Method for controlling temperature of heater included in aerosol generation device according to type of cigarette, and aerosol generation device for controlling temperature of heater according to type of cigarette

Information

  • Patent Grant
  • 11974611
  • Patent Number
    11,974,611
  • Date Filed
    Monday, May 21, 2018
    6 years ago
  • Date Issued
    Tuesday, May 7, 2024
    8 months ago
Abstract
Provided is a method of controlling a temperature of a heater included in an aerosol generation device according to a type of cigarette. The method includes receiving temperature profiles of different types of cigarette from a user terminal; sensing a cigarette coupled to the heater after receiving the temperature profiles; identifying a type of the sensed cigarette; selecting a temperature profile corresponding to the identified type from among the temperature profiles; and controlling power supplied from a battery to the heater according to the selected temperature profile.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a National Stage of International Application No. PCT/KR2018/005767, filed May 21, 2018, claiming priorities to Korean Patent Application No. 10-2017-0142578, filed Oct. 30, 2017, Korean Patent Application No. 10-2017-0146972, filed Nov. 6, 2017, Korean Patent Application No. 10-2017-0156729, filed Nov. 22, 2017 and Korean Patent Application No. 10-2018-0052133, filed May 4, 2018.


TECHNICAL FIELD

The present disclosure relates to a method of controlling the temperature of a heater included in an aerosol generation device and an aerosol generation device for controlling the temperature of a heater according to the type of cigarette, and more particularly, to a method of heating a heater based on temperature profiles that are different according to the type of cigarette, which is inserted into an inner space of an aerosol generation device and contacts the heater, and an aerosol generation device for realizing the method.


BACKGROUND ART

Recently, there has been an increasing demand for an alternative method of overcoming the disadvantages of normal cigarettes. For example, instead of a method of generating an aerosol by burning a cigarette, a method of generating an aerosol by heating an aerosol generating material of a cigarette has been increasingly demanded. Therefore, there has been active research into a heating-type cigarette or a heating-type aerosol generation device.


DESCRIPTION OF EXEMPLARY EMBODIMENTS
Technical Problem

Provided are a method of identifying the type of cigarette inserted into an inner space of an aerosol generation device and providing an optimal heating temperature to the identified cigarette and an aerosol generation device for realizing the method.


Solution to Problem

According to an aspect of the present disclosure, a method includes a profile receiving step of receiving temperature profiles according to the type of cigarette from a user terminal; a cigarette sensing step of sensing a cigarette coupled to the heater after receiving the temperature profiles; a profile selecting step of identifying the type of the sensed cigarette and selecting a temperature profile corresponding to the identified type from the temperature profiles; and a power control step of controlling power of a battery according to the selected temperature profile, the power of the battery being supplied to the heater.


According to another aspect of the present disclosure, a method of controlling a temperature of a heater included in an aerosol generation device according to a type of cigarette through communication with a user terminal includes a cigarette sensing step of sensing coupling of a cigarette to the heater; a cigarette identifying step of identifying type information of the cigarette; a profile acquiring step of acquiring a temperature profile corresponding to the type information of the cigarette; and a power control step of controlling the temperature of the heater according to the acquired temperature profile.


According to still another aspect of the present disclosure, an aerosol generation device, which generates an aerosol inhalable by a user when a cigarette is coupled to a heater and power is supplied to the heater, includes a profile receiver configured to receive temperature profiles according to the type of cigarette from a user terminal; a cigarette sensor configured to sense the cigarette coupled to the heater after receiving the temperature profiles; a profile selector configured to identify a type of the cigarette and select a temperature profile corresponding to the type of the cigarette from the temperature profiles; and a power controller configured to control power of a battery according to the temperature profile, the power of the battery being supplied to the heater.


According to a further aspect of the present disclosure, an aerosol generation device, which generates an aerosol inhalable by a user when a cigarette is coupled to a heater and power is supplied to the heater, includes a cigarette sensor configured to sense coupling of the cigarette to the heater; a cigarette identification unit configured to identify type information of the cigarette; a profile acquisition unit configured to acquire a temperature profile according to the type information of the cigarette; and a power controller configured to control the temperature of the heater according to the temperature profile.


An exemplary embodiment of the present disclosure may provide a recording medium having stored therein a program for performing the method.


Advantageous Effects of Disclosure

According to the present disclosure, a user may inhale the aerosol generated by heating a cigarette to an optimal temperature that is preset according to the type of cigarette, thereby having a satisfactory smoking experience.


In addition, a user may manually set a temperature profile to the user's preference in addition to the preset temperature profiles.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a diagram schematically illustrating an example of an entire system according to the present disclosure.



FIG. 2 is a diagram of an example in which a cigarette is inserted into an aerosol generation device.



FIG. 3 is a diagram of an example of a cigarette.



FIG. 4 is a diagram of another example in which a cigarette is inserted into an aerosol generation device.



FIG. 5 is a diagram of a further example in which a cigarette is inserted into an aerosol generation device.



FIG. 6 is a block diagram schematically illustrating an example of an aerosol generation device according to the present disclosure.



FIG. 7 is a block diagram of an example of a controller included in an aerosol generation device, according to the present disclosure.



FIG. 8 is a block diagram of another example of a controller included in an aerosol generation device, according to the present disclosure.



FIG. 9 is a flowchart of an example of a method of controlling the temperature of a heater of an aerosol generation device according to the type of cigarette, according to the present disclosure.



FIG. 10 is a flowchart of another example of a method of controlling the temperature of a heater of an aerosol generation device according to the type of cigarette, according to the present disclosure.



FIG. 11 is a flowchart of a further example of a method of controlling the temperature of a heater of an aerosol generation device according to the type of cigarette, according to the present disclosure.





BEST MODE

According to an aspect of the present disclosure, a method of controlling a temperature of a heater included in an aerosol generation device according to a type of cigarette includes receiving temperature profiles of different types of cigarette from a user terminal; sensing a cigarette coupled to the heater after receiving the temperature profiles; identifying a type of the sensed cigarette; selecting a temperature profile corresponding to the identified type from among the temperature profiles; and controlling power supplied from a battery to the heater according to the selected temperature profile.


The temperature profiles of different types of cigarette may be received by the user terminal from a cigarette database for storing the temperature profiles according to the type of cigarette.


The temperature profiles of different types of cigarette received from the user terminal may be generated based on information input through an input device of the user terminal.


The information may be input by recognizing one of quick reference (QR) code, bar code, and case code that are attached to a cigarette case.


According to another aspect of the present disclosure, a method of controlling a temperature of a heater included in an aerosol generation device according to a type of cigarette includes sensing coupling of a cigarette to the heater; identifying a type of the cigarette; acquiring a temperature profile corresponding to the type of the cigarette; and controlling the temperature of the heater according to the acquired temperature profile.


The acquiring may include acquiring temperature profiles of different types of cigarette from a storage device for storing the temperature profiles of different types of cigarette.


The acquiring may include acquiring temperature profiles of different types of cigarette from information input by a user.


The acquiring may include transmitting information about the type of the cigarette to a user terminal and receiving the temperature profile corresponding to the information from the user terminal.


The identifying may include identifying the type of the cigarette using a radio frequency identification (RFID) reader sensing an RFID tag attached to the cigarette, and the acquiring includes transmitting information about the type of the cigarette identified using the RFID reader to a user terminal and receiving the temperature profile corresponding to the information from the user terminal.


The sensing may include sensing the coupling of the cigarette to the heater according to a result of recognizing one of QR code, bar code, and an optical sticker that are attached to the cigarette.


The selecting may include identifying the type of the cigarette based on the number of bumps formed on a coupling portion of the cigarette coupled to the heater.


