This invention concerns a method and a device for high rate interferential microscopic imaging of an object.
It is known that the amplitude division interferential systems have great practical importance. They measure a phase difference introduced between two waves. The Michelson interferometer is used, for instance, in the industry, to measure very small distances with great accuracy. Distances in the order of 0.1 μm may thus typically be measured. The phase modulation is a known technique (Creath [in Progress in Optics, E. Wolf, ed. Elsevier Science, New-York; 26 (1988) 349] and Schwider [in Progress in Optics, E. Wolf, ed. Elsevier Science, New-York; 28 (1990) 271]). There are two categories of phase modulation interferometers. They are distinguished according to whether the phase is modulated continuously (interferometry with phase integration) or discretely (interferometry with phase hopping).
In phase integration interferometry, the phase is varied continuously and the interference signal is integrated during this variation. This continuous phase variation is, generally, a linear variation. This is advantageously faster than that with phase hopping. However, it remains limited by possible drifts of the integration times and by mechanical inertia problems.
Besides, another device is known, based on one Michelson type interferometer exhibiting not linear modulation of the phase any longer, but sine wave modulation. It is obtained by causing the reference mirror to oscillate using a piezoelectric ceramic (Sasaki and al. [Appl. Opt.; 25 (1986) 3137] and [Appl. Opt.; 26 (1987) 1089]. The object to be analysed is placed on the other arm of the interferometer. This technique enables thus to obtain phase images of the object. However, this technique is not applicable to the Mirau and the Michelson microscopes where the reference mirror is not accessible. It has not been applied to the Linnik microscope.
A variation has also been suggested with the implementation of a photoelastic birefringence modulator for sine wave modulation of the phase and a stroboscopic lighting to transpose the modulation frequency to a frequency compatible with that of the camera (Beaurepaire and al. [Optics Lett.; 23 (1998) 244], Dubois and al. [Optics Lett.; 24 (1999) 309] and a multichannel analogue detection device (U.S. Pat. No. 2,664,048)). It requires, however, the use of polarized light and the light source must be modulated at high rate (several kHz).
The aim of this invention is therefore to provide a method and a device for interferential microscopic imaging, simple in its design and in its operating mode, implementing a two-wave interferometer and sine wave modulation of the phase.
To this end, the invention concerns an interferential microscopic imaging method of an object wherein:
According to the invention,
The invention concerns also an interferential microscopic imaging device of an object comprising:
According to the invention,
In different particular embodiments having each its particular advantages and compatible with numerous technically possible combinations:
The invention will be described more in detail with reference to the appended drawings wherein:
The method and device for interferential microscopic imaging of an object, according to the invention, may be applied quite generally to any two wave interferential microscope.
In the case of a Michelson interferometer (FIG. 3), this set of oscillating elements 16 comprises the lens 11, the reference mirror 12 and the beamsplitter 3. This assembly is called a Michelson lens. The set of oscillating elements may also be limited to the object to be analysed 9 (assembly 161).
In the case of a Mirau interferometer (FIG. 4), this set of oscillating elements 16 is composed of the Mirau lens. It is called a Mirau lens, the set of elements composed of the lens 11, of the reference mirror 12 and of the beamsplitter 3. The set of oscillating elements may also be limited to the object to be analysed 9 (assembly 161).
A phase modulation is therefore obtained by causing the set of elements 16 to oscillate in a sine wave fashion. The amplitude of this oscillation is adjustable. The interference signal thus modulated (periodically but not as a sine wave) is integrated continuously during fractions 1/n, n being an integer and greater than or equal to 2, of the period of modulation T by the multichannel detection system 15. The multichannel detector 15 operates at a frequency f′ so that f′=n f. The multichannel detection system 15 comprises an optical system 17 which focuses the beams on a camera CCD 18. The pixels of the camera CCD 18 detect thus, for a large number of points of the fields, the signal after interference. The camera CCD 18 is synchronized with the sine wave signal controlling the mechanical oscillation. The phase of this synchronisation may be adjusted in order to reduce the noise in the images of the object. Its value may be in the order of 1 rad. A computer 19 enables to record for instance, in a buffer memory, the data obtained during each fraction of period 1/n and to calculate, then, the image of the object. The production frequency of images depends on the operating speed of the camera 18. Nevertheless, the computer 19 must have the time to calculate the image out of a series of images stored in memory during the acquisition time of the next series.
