985 Jun 1997 JP
9168613 Jun 1997 JP
9192270 Jul 1997 JP
9192273 Jul 1997 JP
9239074 Sep 1997 JP
9239075 Sep 1997 JP
9248353 Sep 1997 JP
9294833 Nov 1997 JP
9299519 Nov 1997 JP
10024126 Jan 1998 JP
10024128 Jan 1998 JP
10085369 Apr 1998 JP
10118227 May 1998 JP
10137372 May 1998 JP
10155943 Jun 1998 JP
10258142 Sep 1998 JP
10263121 Oct 1998 JP
10323410 Dec 1998 JP
10337347 Dec 1998 JP
2331938 Jun 1999 JP
Non-Patent Literature Citations (3)
Entry
Golf Digest, Sep. 1982, p. 25.
Golf Digest, Dec. 1981, p. 58-59.
“Variable Face Thickness Technology,” Calloway Golf advertisement, cited Apr. 18, 2000.
Related Publications (1)
Number Date Country
20100255929 A1 Oct 2010 US
Continuations (2)
Number Date Country
Parent 11687137 Mar 2007 US
Child 12059137 US
Parent 10911341 Aug 2004 US
Child 11687137 US
Continuation in Parts (4)
Number Date Country
Parent 12404369 Mar 2009 US
Child 12760698 US
Parent 12059137 Mar 2008 US
Child 12404369 US
Parent 10428061 May 2003 US
Child 10911341 US
Parent 09551771 Apr 2000 US
Child 10428061 US