According to still another aspect of the present disclosure, a method of providing a temperature profile of a heater to an aerosol generation device includes receiving information about a type of a cigarette coupled to the heater from the aerosol generation device; searching a cigarette database for a temperature profile corresponding to the type of the cigarette based on the received information; and transmitting the temperature profile found in the cigarette database to the aerosol generation device.


The cigarette database may be included in a user terminal.


The cigarette database may be included in a server connected to a user terminal through a communication network.


According to even another aspect of the present disclosure, a method of controlling a temperature of a heater of an aerosol generation device includes displaying, performed by a user terminal, a plurality of temperature profiles of different types of cigarette through a display unit included in the user terminal; transmitting, performed by the user terminal, at least one temperature profile to the aerosol generation device when the at least one temperature profile is selected based on information received through an input device included in the user terminal; and controlling, performed by the aerosol generation device, the temperature of the heater according to the at least one temperature profile when a cigarette is coupled to the heater of the aerosol generation device.


According to yet another aspect of the present disclosure, a method of controlling a temperature of a heater of an aerosol generation device includes displaying, performed by a user terminal, a plurality of types of cigarette through a display unit included in the user terminal; searching, performed by the user terminal, for a temperature profile corresponding to a type of cigarette determined based on information input through an input device included in the user terminal, in a cigarette database that stores temperature profiles of different types of cigarette; and receiving, performed by the aerosol generation device, the temperature profile and controlling, performed by the aerosol generation device, the temperature of the heater according to the temperature profile when a cigarette is coupled to the heater of the aerosol generation device.


According to a further aspect of the present disclosure, a method of controlling a temperature of a heater of an aerosol generation device includes displaying a plurality of temperature profiles through a display unit included in a user terminal; transmitting at least one temperature profile to the aerosol generation device when the at least one temperature profile is selected based on information input through an input device included in the user terminal; and receiving, performed by the aerosol generation device, the at least one temperature profile and controlling, performed by the aerosol generation device, the temperature of the heater according to the at least one temperature profile when a cigarette is coupled to the heater of the aerosol generation device.


According to a still further aspect of the present disclosure, an aerosol generation device includes a profile receiver configured to receive temperature profiles of different types of cigarette from a user terminal; a cigarette sensor configured to sense a cigarette coupled to a heater after receiving the temperature profiles; a profile selector configured to identify a type of the sensed cigarette and select a temperature profile corresponding to the type of the cigarette from among the temperature profiles; and a power controller configured to control power supplied by a battery to the heater according to the selected temperature profile.


According to an even further aspect of the present disclosure, an aerosol generation device includes a cigarette sensor configured to sense coupling of a cigarette to a heater; a cigarette identification unit configured to identify a type of the sensed cigarette; a profile acquisition unit configured to acquire a temperature profile corresponding to the identified type of the cigarette; and a power controller configured to control a temperature of the heater according to the acquired temperature profile.


An exemplary embodiment of the present disclosure may provide a recording medium having stored therein a program for performing the method.


MODE OF DISCLOSURE

General terms that are now widely used are selected in the description of exemplary embodiments, as far as possible, taking into account functions in the present disclosure, but the terms used herein may be changed according to the intention of one of skill in the art, precedents, the advent of new technology, or the like. There are terms discretionally selected by an applicant on particular occasions. These terms will be explained in detail in relevant description. Therefore, terms used herein are not just names but should be defined based on the meaning of the terms and the whole content of the present disclosure.


In the specification, when a portion “comprises” or “includes” an element, it means that the portion may further comprise or include other elements and does not preclude the presence other elements unless stated otherwise. In addition, terminology such as “part (or unit)” and “module” may indicate a unit which processes at least one function or operation and may be implemented by hardware, software, or a combination thereof.


Exemplary embodiments of the present disclosure will be described in detail hereinafter with reference to the accompanying drawings so as to be easily implemented by one of ordinary skill in the art to which the present disclosure belongs. The present disclosure may, however, be embodied in many different forms and is not limited to the exemplary embodiments set forth herein.


Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the drawings.



FIG. 1 is a diagram schematically illustrating an example of an entire system according to the present disclosure.


Referring to FIG. 1, it may be seen that a system 1, which controls the temperature of a heater included in an aerosol generation device according to the type of cigarette, includes an aerosol generation device 10, a user terminal 20, and a cigarette database 30, which exchange information one another through various communication networks.


The aerosol generation device 10 includes a heater, which is heated by receiving electric power from a power source such as a battery, and a cigarette, which generates an aerosol inhalable by a user. The aerosol generation device 10 includes a communication interface for communication with the user terminal 20 through a local area network 40. Functions of the aerosol generation device 10 will be described in detail with reference to FIGS. 2 and 3.


The user terminal 20 refers to an electronic device that includes a display unit displaying a screen and an input device receiving data from a user. The input device of the user terminal 20 may include at least one selected from a keyboard, a mouse, a track ball, a microphone, a mechanical button, and a touch panel.


Although the user terminal 20 is illustrated as a smart phone in FIG. 1, the user terminal 20 is not limited to the smart phone and may include any portable terminal such as a tablet personal computer (PC) or a netbook.


The cigarette database 30 is a server that stores many temperature profiles with respect to a cigarette, which generates aerosol when it is inserted into the aerosol generation device 10 and contacts a heater that has heated up. The cigarette database 30 communicates with the user terminal 20 through a communication network. The cigarette database 30 receives a request from the user terminal 20 and transmits a temperature profile to the user terminal 20 according to the type of cigarette.


The local area network 40 connects the aerosol generation device 10 to the user terminal 20. Examples of a local area network protocol used in exemplary embodiments include near field communication (NFC) having a working distance of about 10 cm, Bluetooth having a working distance of about 10 m, and Wi-Fi Direct having a working distance of about several tens of meters.


Local area communication generically refers to processes in which the aerosol generation device 10 and the user terminal 20 set a session with unique identification code and exchange various kinds of information according to the session. In the state where one of the local area communication functions of the aerosol generation device 10 and a corresponding local area communication function of the user terminal 20 are activated, when the user terminal 20 accepts a local area communication setting request of the aerosol generation device 10, communication between the aerosol generation device 10 and the user terminal 20 is made possible without involvement of a separate service provider's server. According to exemplary embodiments, the session between the aerosol generation device 10 and the user terminal 20 may be set in the reverse order of what is described above.


A communication network 50 may connect the user terminal 20 to the cigarette database 30 and may include various wireless communication networks such as a data network, a mobile communication network, and the Internet.



FIG. 2 is a diagram showing example in which a cigarette is inserted into an aerosol generating device.


Referring to FIG. 2, the aerosol generating device 10 may include a battery 120, a controller 110, and a heater 130. Also, the cigarette 200 may be inserted into an inner space of the aerosol generating device 10



FIG. 2 illustrate components of the aerosol generating device 10, which are related to the present exemplary embodiment. Therefore, it will be understood by one of ordinary skill in the art related to the present exemplary embodiment that other general-purpose components may be further included in the aerosol generating device 10, in addition to the components illustrated in FIG. 2.



FIG. 2 illustrates that the battery 120, the controller 110, and the heater 1300 are arranged in series. In other words, according to the design of the aerosol generating device 10, the battery 120, the controller 110 and the heater 130 may be differently arranged.


When the cigarette 200 is inserted into the aerosol generating device 10, the aerosol generating device 10 may operate the heater 130 to generate an aerosol from the cigarette 200. The generated aerosol is delivered to a user after passing through the filter of the cigarette 200.


As necessary, even when the cigarette 200 is not inserted into the aerosol generating device 10, the aerosol generating device 10 may heat the heater 130.


