METHOD AND APPARATUS FOR ROTATING AN IMAGE ON A DISPLAY

Information

  • Patent Application
  • 20080043032
  • Publication Number
    20080043032
  • Date Filed
    August 16, 2006
    19 years ago
  • Date Published
    February 21, 2008
    17 years ago
Abstract
A method and apparatus utilizes a three dimensional rendering engine to rotate an image based on user selected or otherwise determined screen orientation. A vertex coordinate transformation is defined for a rotated destination image. The source image is used as a texture for texture mapping during rendering operation to produce rotated image. In one embodiment, a separate set of software instructions is used for each orientation mode. Accordingly, a non-pixel by pixel based 3D rotation may be carried out using a 3D rendering engine to avoid a single parameter based seriatim pixel by pixel based orientation.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more readily understood with reference to the following drawings wherein:



FIG. 1 is a block diagram illustrating one example of an apparatus for rotating an image in accordance with one embodiment of the invention.



FIG. 2 is a flow chart illustrating one example of a method for generating a rotated image in accordance with one embodiment of the invention.



FIG. 3 is a flow chart illustrating one example of a method for generating a rotated image in accordance with one embodiment of the invention.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

Briefly, a method and apparatus utilizes a three dimensional (3D) rendering engine to rotate an image based on user selected or otherwise determined screen orientation. A texture mapping is defined for a source image. The source image is treated as a texture and mapped to the destination area. A software driver is used to calculate vertices of the destination area according to the selected orientation mode. In one embodiment, a separate set of software instructions is used to calculate vertices for each orientation mode. Accordingly, a non-pixel by pixel based 3D rotation may be carried out using a 3D rendering engine to avoid a single parameter based seriatim pixel by pixel based orientation. The method and apparatus map the source image into rotated destination area in the display memory.



FIG. 1 illustrates an apparatus 10 such as a laptop computer, an Internet appliance or other device having a display screen in which an image is rotated to one of a determined orientation. In this example, the apparatus includes a host processor (not shown) that executes a driver application 12 that receives a rotation request 14 via a user interface, rotation detection sensor, or any other suitable source. In this particular example, the rotation request 14 is a request to rotate the image 270°. The apparatus 10 includes an operating system 16, an image generating application, such as a game, word processing application, windows-based application or any other suitable software application, a 3D rendering engine 20, non-display memory 28 containing, for example, a source image, and display memory 24 which may be read, for example, by a CRTC or any other suitable video device that reads rows and columns of display memory for immediate display on a display device. Although not necessary, for purposes of illustration and not limitation, the source image stored in non-display memory 28 is a bit map.


The driver 12 includes a different instruction set 26a-26c for each of a plurality of selected screen orientations to initiate the defining of destination area for texture mapping of the source image. In this example, the rotation request comes from a user selected orientation that includes at least one of a 90° rotation, a 180° rotation, and a 270° orientation. The driver may be stored in any suitable storage medium such as a CD ROM, system memory, volatile memory, other non-volatile memory, may be downloaded from an Internet storage location, or may be resident in any suitable storage medium.


The 3D rendering engine 20 may be part of a graphics processor, as known in the art, that performs rendering using texture mapping based on primitives (e.g., vertex data). As known in the art, the 3D rendering engine includes various vertex information registers that store information associated with each vertex of a primitive. Such registers may include registers that store vertex coordinate information on a per vertex basis such as coordinate information, color information, texture information (e.g., coordinate on texture associated with the vertex). It will be recognized that the 3D rendering engine 20 is preferably implemented as a hardware rendering engine that uses primitive vertices, such as vertices of triangles or rectangles to represent portions of images. One such 3D rendering engine may be the type found in a RAGE PRO™ graphics processor manufactured by ATI Technologies Inc., Thornhill, Ontario, Canada. However, it will be recognized that any suitable rendering engine may be used.



FIG. 2 shows one method for rotating an image. In operation, the driver 12 receives the command to set a rotation mode such as rotation request 14, as shown in block 200. In this example, the rotation request 14 is a request to rotate the screen by 270° and to set the screen resolution to 600 by 800 as input via a GUI interface or other suitable manner.


The driver reports the requested resolution (in this example 600×800) to the operating system and application(s), but allocates display memory 24 with a different width and height. In this example, the driver 12 allocates an 800×600 resolution area of display memory as the rotated destination area. Additionally, the driver 12 allocates intermediate off-screen memory 28 in video memory of a graphics processor. The driver uses the off-screen memory 28 to copy the source images created in system memory. It will be recognized that the off-screen memory can be allocated to be less than the full screen size memory (display memory). In this case the driver will subdivide the source image into sections and copy each section into the intermediate off-screen memory piece by piece.


The method includes using the off-screen memory in a texture mapping operation. Accordingly, the 3D rendering engine uses the allocated off-screen memory 28 content as the texture.


