The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.
The present invention is a method for providing electrical interconnects for integrated circuit fabrication.
An interconnect in an integrated circuit (IC) distributes clock, regulatory and other signals as well as power or ground voltages to various components and circuits on a chip. The International Technology Roadmap for Semiconductors (ITRS) emphasizes the high speed transmission requirements on a chip as the driver for future interconnect development. Near term and long term interconnect requirements for microprocessors (MPs) and for dynamic random access memories (DRAMs) are outlined in the ITRS. Microprocessors require local, intermediate and global wiring solutions and present both material and processing difficulties. Susceptibility of common interconnect metals to electro-migration at high current densities (above 106 Amp/cm2) is a problem. Copper interconnect, introduced in 1998, is now routinely used, with minimum feature size down to 90 nm. However, electrical resistivity of copper increases with decreasing dimensions and is attributed to scattering at surfaces and at grain boundaries. These size effects are due to interface roughness and through use of small grain sizes, which are hard to overcome and cannot be avoided by simply cooling to lower the resistivity. With reference to processing, present interconnect technology relies upon successful development of three processes: dry etching to create trenches and vias; deposition to fill metal plugs; and planarization. The aspect ratio of contact apertures is now 12:1 and may reach 23:1 by the year 2016. Creating high aspect ratio apertures with straight walls and uniform diameters using dry etching is an extremely difficult task and is expected to become progressively more difficult with each succeeding generation. HBr etching of SiO2 for a 9:1 aspect ratio contact hole has been found to provide a 135 mm diameter at one end and a 70 nm diameter at the other end of the hole by Hwang, Meyyappan, Mathod and Ranade, Jour. Vac. Sci. Technol., vol. 20B (2002) 2199. Aspect ratio-dependent etching becomes a serious problem with each new decrease in feature size. Plasma damage and cleaning of high aspect ratio features also pose concerns. Void-free filling of a high aspect ratio aperture is another concern.
Well known properties of copper such as high current carrying capacity and material robustness, would make copper ideally suited for use in electrical interconnects, if the fabrication problems could be resolved.
An electrical interconnect in an integrated circuit (IC) chip uses some form of metallization. Interconnect technology that, as presently practiced, depends upon at least processing three steps: (1) creating a trench of the right size in an insulator material, such as SiO2 or another dielectric, using a procedure such as dry etching; (2) filling the trench with an appropriate interconnect metal material; and (3) chemical mechanical polishing (CMP) to obtain a planar surface. Creating deep, narrow trenches with flat side walls (step (1)) stretches the capabilities of dry etching equipment and processes. Cleaning a trench after its creation is also a problem, in part because of the shrinking width of the trench. Filling a deep, narrow trench with an interconnect metal, in a manner that does not create voids, is also becoming a problem. The combination of these difficulties makes the interconnect technology a critical technical area, according to the ITRS, which requires substantial innovation in material, design and associated processes.
Transistor node size is being reduced with each successive generation including the source, drain and gate contacts. Provision of good Ohmic contacts for these nodes are crucial for fast, reliable device performance.
What is needed is an approach that provides small diameter electrical interconnects, with a metal-like material such as copper or a suitable alloy, that does not suffer from the difficulties of trench creation and trench filling discussed in the preceding. Preferably, the approach should (1) provide reasonably uniform diameter nanowires with aspect ratios up to or higher than 100:1, (2) allow use of a variety of gap-filling insulating materials, (3) allow use of current densities of 106 Amps/cm2 and higher without serious electro-migration problems, (4) show substantially no degradation at moderate or high current densities over long time intervals, and (5) generally meet DRAM and microprocessor requirements. Preferably, the approach should be flexible and allow interconnects with a range of small diameters to be created and allows some flexibility in the choice of composition for the interconnect material.
These needs are met by the invention, which preferentially grows metallic nanowires (MeNWs) at a selected pattern of spaced apart locations between a conductive surface that is deposited on a substrate and a patterned catalyst array, using lithography or a similar process to define the MeNW growth locations (as MeNW pillars). An insulation layer (e.g., Si, SiaOb or SicNd) is deposited around the catalyst patterned array and the MeNW pillars, to fill the gaps between adjacent MeNW pillars, and chemical mechanical polishing is applied to remove the catalyst patterned array, a portion of the MeNW growth layer and a portion of the insulation layer, to provide exposed ends of the MeNW pillars.