The battery 120 may supply power to be used for the aerosol generating device 10 to operate. For example, the battery 120 may supply power to heat the heater 130 or the vaporizer 180, and may supply power for operating the controller 110. Also, the battery 120 may supply power for operations of a display, a sensor, a motor, etc. mounted in the aerosol generating device 10.


The controller 110 may generally control operations of the aerosol generating device 10. In detail, the controller 110 may control not only operations of the battery 120 and the heater 130 but also operations of other components included in the aerosol generating device 10. Also, the controller 110 may check a state of each of the components of the aerosol generating device 10 to determine whether or not the aerosol generating device 10 is in an operable state.


The controller 110 may include at least one processor. A processor can be implemented as an array of a plurality of logic gates or can be implemented as a combination of a general-purpose microprocessor and a memory in which a program executable in the microprocessor is stored. It will be understood by one of ordinary skill in the art that the processor can be implemented in other forms of hardware.


The heater 130 may be heated by the power supplied from the battery 120. For example, when the cigarette 200 is inserted into the aerosol generating device 10, the heater 130 may be located outside the cigarette 200. Thus, the heated heater 130 may increase a temperature of an aerosol generating material in the cigarette 200.


The heater 130 may include an electro-resistive heater. For example, the heater 130 may include an electrically conductive track, and the heater 130 may be heated when currents flow through the electrically conductive track. However, the heater 130 is not limited to the example described above and may include any other heather that is capable of being heated to a desired temperature. Here, the desired temperature may be pre-set in the aerosol generating device 10 or may be set manually by a user.


As another example, the heater 130 may include an induction heater. In detail, the heater 130 may include an electrically conductive coil for heating a cigarette in an induction heating method, and the cigarette may include a susceptor which may be heated by the induction heater.



FIG. 2 shows that the heater 130 is arranged to be inserted into the cigarette 200, but the arrangement of the heater 130 is not limited thereto. For example, the heater 130 may include a tube-type heating element, a plate-type heating element, a needle-type heating element, or a rod-type heating element, and may heat the inside or the outside of the cigarette 200, according to the shape of the heating element.


Also, the aerosol generating device 10 may include a plurality of heaters 130. Here, the plurality of heaters 130 may be inserted into the cigarette 200 or may be arranged outside the cigarette 200. Also, some of the plurality of heaters 130 may be inserted into the cigarette 200 and the others may be arranged outside the cigarette 200. In addition, the shape of the heater 130 is not limited to the shapes illustrated in FIG. 2 and the heater 130 may be manufactured in various shapes.


The aerosol generating device 10 may further include general-purpose components in addition to the battery 120, the controller 110 and the heater 130. For example, the aerosol generating device 10 may include a display capable of outputting visual information and/or a motor for outputting haptic information. Also, the aerosol generating device 10 may include at least one sensor (a puff detecting sensor, a temperature detecting sensor, a cigarette insertion detecting sensor, etc.). Also, the aerosol generating device 10 may have a structure that allows external air may be introduced or internal air may be discharged, while the cigarette 200 is inserted into the aerosol generating device 10.


Although not illustrated in FIG. 2, the aerosol generating device 10 and an additional cradle may form a system. For example, the cradle may be used to charge the battery 120 of the aerosol generating device 10. Alternatively, the heater 130 may be heated when the cradle and the aerosol generating device 10 are coupled to each other.


The cigarette 200 may be similar to a general combustive cigarette. For example, the cigarette 200 may be divided into a first portion 210 including an aerosol generating material and a second portion including a filter, etc. Alternatively, the second portion of the cigarette 200 may also include an aerosol generating material. For example, an aerosol generating material made in the form of granules or capsules may be inserted into the second portion.


The entire first portion may be inserted into the aerosol generating device 10, and the second portion may be exposed to the outside. Alternatively, the first portion may be partially inserted into the aerosol generating device 10. Otherwise, the entire first portion and a part of the second portion may be inserted into the aerosol generating device 10. The user may puff aerosol while holding the second portion by the mouth of the user. In this case, the aerosol is generated by the external air passing through the first portion, and the generated aerosol passes through the second portion and is delivered to the user's mouth.


For example, the external air may flow into at least one air passage formed in the aerosol generating device 10. For example, opening and closing of the air passage and/or a size of the air passage may be adjusted by the user. Accordingly, the amount of smoke and a smoking impression may be adjusted by the user. As another example, the external air may flow into the cigarette 200 through at least one hole formed in a surface of the cigarette 200.


Hereinafter, an example of the cigarette 200 will be described with reference to FIG. 3.



FIG. 3 illustrates an example of a cigarette.


Referring to FIG. 3, the cigarette 200 may include a tobacco rod 210 and a filter rod 220. The first portion 210 described above with reference to FIG. 2 may include the tobacco rod, and the second portion may include the filter rod 220.



FIG. 3 illustrates that the filter rod 220 includes a single segment. However, the filter rod 220 is not limited thereto. In other words, the filter rod 220 may include a plurality of segments. For example, the filter rod 220 may include a first segment configured to cool aerosol and a second segment configured to filter a certain component included in the aerosol. Also, as necessary, the filter rod 220 may further include at least one segment configured to perform other functions.


The cigarette 200 may be packaged using at least one wrapper 240. The wrapper 240 may have at least one hole through which external air may be introduced or internal air may be discharged. For example, the cigarette 200 may be packaged using one wrapper 240. As another example, the cigarette 200 may be doubly packaged using at least two wrappers 240. For example, the tobacco rod 210 may be packaged using a first wrapper, and the filter rod 220 may be packaged using a second wrapper. Also, the tobacco rod 210 and the filter rod 220, which are respectively packaged using separate wrappers, may be coupled to each other, and the entire cigarette 200 may be packaged using a third wrapper. When each of the tobacco rod 210 and the filter rod 220 includes a plurality of segments, each segment may be packaged using a separate wrapper. Also, the entire cigarette 200 including the plurality of segments, which are respectively packaged using the separate wrappers and which are coupled to each other, may be re-packaged using another wrapper.


The tobacco rod 210 may include an aerosol generating material. For example, the aerosol generating material may include at least one of glycerin, propylene glycol, ethylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and oleyl alcohol, but it is not limited thereto. Also, the tobacco rod 210 may include other additives, such as flavors, a wetting agent, and/or organic acid. Also, the tobacco rod 210 may include a flavored liquid, such as menthol or a moisturizer, which is injected to the tobacco rod 210.


The tobacco rod 210 may be manufactured in various forms. For example, the tobacco rod 210 may be formed as a sheet or a strand. Also, the tobacco rod 210 may be formed as a pipe tobacco, which is formed of tiny bits cut from a tobacco sheet. Also, the tobacco rod 210 may be surrounded by a heat conductive material. For example, the heat-conducting material may be, but is not limited to, a metal foil such as aluminum foil. For example, the heat conductive material surrounding the tobacco rod 210 may uniformly distribute heat transmitted to the tobacco rod 210, and thus, the heat conductivity applied to the tobacco rod may be increased and taste of the tobacco may be improved. Also, the heat conductive material surrounding the tobacco rod 210 may function as a susceptor heated by the induction heater. Here, although not illustrated in the drawings, the tobacco rod 210 may further include an additional susceptor, in addition to the heat conductive material surrounding the tobacco rod 210.


The filter rod 220 may include a cellulose acetate filter. Shapes of the filter rod 220 are not limited. For example, the filter rod 220 may include a cylinder-type rod or a tube-type rod having a hollow inside. Also, the filter rod 220 may include a recess-type rod. When the filter rod 220 includes a plurality of segments, at least one of the plurality of segments may have a different shape.