One resorts to a light source exhibiting short coherence length to obtain tomographic images or to avoid the presence of spurious interferences. Such a source enables to localise fringes in a space window. The width of this window is in the order of a semi coherence length.
A quasi monochromatic source enables to visualize high three-dimensional heights, in the order of one coherence length. Such a quasi monochromatic source may be a white (halogen) source in front of which is placed an interferential filter.
The interference signal delivered by two-wave interferometers, at each point of the field, can be written as:
l=Ī+A cosφ
where Ī is the mean intensity, φ is the optical phase and A is the amplitude of the interference fringes. By causing a lens 11 and the reference mirror 12 (and the beamsplitter 3 for the Michelson and the Mirau microscopes) to oscillate as described previously, a sine wave phase modulation is introduced whereof the amplitude is ψ, the synchronisation phase is θ and the period is T=2π/ω. The intensity of the signal is then also time-modulated, periodically but not in a sine wave fashion:
l(t)=Ī+A cos[φ+ψsin(ωt+θ)].
In the device of
The signal l(t) is therefore integrated successively during quarters of the modulation period T. These four images are written mathematically:
There follows a serial development l(t) of first kind Bessel functions Jn and the images are then combined as follows:
Σs=−E1+E2+E3−E4=(4T/π)ΓsAsinφ
Σc=−E1+E2−E3+E4=(4T/π)ΓcAcosφ
where
Γs=Σ(−1)n[J2n+1(ψ)/(2n+1)]sin[(2n+1)θ]
Γc=Σ[J4n+2(ψ)/(2n+1)]sin[2(2n+1)θ]
This enables to access the phase φ which may be obtained according to the equation:
tanφ=(Γc/Γs)(Σs/Σc)
and the amplitude A given by:
A2=(ΓcΣs)2+(ΓsΣc)2
It can be seen therefore that the acquisition of four images thus enables to determine completely the amplitude and the phase of the luminous wave coming from the object. However, these relations depend further on the amplitude ψ and on the synchronisation phase θ of the sine wave phase modulation, by means of the parameters Γc and Γs. These parameters may be adjusted advantageously, so that the formulas, mentioned above, are simplified. For instance, the modulation amplitude ψ=2.45 rad and the synchronisation phase θ=0.98 rad enable such simplification, one obtains then:
tanφ=(Σs/Σc)=(E1−E2−E3+E4)/(E1−E2+E3−E4)
and
A2=(E1−E2−E3+E4)2+(E1−E2+E3−E4)2
This method and this device for interferential microscopic imaging of an object may advantageously be applied to the characterisation of thin layers and of interfaces, for controlling microelectronic components. They may also be used within the framework of high rate controls and inspections; in biology; when studying time-unstable objects (for example, in vivo studies, oscillating phenomena) or objects in unstable environments (for example, in the presence of vibrations or of drifts).
| Number | Date | Country | Kind |
|---|---|---|---|
| 00 14904 | Nov 2000 | FR | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/FR01/03589 | 11/15/2001 | WO | 00 | 5/19/2003 |
| Publishing Document | Publishing Date | Country | Kind |
|---|---|---|---|
| WO02/40937 | 5/23/2002 | WO | A |
| Number | Name | Date | Kind |
|---|---|---|---|
| 4818110 | Davidson | Apr 1989 | A |
| 5194918 | Kino et al. | Mar 1993 | A |
| 6775006 | Groot et al. | Aug 2004 | B2 |
| Number | Date | Country |
|---|---|---|
| 2 664 048 | Jan 1992 | FR |
| Number | Date | Country | |
|---|---|---|---|
| 20040061867 A1 | Apr 2004 | US |