A metallic nanowire has a diameter in a range of about 1–250 nm, may be a metal silicide or a suitable metal or alloy (Cu, Ag, Au, Pd, Pt, Ni, Fe, Co, Ir, Ti, Zr,), and is preferably substantially solid rather than hollow, as a carbon nanotube is hollow.
MeNW growth may use a vapor-liquid-solid process. For example, a copper oxide structure can be grown and reduced to copper to provide a one-dimensional MeNW. The material may be grown as a metal or metallic nanowire. At the end of the growth step, an array of one or more MeNWs is provided. Before growth of the MeNWs, a thin, patterned layer of an appropriate catalyst material, such as Al, Au, Ag, Ni, Ir, Mo, Pt or Pd, is deposited on the substrate surface, to tailor the electrical conductivity and to direct the nanowire growth in a desired pattern.
A second step, corresponding to trench filling, fills most or all of the core regions within one or more MeNW structures with SiaOb, SicNd, or other insulating material, using standard approaches. For example, SiOx deposition can be performed using tetraethylorthosilicate chemical vapor deposition (TEOS-CVD). A subsequent step, involving CMP, can be performed conventionally. Multi-level interconnects can be constructed using this approach.
FIG. 1A/1B illustrates is a flow chart illustrating a procedure for practicing the invention.
FIG. 1A/1B is a flow chart of a procedure for practicing the invention. In step 11 (illustrated in
In step 13 (illustrated in
An array of islands of catalyst material can be formed, for example, by providing a continuous film (of thickness 0.1–20 nm) and applying heat at a temperature of 500–800° C. to disintegrate the catalyst film into a plurality of random islands of catalyst material, each having a diameter in a range 100–300 nm and each being spaced apart from adjacent islands of catalyst material by a distance in a range of 100–300 nm. More generally, a nearest neighbor spacing between islands can range from 30 nm to 10 μm, depending upon the desired application.
In step 14 (illustrated in
Where an electrical field E1, (having a selected intensity in a range such as 20 volts/cm≦|E|≦5,000 volts/cm) is oriented substantially perpendicular to the plane Π, is applied during MeNW growth (optional step 15 in
In optional step 16 (illustrated in
In optional step 17 (illustrated in
In step 18 (illustrated in
In step 19 (illustrated in
This application is a Continuation In Part of, and claims the benefit of, a patent application, U.S. Ser. No. 10/390,254, filed Mar. 11, 2003 now U.S. Pat. No. 7,094,674.
| Number | Name | Date | Kind |
|---|---|---|---|
| 6231744 | Ying et al. | May 2001 | B1 |
| 6359288 | Ying et al. | Mar 2002 | B1 |
| 6407922 | Eckblad et al. | Jun 2002 | B1 |
| 6432740 | Chen | Aug 2002 | B1 |
| 6538367 | Choi et al. | Mar 2003 | B1 |
| 6803260 | Shin et al. | Oct 2004 | B2 |
| 6831017 | Li et al. | Dec 2004 | B1 |
| 6956016 | Searls et al. | Oct 2005 | B2 |
| 6958216 | Kelley et al. | Oct 2005 | B2 |
| 20010030366 | Nakano et al. | Oct 2001 | A1 |
| 20020145194 | O'Connor et al. | Oct 2002 | A1 |
| 20030111333 | Montgomery et al. | Jun 2003 | A1 |
| 20030117770 | Montgomery et al. | Jun 2003 | A1 |
| 20030189202 | Li et al. | Oct 2003 | A1 |
| 20030231471 | De Lorenzo et al. | Dec 2003 | A1 |
| 20040013598 | McElrath et al. | Jan 2004 | A1 |
| 20040071951 | Jin | Apr 2004 | A1 |
| 20040099208 | Kang et al. | May 2004 | A1 |
| 20040150311 | Jin | Aug 2004 | A1 |
| 20040250753 | Kang et al. | Dec 2004 | A1 |
| Number | Date | Country |
|---|---|---|
| 1329953 | Aug 2003 | EP |
| WO2003054958 | Jul 2003 | WO |
| WO2003072679 | Sep 2003 | WO |
| WO2003107419 | Dec 2003 | WO |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 10390254 | Mar 2003 | US |
| Child | 10816576 | US |