The filter rod 220 may be formed to generate flavors. For example, a flavoring liquid may be injected onto the filter rod 220, or an additional fiber coated with a flavoring liquid may be inserted into the filter rod 220.


Also, the filter rod 220 may include at least one capsule 230. Here, the capsule 230 may generate a flavor or an aerosol. For example, the capsule 230 may have a configuration in which a liquid containing a flavoring material is wrapped with a film. For example, the capsule 230 may have a spherical or cylindrical shape, but is not limited thereto.


When the filter rod 220 includes a segment configured to cool the aerosol, the cooling segment may include a polymer material or a biodegradable polymer material. For example, the cooling segment may include pure polylactic acid alone, but the material for forming the cooling segment is not limited thereto. In some exemplary embodiments, the cooling segment may include a cellulose acetate filter having a plurality of holes. However, the cooling segment is not limited to the above-described example and any other cooling segment that is capable of cooling the aerosol may be used.



FIG. 4 illustrates that a cigarette is inserted into an aerosol generating device, according to an exemplary embodiment.



FIG. 5 illustrates that a cigarette is inserted into an aerosol generating device, according to another exemplary embodiment.



FIG. 4 illustrates that the battery 120, the controller 110, the vaporizer 180, and the heater 130 are arranged in series, while FIG. 5 illustrates that the vaporizer 180 and the heater 130 are arranged in parallel. However, the internal structure of the aerosol generating device 10 is not limited to the structures illustrated in FIGS. 4 and 5. In other words, according to the design of the aerosol generating device 10, the battery 120, the controller 110, the heater 130, and the vaporizer 180 may be differently arranged.


When the cigarette 200 is inserted into the aerosol generating device 10, the aerosol generating device 10 may operate the heater 130 and/or the vaporizer 180, thereby generating aerosol from the cigarette 200 and/or the vaporizer 180. The aerosol generated by the heater 130 and/or the vaporizer 180 is delivered to a user by passing through the cigarette 200.


Also, the aerosol generating device 10 may include a plurality of heaters 130. Here, the plurality of heaters 130 may be inserted into the cigarette 200 or may be arranged outside the cigarette 200. Also, some of the plurality of heaters 130 may be inserted into the cigarette 200 and the others may be arranged outside the cigarette 200. In addition, the shape of the heater 130 is not limited to the shapes illustrated in FIGS. 4 and 5 and the heater 130 may have various shapes.


The vaporizer 180 may generate aerosol by heating a liquid composition and the generated aerosol may pass through the cigarette 200 to be delivered to a user. In other words, the aerosol generated via the vaporizer 180 may move along an air flow passage of the aerosol generating device 10 and the air flow passage may be configured such that the aerosol generated via the vaporizer 180 passes through the cigarette 200 to be delivered to the user.


For example, the vaporizer 180 may include a liquid storage, a liquid delivery element, and a heating element, but it is not limited thereto. For example, the liquid storage, the liquid delivery element, and the heating element may be included in the aerosol generating device 10 as independent modules.


The liquid storage may store a liquid composition. For example, the liquid composition may be a liquid including a tobacco-containing material having a volatile tobacco flavor component, or a liquid including a non-tobacco material. The liquid storage may be detachable from the vaporizer 180 or may be formed integrally with the vaporizer 180.


For example, the liquid composition may include water, a solvent, ethanol, plant extract, spices, flavorings, or a vitamin mixture. The spices may include menthol, peppermint, spearmint oil, and various fruit-flavored ingredients, but are not limited thereto. The flavorings may include ingredients capable of providing various flavors or tastes to a user. Vitamin mixtures may be a mixture of at least one of vitamin A, vitamin B, vitamin C, and vitamin E, but are not limited thereto. Also, the liquid composition may include an aerosol forming substance, such as glycerin and propylene glycol.


The liquid delivery element may deliver the liquid composition of the liquid storage to the heating element. For example, the liquid delivery element may be a wick such as cotton fiber, ceramic fiber, glass fiber, or porous ceramic, but is not limited thereto.


The heating element is an element for heating the liquid composition delivered by the liquid delivery element. For example, the heating element may be a metal heating wire, a metal hot plate, a ceramic heater, or the like, but is not limited thereto. In addition, the heating element may include a conductive filament such as nichrome wire and may be wound around the liquid delivery element. The heating element may be heated by a current and may transfer heat to the liquid composition in contact with the heating element, thereby heating the liquid composition. As a result, aerosol may be generated.


For example, the vaporizer 180 may be referred to as a cartomizer or an atomizer, but it is not limited thereto.



FIG. 6 is a block diagram schematically illustrating an aerosol generation device according to an exemplary embodiment.


Referring to FIG. 6, the aerosol generation device 10 includes a controller 110, a battery 120, a heater 130, a pulse width modulator processing unit 140, a display unit 150, a motor 160, and a storage device 170.


The controller 110 controls the battery 120, the heater 130, the pulse width modulator processing unit 140, the display unit 150, the motor 160, and the storage device 170, which are included in the aerosol generation device 10. The controller 110 may include an input receiver (not shown) for receiving a user's button or touch input, and a communicator (not shown) for communicating with an external communication device such as a user terminal, which will be described with reference to FIGS. 7 and 8.


The battery 120 supplies power to the heater 130. The level of power supplied to the heater 130 may be controlled by the controller 110.


When a current is supplied to the heater 130, the heater 130 heats up due to specific resistance. When a cigarette contacts (or is coupled to) the heater 130 that is heated, the aerosol may be generated.


The pulse width modulator processing unit 140 enables the controller 110 to control the power supplied to the heater 130 by transmitting a pulse width modulation (PWM) signal to the heater 130.


The display unit 150 displays to allow a user to select the type of cigarette inserted into an inner space of the aerosol generation device 10 and/or a temperature profile (a temperature control profile) according to the type of cigarette.


The motor 160 is driven by the controller 110 and allows a user to recognize that the aerosol generation device 10 is ready for use.


The storage device 170 stores temperature profiles. The controller 110 fittingly controls the power supplied to the heater 130 based on the temperature profiles to provide various tastes to a user of the aerosol generation device 10. The controller 110 reads at least one temperature profile from the storage device 170 and controls the power supplied to the heater 130 according to the temperature profile. According to the power supplied to the heater 130, the aerosol generated by heating the heater 130 may have different tastes. For example, when a user enjoys smoking using the aerosol generation device 10, the user may feel a soft smoking sensation or a full smoking sensation according to a temperature profile.



FIG. 7 is a block diagram of an example of a controller included in an aerosol generation device, according to the present disclosure.


Referring to FIG. 7, the controller 110 of an aerosol generation device according to an exemplary embodiment may include a profile receiver 111, a cigarette sensor 112, a profile selector 113, and a power controller 114. The controller 110 of FIG. 7 is an example of the controller 110 in FIG. 6. Repetitive description in view of those provided above with reference to FIG. 6 will be omitted.


The profile receiver 111 receives temperature profiles for different types of cigarette from a user terminal. The temperature profiles assigns a different temperature profile to each type of cigarette. The controller 110 may control power supplied to a heater based on the temperature profiles according to the type of cigarette.


For example, when a temperature profile of a cigarette having identification code A is X ° C., the controller 110 controls the temperature of a heater to be X ° C. when cigarette A is inserted into the inner space of the aerosol generation device. Since the temperature profile is set for each type of cigarette, the temperature profile of a cigarette having identification code B may be not X ° C. but Y ° C. Characters A, B, X, and Y are just used for description, and random characters or numerals may be used according to exemplary embodiments.


Even the same type of cigarettes may provide aerosol having different tastes according to the temperature of a heater. Thus, the temperature profiles according to the type of cigarette include temperatures that are experimentally acquired as temperatures giving the best taste to an aerosol of each type of cigarette and may include not only a fixed temperature value but also a variable value changing over time.