As shown in block 202, the driver defines the source image as a texture by using the source image as a texture. Texture coordinates, which identify the content of the memory containing the source image are sent with the primitive information to the 3D rendering engine. As shown in block 204, in a preferred embodiment, the driver obtains the source image information in the off-screen memory and tessellates the source image into a plurality of triangle primitives by calculating vertices 50a-50c of the target area in the display memory. Tessellation may be carried out in any known manner. Target vertices 50a-50c are calculated depending on the rotation angle based on the received rotation command 14. For example, for a 270 degree rotation:


Xdest=Ysource


Ydest=Width-Xsource


Where Xdest is the destination x coordinate of a vertex in the display memory, Ydest is the destination y coordinate of the vertex in the display memory, Ysource is the y coordinate of the vertex in the offscreen memory, Xsource is the x coordinate of the vertex in the offscreen memory and Width is the width of the display memory.


Every vertex 54a-54c of the target is associated with the corresponding point 50a-50c of the source so that the driver provides texture coordinates for each vertex. As shown, the rectangular target can be tesselated into multiple primitives such as smaller rectangles or triangles subject to a specific implementation of the 3D engine. In such cases the rendering will be performed as a multi-pass operation.


The resulting primitive vertices are sent to the 3D engine in a format such as a conventional vertex information of primitives as understood by the 3D rendering engine. As shown in block 206, The 3D rendering engine performs a rotation by mapping the source image from the off-screen memory 28 to the rotated destination display area 24 based on the calculated vertices.


Stated another way, the application stores the source image as a bit map image, or the operating system stores the image as a bit map image. The driver 12 calculates the vertices of the rotated destination area and provides the texture coordinates for each calculated vertice and sends them to the 3D engine. The 3D rendering engine then maps the source image into rotated destination area using the bitmap as a texture. The 3D rendering engine stores the rotated image into the display memory from which it is displayed by a display engine, as known in the art.


Where the rotation angle is a different location angle other than 2700, a different instruction set 28a or 28b is executed such that each orientation has its own code. The above apparatus and methods treat the off-screen object as a texture and maps the texture from the off-screen memory into a destination surface which may be in the display surface memory on a vertex basis.



FIG. 3 shows in more detail, a method for rotating an image using a 3D rendering engine. As shown in block 300, the driver receives the rotation mode request 14 to change an image rotation angle. As shown in block 302, the driver allocates rotated display memory and intermediate off-screen memory based on the selected image orientation angle. The driver returns operation to the operating system as shown in block 304.


As shown in block 306, the driver receives the source image from the application. If this image resides in system memory, the driver (e.g., the host processor) copies it into offscreen video memory 28a s a bitmap, as shown in block 308. As shown in block 310, the method includes defining the source image as a texture and tessallating the source image to determine vertice primitives for a destination area to be used by the 3D rendering engine. As shown in block 312, the driver calculates the vertices for each resulting primitive for the destination coordinate system based on the angle of rotation. As shown in block 314, the method includes calculating, by the driver, the texture coordinates for each of the calculated primitive vertices, based on the angle of rotation and the source image. The driver (e.g., the host processor under control of the driver code) provides the resulting vertex information, including the per vertex texture coordinates to the 3D rendering engine by setting up the requisite 3D engine registers, including the vertex information registers. The 3D rendering engine then maps the texture to the rotated destination area for display by a CRTC or other suitable circuit, as shown in block 316.


The above process is triggered for example in response to the driver receiving a block transfer command to copy a rendered image into display memory. It should be understood that the implementation of other variations and modifications of the invention in its various aspects will be apparent to those of ordinary skill in the art, and that the invention is not limited by the specific embodiments described. It is therefore contemplated to cover by the present invention, any and all modifications, variations, or equivalents that fall within the spirit and scope of the basic underlying principles disclosed and claimed herein.

Claims
  • 1. A method for displaying the images of an application on a display, said method comprising: (a) defining a source image as a texture for at least one of said images of said application; and(b) mapping the source image as a texture into a rotated destination area.
  • 2. The method of claim 1 wherein said mapping is performed by a three dimensional (3D) rendering engine.
  • 3. The method of claim 2 wherein said mapping by said 3D rendering engine comprises determining the vertices for said rotated destination area.
  • 4. The method of claim 3 wherein said determining is responsive to an angle of rotation.
  • 5. The method of claim 1 wherein said application comprises a windows-based application.
  • 6. The method of claim 1 wherein said application comprises a game.
  • 7. The method of claim 1 wherein said defining is responsive to a rotation request.
  • 8. The method of claim 7 wherein said rotation request is received via a rotation detection sensor.
  • 9. The method of claim 7 wherein said rotation request is received via a user interface.
  • 10. The method of claim 7 comprising displaying a rotated image based on the mapped sourced image.
RELATED CO-PENDING APPLICATION

This application is a continuation of co-pending U.S. application Ser. No. 09/722,789 filed Jan. 30, 2001, entitled “Method and Apparatus for Rotating an Image on a Display”, having as inventors Andrzej S. Mamona et al., and owned by instant assignee and is incorporated herein by reference.