In an exemplary embodiment, a user terminal may receive the temperature profiles according to the type of cigarette from a cigarette database. Referring to FIG. 1, the user terminal 20 may communicate various kinds of information with the cigarette database 30 through the communication network 50 and may receive, from the cigarette database 30, a temperature profile of a cigarette inserted into the aerosol generation device 10.


In another exemplary embodiment, the temperature profiles according to the type of cigarette may be generated based on information input through an input device of a user terminal. According to the present optional exemplary embodiment, a user may directly select a temperature profile for a certain cigarette through the input device, such as a soft button, a hard button, or a touch panel, of the user terminal, and an aerosol generation device may generate aerosol according to the temperature profile that has been directly set in this way. The user may directly set a temperature profile most fitting for him or her through the user terminal.


In another exemplary embodiment, a user may enable a user terminal to acquire the temperature profiles according to the type of cigarette by inputting quick reference (QR) code, bar code, or case code, which is attached to a cigarette case, to an input device of the user terminal. When the code attached to the cigarette case is recognized through a smart application installed in the user terminal, the type of cigarette may be identified, and the user terminal may acquire the temperature profiles according to the type of cigarette, which is included in the smart application. In addition, the user terminal may access a cigarette database based on the recognized code and acquire the temperature profiles according to the type of cigarette. In this process, the temperature profiles according to the type of cigarette are transmitted from the user terminal to the profile receiver 111.


The cigarette sensor 112 receives the temperature profile and then senses a cigarette coupled to a heater. Here, the coupling between the heater and the cigarette includes a caser where the distance between the heater and the cigarette is less than a predetermined distance so that identification code on the cigarette may be satisfactorily recognized by the aerosol generation device, as well as a case where the cigarette is in physical contact with the heater.


For example, the cigarette sensor 112 may sense that a cigarette has been coupled to the heater according to a result of recognizing QR code, bar code, or an optical sticker, which is attached to the cigarette.


In another example, the cigarette sensor 112 may identify the type of cigarette based on the number of bumps in a coupling portion of the cigarette coupled to the heater. The cigarette sensor 112 may sense a cigarette as cigarette A when two bumps are recognized and as cigarette B when three bumps are recognized.


In a further example, the cigarette sensor 112 may operate as a radio frequency identification (RFID) reader so as to recognize an RFID tag attached to a cigarette and sense the coupling of the cigarette to the heater.


The profile selector 113 identifies the type of cigarette sensed by the cigarette sensor 112 and selects a temperature profile corresponding to the identified type of cigarette from temperature profiles. The profile selector 113 selects only the temperature profile corresponding to the cigarette sensed by the cigarette sensor 112 from among the temperature profiles received from a user terminal.


The power controller 114 controls the power of a battery, which is supplied to a heater, according to the temperature profile selected by the profile selector 113. In detail, as described above with reference to FIG. 6, the power controller 114 controls a pulse width modulator processing unit based on the temperature profile such that a PWM signal is appropriately provided to the heater.



FIG. 8 is a block diagram of another example of a controller included in an aerosol generation device, according to the present disclosure.


Referring to FIG. 8, the controller 110 of an aerosol generation device according to another exemplary embodiment may include the cigarette sensor 112, a cigarette identification unit 115, a profile acquisition unit 116, and the power controller 114. The cigarette sensor 112 and the power controller 114 in FIG. 8 are the same as those in FIG. 7. Although not shown, the controller 110 of FIG. 8 may include the profile receiver 111 and the profile selector 113, which have been described with reference to FIG. 7.


The cigarette sensor 112 senses the coupling of a cigarette to a heater. The method by which the cigarette sensor 112 senses the coupling of a cigarette to the heater has been described with reference to FIG. 7.


The cigarette identification unit 115 identifies a type of the cigarette sensed by the cigarette sensor 112. When the cigarette sensor 112 senses that a cigarette contacts the heater and is ready to generate aerosol, the cigarette identification unit 115 identifies the type of the cigarette contacting the heater.


The profile acquisition unit 116 acquires a temperature profile according to the type of the cigarette.


For example, the profile acquisition unit 116 may acquire the temperature profile corresponding to the type of the cigarette from a storage device that stores temperature profiles of different types of cigarette. Here, the storage device that stores the temperature profiles of different types of cigarette may be a memory included in the aerosol generation device, such as the storage device 170 in FIG. 6.


In another example, the profile acquisition unit 116 may acquire the temperature profile based on information input by a user. When the user selects a certain temperature profile through an input device of a user terminal, the selected temperature profile may be transmitted from the user terminal to the profile acquisition unit 116. Alternatively, a user may generate a temperature profile by manually inputting data through an input device of the aerosol generation device.


In another example, the profile acquisition unit 116 may transmit information about the type of the cigarette, which has been identified by the cigarette identification unit 115, to a user terminal and may receive a temperature profile corresponding to the type of the cigarette from the user terminal.


The power controller 114 controls the temperature of the heater according to the temperature profile acquired by the profile acquisition unit 116. A method by which the power controller 114 in FIG. 8 controls the temperature of the heater is the same as that described with reference to FIG. 7.


In the exemplary embodiment described with reference to FIG. 7, the temperature profiles of different types of cigarette are received first and, when the coupling of a cigarette to the heater is sensed, a temperature profile corresponding to the type of the cigarette is selected from the received temperature profiles and the temperature of the heater is controlled. Differently, in the exemplary embodiment described with reference to FIG. 8, the coupling of a cigarette to the heater is sensed and type information of the cigarette is identified, and then a temperature profile is acquired according to the type information of the cigarette.


In an exemplary embodiment, the temperature of a heater of the aerosol generation device 10 may be controlled by a single system including the aerosol generation device 10 and the user terminal 20 in FIG. 1. Firstly, the user terminal 20 displays a plurality of temperature profiles of different types of cigarette through a display unit included therein. A user selects at least one of the temperature profiles through an input device included in the user terminal 20. The selected temperature profile is transmitted to the aerosol generation device 10 and is stored in a storage device of the aerosol generation device 10. Thereafter, when a cigarette is coupled to the heater of the aerosol generation device 10, the aerosol generation device 10 controls the temperature of the heater based on the temperature profile stored in the storage device. According to the present exemplary embodiment, a user selects, according to his or her preference, at least one temperature profile from a plurality of temperature profiles displayed on the user terminal 20, and when a selected cigarette is inserted into the aerosol generation device 10, the temperature of the heater is controlled based on a temperature profile corresponding to the cigarette.


In another exemplary embodiment, the temperature of a heater of the aerosol generation device 10 in FIG. 1 may be controlled according to the type of cigarette, which is selected by a user. Firstly, the user terminal 20 displays a plurality of types of cigarette through a display unit included therein. A user may select a type of cigarette through an input device included in the user terminal 20. When the type of cigarette is determined by the user's input, the user terminal 20 searches for a temperature profile corresponding to the determined type of cigarette in a cigarette database that stores temperature profiles of different types of cigarette, and transmits the temperature profile to the aerosol generation device 10 through the local area network 40. The aerosol generation device 10 receives the temperature profile and controls the temperature of the heater according to the temperature profile when a cigarette is coupled to the heater. The present exemplary embodiment is different from the previous exemplary embodiment, in which the temperature of the heater of the aerosol generation device 10 is controlled by selecting the temperature profile according to the type of cigarette, in that a user just selects the type of cigarette displayed on the user terminal 20.


In another exemplary embodiment, the temperature of a heater of the aerosol generation device 10 in FIG. 1 may be controlled according to a temperature profile selected by a user regardless of the type of cigarette. In the present exemplary embodiment, the user selects one of the temperature profiles displayed on the user terminal 20, and the temperature of the heater of the aerosol generation device 10 is controlled according to the temperature profile selected by the user, regardless of the type of a cigarette coupled to the heater. Accordingly, the temperature of the heater may be controlled with consistency.



FIG. 9 is a flowchart of an example of a method of controlling the temperature of a heater of an aerosol generation device according to the type of cigarette, according to the present disclosure.


The method of FIG. 9 may be performed by an aerosol generation device including controller 110 of FIG. 7. Therefore, FIG. 7 will be referred to in the description below, and repetitive description in view of the description provided with reference to FIG. 7 will not be omitted.


The profile receiver 111 receives temperature profiles of different types of cigarette from a user terminal in operation S910.


After receiving the temperature profiles, the cigarette sensor 112 senses a cigarette coupled to the heater in operation S930.


The profile selector 113 identifies the type of the cigarette coupled to the heater and selects a temperature profile corresponding to the identified type of the cigarette from the temperature profiles which are received from the user terminal in operation S950.


In operation S970, the power controller 114 controls the power of a battery, which is supplied to the heater, according to the temperature profile selected in operation S950.


According to the method including operations S910 through S970, an aerosol generation device receives and stores temperature profiles of different types of cigarette in advance, and when a cigarette is inserted into the inner space of the aerosol generation device and the aerosol generation device senses that the cigarette is coupled to or contacts a heater, the aerosol generation device controls power supplied to the heater according to a temperature profile corresponding to the cigarette, thereby providing a user with a satisfactory smoking experience.



FIG. 10 is a flowchart of another example of a method of controlling the temperature of a heater of an aerosol generation device according to the type of cigarette, according to the present disclosure.


The method of FIG. 10 may be performed by an aerosol generation device including the controller 110 of FIG. 8. Therefore, FIG. 8 will be referred to in the description below, and repetitive description in view of the description provided with reference to FIG. 8 will be omitted.


The cigarette sensor 112 senses coupling of a cigarette to the heater included in the aerosol generation device in operation S1010.


The cigarette identification unit 115 identifies a type of the cigarette sensed in operation S1010 in operation S1030.


In operation S1050, the profile acquisition unit 116 acquires a temperature profile according to the type of the cigarette, which has been identified in operation S1030.


The power controller 114 controls the temperature of the heater according to the acquired temperature profile in operation S1070.


According to the method including operations S1010 through S1070, when a cigarette is inserted into an inner space of an aerosol generation device and the aerosol generation device senses that the cigarette is coupled to or contacts a heater, the aerosol generation device identifies the type of the cigarette, acquires a temperature profile corresponding to the type of the cigarette, and controls power supplied to the heater according to the temperature profile, thereby providing a user with a satisfactory smoking experience. Particularly, in the present exemplary embodiment, the timing for an aerosol generation device to acquire a temperature profile is limited to after a cigarette is inserted into the inner space of the aerosol generation device and coupled to a heater. Accordingly, when the temperature profile in a storage device is updated in real time, a controller of the aerosol generation device may efficiently and functionally control the temperature of the heater based on the newest temperature profile.



FIG. 11 is a flowchart of another example of a method of controlling the temperature of a heater of an aerosol generation device according to the type of cigarette, according to the present disclosure.


In detail, FIG. 11 shows sequential operations of a device, which is physically or logically included in the user terminal 20 in FIG. 1, or an application installed in the user terminal 20. For convenience of description, a subject performing the operations in FIG. 11 is referred to as a smart application.


The smart application receives information about a type of a cigarette coupled to the heater from the aerosol generation device in operation S1110.


The smart application searches a cigarette database for a temperature profile corresponding to the type of the cigarette based on the received information in operation S1130. The cigarette database searched by the smart application in operation S1130 may include a storage device included in the user terminal 20, and the cigarette database 30 which communicates with the user terminal 20 through the communication network 50.


The smart application determines whether the temperature profile corresponding to the type of the cigarette is found in the cigarette database in operation S1150 and transmits the found temperature profile to the aerosol generation device in operation S1170.


An exemplary embodiment of the present disclosure can also be embodied as a computer program executed on a computer using various elements. The computer program may be recorded in a computer readable recording medium. Examples of the computer readable recording medium may include magnetic media such as hard disks, floppy disks, and magnetic tapes; optical media such as CD-ROMs and DVDs; magneto-optical media such as floptical disks; and hardware devices such as read-only memory (ROM), random-access memory (RAM), and flash memory that are specially configured to store and execute program commands.


Meanwhile, the computer program may be specially designed and configured for the present disclosure or may have been known to and usable by those skilled in the field of computer software. Examples of the computer program may include machine codes created by a compiler and high-level language codes that can be executed in a computer using an interpreter.


The particular implementations shown and described herein are illustrative examples of exemplary embodiments and are not intended to otherwise limit the scope of exemplary embodiments in any way. For the sake of brevity, conventional electronics, control systems, software development and other functional aspects of the systems may not be described in detail. Furthermore, the connecting lines or connectors shown in the various figures presented are intended to represent exemplary functional relationships and/or physical or logical couplings between the various elements. It should be noted that many alternative or additional functional relationships, physical connections, or logical connections may be present in a practical device. Moreover, no item of component is essential to the practice of exemplary embodiments unless the element is specifically described as “essential” or “critical.”


The use of the terms “a” and “an” and “the” and similar referents in the context of describing exemplary embodiments (especially in the context of the following claims) are to be construed to cover both the singular and the plural. Furthermore, recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. Also, the steps of all methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Exemplary embodiments are not limited to the described order of the steps. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate exemplary embodiments and does not pose a limitation on the scope of exemplary embodiments unless otherwise claimed. It will be apparent to one of ordinary skill in the art that numerous modifications, combinations, and adaptations can be made according to design conditions and factors without departing from the spirit and scope of the attached claims or their equivalents.


It will be understood by one of ordinary skill in the art that various changes in form and details may be made in the exemplary embodiments without departing from the fundamental characteristics thereof. Therefore, the methods described herein should be considered in descriptive sense only and not for purposes of limitation. Therefore, the scope of exemplary embodiments is defined not by the detailed description of exemplary embodiments but by the appended claims, and all differences within the scope will be construed as being included in the present disclosure.


INDUSTRIAL APPLICABILITY

The present disclosure may be used to implement a unit included in a device, such as an electronic cigarette, which generates aerosol inhalable by a user, or implement the device itself.

Claims
  • 1. A method of controlling a temperature of a heater included in an aerosol generation device, the method comprising: receiving temperature profiles of different types of cigarette from a user terminal before a cigarette is coupled to the heater;sensing the cigarette coupled to the heater after receiving the temperature profiles, when a distance between the heater and the cigarette becomes less than a predetermined distance that enables the aerosol generation device to detect an identification code on the cigarette;identifying a type of the sensed cigarette by detecting the identification code on the cigarette;selecting a temperature profile corresponding to the identified type from among the temperature profiles of different types of cigarette that are stored in the aerosol generation device;in response to a user input selecting a temperature profile that is different from the selected temperature profile being received, controlling power supplied from a battery to the heater according to the user input; andin response to the user input not being received, controlling the power supplied from the battery to the heater to cause the temperature of the heater to match a variable temperature value according to the selected temperature profile.
  • 2. The method of claim 1, wherein the temperature profiles of different types of cigarette are received by the user terminal from a cigarette database for storing the temperature profiles of different types of cigarette.
  • 3. The method of claim 1, wherein the temperature profiles of different types of cigarette received from the user terminal are generated based on information input through an input device of the user terminal.
  • 4. The method of claim 3, wherein the information is input by recognizing one of quick reference (QR) code, bar code, and case code that are attached to a cigarette case.
  • 5. The method of claim 1, wherein the sensing includes sensing the coupling of the cigarette to the heater according to a result of recognizing an optical sticker that is attached to the cigarette.
  • 6. The method of claim 1, wherein the controlling of the power according to the selected temperature profile comprises: controlling a pulse width modulator based on the selected temperature profile to supply the power to the heater so that the temperature of the heater varies over time according to the selected temperature profile.
  • 7. A method of controlling a temperature of a heater included in an aerosol generation device, the method comprising: sensing coupling of a cigarette to the heater;identifying a type of the cigarette;in response to sensing the coupling of the cigarette to the heater when a distance between the heater and the cigarette becomes less than a predetermined distance that enables the aerosol generation device to detect an identification code on the cigarette, identifying the type of the cigarette by detecting the identification code on the cigarette, and acquiring temperature profiles of different types of cigarette from a storage device for storing the temperature profiles of different types of cigarette, and identifying a temperature profile corresponding to the type of the cigarette, among the temperature profiles of different types of cigarette;in response to a user input selecting a temperature profile that is different from the selected temperature profile being received, controlling the temperature of the heater according to the user input; andin response to the user input not being received, controlling the temperature of the heater to vary over time according to the temperature profile corresponding to the type of the cigarette.
  • 8. The method of claim 7, wherein the identifying the type of the cigarette, includes identifying the type of the cigarette using a radio frequency identification (RFID) reader sensing an RFID tag attached to the cigarette.
Priority Claims (4)
Number Date Country Kind
10-2017-0142578 Oct 2017 KR national
10-2017-0146972 Nov 2017 KR national
10-2017-0156729 Nov 2017 KR national
10-2018-0052133 May 2018 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2018/005767 5/21/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/088382 5/9/2019 WO A
US Referenced Citations (151)
Number Name Date Kind
5348027 Barnes et al. Sep 1994 A
5388594 Counts et al. Feb 1995 A
5408574 Deevi et al. Apr 1995 A
5505214 Collins et al. Apr 1996 A
5555476 Suzuki et al. Sep 1996 A
5665262 Hajaligol et al. Sep 1997 A
5692525 Counts et al. Dec 1997 A
5723228 Okamoto Mar 1998 A
5750964 Counts et al. May 1998 A
5878752 Adams et al. Mar 1999 A
5902501 Nunnally et al. May 1999 A
5934289 Watkins et al. Aug 1999 A
5949346 Suzuki et al. Sep 1999 A
5970719 Merritt Oct 1999 A
6026820 Baggett, Jr. et al. Feb 2000 A
6615840 Fournier et al. Sep 2003 B1
6803550 Sharpe et al. Oct 2004 B2
6810883 Felter et al. Nov 2004 B2
7082825 Aoshima et al. Aug 2006 B2
7594945 Kim et al. Sep 2009 B2
7682571 Kim et al. Mar 2010 B2
7726320 Robinson et al. Jun 2010 B2
8205622 Pan Jun 2012 B2
8558147 Greim et al. Oct 2013 B2
8602037 Inagaki Dec 2013 B2
8689804 Fernando et al. Apr 2014 B2
8833364 Buchberger Sep 2014 B2
8997754 Tucker et al. Apr 2015 B2
9084440 Zuber et al. Jul 2015 B2
9165484 Choi Oct 2015 B2
9295286 Shin Mar 2016 B2
9347644 Araki et al. May 2016 B2
9405148 Chang et al. Aug 2016 B2
9420829 Thorens et al. Aug 2016 B2
9516899 Plojoux et al. Dec 2016 B2
9532600 Thorens et al. Jan 2017 B2
9541820 Ogawa Jan 2017 B2
9693587 Plojoux et al. Jul 2017 B2
9713345 Farine et al. Jul 2017 B2
9814269 Li et al. Nov 2017 B2
9839238 Worm et al. Dec 2017 B2
9844234 Thorens et al. Dec 2017 B2
9848651 Wu Dec 2017 B2
9854845 Plojoux et al. Jan 2018 B2
9949507 Flick Apr 2018 B2
9974117 Qiu May 2018 B2
10070667 Lord et al. Sep 2018 B2
10104909 Han et al. Oct 2018 B2
10104911 Thorens et al. Oct 2018 B2
10136673 Mironov Nov 2018 B2
10136675 Li et al. Nov 2018 B2
10143232 Talon Dec 2018 B2
10238149 Hon Mar 2019 B2
10390564 Fernando et al. Aug 2019 B2
10412994 Schennum et al. Sep 2019 B2
10426193 Schennum et al. Oct 2019 B2
10548350 Greim et al. Feb 2020 B2
10555555 Fernando et al. Feb 2020 B2
10602778 Hu et al. Mar 2020 B2
10617149 Malgat et al. Apr 2020 B2
10694783 Jochnowitz Jun 2020 B2
10701973 Lee Jul 2020 B2
10757975 Batista et al. Sep 2020 B2
10842194 Batista et al. Nov 2020 B2
10973087 Wang et al. Apr 2021 B2
11051545 Batista et al. Jul 2021 B2
11051550 Lin et al. Jul 2021 B2
11147316 Farine et al. Oct 2021 B2
20030226837 Blake et al. Dec 2003 A1
20040089314 Felter et al. May 2004 A1
20040149737 Sharpe et al. Aug 2004 A1
20050142036 Kim et al. Jun 2005 A1
20060267614 Lee et al. Nov 2006 A1
20070007266 Sasaki et al. Jan 2007 A1
20070074734 Braunshteyn et al. Apr 2007 A1
20070246382 He Oct 2007 A1
20070267031 Hon Nov 2007 A1
20100074616 Kewitsch Mar 2010 A1
20100313901 Fernando et al. Dec 2010 A1
20110155718 Greim et al. Jun 2011 A1
20110226236 Buchberger Sep 2011 A1
20110234069 Chen et al. Sep 2011 A1
20130014772 Liu Jan 2013 A1
20130220466 Zandiyeh et al. Aug 2013 A1
20130228191 Newton Sep 2013 A1
20130255675 Liu Oct 2013 A1
20130319999 Plojoux et al. Dec 2013 A1
20130340775 Juster Dec 2013 A1
20140060554 Collett et al. Mar 2014 A1
20140069424 Poston et al. Mar 2014 A1
20140209105 Sears et al. Jul 2014 A1
20140217085 Alima Aug 2014 A1
20140261487 Chapman et al. Sep 2014 A1
20140286630 Buchberger Sep 2014 A1
20140339509 Choi et al. Nov 2014 A1
20140345633 Talon et al. Nov 2014 A1
20140353856 Dubief Dec 2014 A1
20150020831 Weigensberg et al. Jan 2015 A1
20150163859 Schneider et al. Jun 2015 A1
20150223520 Phillips et al. Aug 2015 A1
20150230521 Talon Aug 2015 A1
20150282527 Henry, Jr. Oct 2015 A1
20150327596 Alarcon et al. Nov 2015 A1
20160103364 Nam et al. Apr 2016 A1
20160128386 Chen May 2016 A1
20160174613 Zuber et al. Jun 2016 A1
20160205998 Matsumoto et al. Jul 2016 A1
20160321879 Oh et al. Nov 2016 A1
20160324216 Li et al. Nov 2016 A1
20160331030 Ampolini et al. Nov 2016 A1
20160345625 Liu Dec 2016 A1
20160363570 Blackley Dec 2016 A1
20170020195 Cameron Jan 2017 A1
20170042227 Gavrielov et al. Feb 2017 A1
20170049155 Liu Feb 2017 A1
20170055589 Fernando et al. Mar 2017 A1
20170105454 Li et al. Apr 2017 A1
20170119051 Blandino et al. May 2017 A1
20170119053 Henry, Jr. et al. May 2017 A1
20170143041 Batista et al. May 2017 A1
20170188634 Plojoux et al. Jul 2017 A1
20170197043 Buchberger Jul 2017 A1
20170197046 Buchberger Jul 2017 A1
20170214261 Gratton Jul 2017 A1
20170238609 Schlipf Aug 2017 A1
20170295844 Thevenaz et al. Oct 2017 A1
20170303598 Li et al. Oct 2017 A1
20170325505 Force et al. Nov 2017 A1
20170347715 Mironov et al. Dec 2017 A1
20180027878 Dendy et al. Feb 2018 A1
20180028993 Dubief Feb 2018 A1
20180043114 Bowen Feb 2018 A1
20180049471 Holoubek et al. Feb 2018 A1
20180160733 Leadley et al. Jun 2018 A1
20180199630 Qiu Jul 2018 A1
20190059448 Talon Feb 2019 A1
20190159524 Qiu May 2019 A1
20190261682 Gimkiewicz Aug 2019 A1
20190281896 Chapman et al. Sep 2019 A1
20200093177 Han et al. Mar 2020 A1
20200093185 Lim Mar 2020 A1
20200094997 Menon et al. Mar 2020 A1
20200154765 Lee et al. May 2020 A1
20200196670 Alarcon et al. Jun 2020 A1
20200260790 Kaufman et al. Aug 2020 A1
20200261000 Kim et al. Aug 2020 A1
20200305240 Holoubek et al. Sep 2020 A1
20200329772 Kim et al. Oct 2020 A1
20200359681 Han et al. Nov 2020 A1
20200404969 Zuber et al. Dec 2020 A1
20210146067 Buchberger May 2021 A1
Foreign Referenced Citations (275)
Number Date Country
2 778 903 May 2011 CA
2 970 045 Jun 2016 CA
1078621 Nov 1993 CN
1126425 Jul 1996 CN
1190335 Aug 1998 CN
1280661 Jan 2001 CN
1491598 Apr 2004 CN
1633247 Jun 2005 CN
1871987 Dec 2006 CN
101277622 Oct 2008 CN
101301963 Nov 2008 CN
101324490 Dec 2008 CN
201253138 Jun 2009 CN
101518361 Sep 2009 CN
201314692 Sep 2009 CN
101557728 Oct 2009 CN
101637308 Feb 2010 CN
201657047 Nov 2010 CN
201996322 Oct 2011 CN
102264251 Nov 2011 CN
102595943 Jul 2012 CN
202385727 Aug 2012 CN
102665459 Sep 2012 CN
202854031 Apr 2013 CN
103099319 May 2013 CN
202907797 May 2013 CN
203040065 Jul 2013 CN
103271447 Sep 2013 CN
103477252 Dec 2013 CN
103519351 Jan 2014 CN
103653257 Mar 2014 CN
103653258 Mar 2014 CN
203492793 Mar 2014 CN
103720056 Apr 2014 CN
103889258 Jun 2014 CN
103974635 Aug 2014 CN
103974638 Aug 2014 CN
103974640 Aug 2014 CN
103997922 Aug 2014 CN
104146353 Nov 2014 CN
104188110 Dec 2014 CN
104219973 Dec 2014 CN
204120226 Jan 2015 CN
204132401 Feb 2015 CN
204146340 Feb 2015 CN
104423130 Mar 2015 CN
204317492 May 2015 CN
204393344 Jun 2015 CN
204483007 Jul 2015 CN
104886776 Sep 2015 CN
105188430 Dec 2015 CN
204838003 Dec 2015 CN
105326092 Feb 2016 CN
205072064 Mar 2016 CN
205180371 Apr 2016 CN
205214209 May 2016 CN
105722416 Jun 2016 CN
205358219 Jul 2016 CN
205358225 Jul 2016 CN
105852221 Aug 2016 CN
105852225 Aug 2016 CN
205456064 Aug 2016 CN
105919162 Sep 2016 CN
205624474 Oct 2016 CN
106136331 Nov 2016 CN
106163304 Nov 2016 CN
106170215 Nov 2016 CN
205671480 Nov 2016 CN
106231934 Dec 2016 CN
106235419 Dec 2016 CN
205831079 Dec 2016 CN
106418729 Feb 2017 CN
106473232 Mar 2017 CN
106473233 Mar 2017 CN
106490686 Mar 2017 CN
106535680 Mar 2017 CN
106690427 May 2017 CN
106723379 May 2017 CN
106793834 May 2017 CN
206197012 May 2017 CN
106912985 Jul 2017 CN
206314585 Jul 2017 CN
106998816 Aug 2017 CN
107105772 Aug 2017 CN
206442590 Aug 2017 CN
206443202 Aug 2017 CN
206443214 Aug 2017 CN
107173850 Sep 2017 CN
107183789 Sep 2017 CN
107205491 Sep 2017 CN
206462413 Sep 2017 CN
107249366 Oct 2017 CN
107278125 Oct 2017 CN
206547882 Oct 2017 CN
107801375 Mar 2018 CN
108013512 May 2018 CN
108835715 Nov 2018 CN
110325058 Oct 2019 CN
110958841 Apr 2020 CN
201290392 Oct 2012 EA
201290240 Dec 2012 EA
026076 Feb 2017 EA
0 438 862 Jul 1991 EP
0 917 831 May 1999 EP
0 822 760 Jun 2003 EP
1 947 965 Jul 2008 EP
2 201 850 Jun 2010 EP
2 316 286 May 2011 EP
2 327 318 Jun 2011 EP
2 340 729 Jul 2011 EP
2368449 Sep 2011 EP
2 677 273 Dec 2013 EP
2 921 065 Sep 2015 EP
3104721 Dec 2016 EP
3 257 386 Jun 2019 EP
3 248 486 Aug 2019 EP
3 569 076 Nov 2019 EP
3 248 485 Apr 2020 EP
3 656 229 May 2020 EP
2378905 May 2020 EP
2 301 894 Dec 1996 GB
2514893 Dec 2014 GB
48-63677 Aug 1973 JP
62-15793 Jan 1987 JP
63-68690 May 1988 JP
6-73784 Oct 1994 JP
7-72809 Mar 1995 JP
7-184627 Jul 1995 JP
8-122942 May 1996 JP
9-75058 Mar 1997 JP
9-161822 Jun 1997 JP
9-228919 Sep 1997 JP
10-37781 Feb 1998 JP
2001-200495 Jul 2001 JP
2002-514910 May 2002 JP
2003-527127 Sep 2003 JP
2004-212102 Jul 2004 JP
2005-199913 Jul 2005 JP
2006252897 Sep 2006 JP
2006-292620 Oct 2006 JP
3898118 Mar 2007 JP
2007-101639 Apr 2007 JP
2010-266425 Nov 2010 JP
2012-513750 Jun 2012 JP
2013-509160 Mar 2013 JP
2013-524835 Jun 2013 JP
2014-132560 Jul 2014 JP
2014-216287 Nov 2014 JP
2014-533513 Dec 2014 JP
2015-13192 Jan 2015 JP
2015-503916 Feb 2015 JP
2015-504669 Feb 2015 JP
2015-506170 Mar 2015 JP
2015-528307 Sep 2015 JP
2016-512033 Apr 2016 JP
2016-521552 Jul 2016 JP
2017-506901 Mar 2017 JP
2017-510270 Apr 2017 JP
2017-511123 Apr 2017 JP
2017-127300 Jul 2017 JP
2017-522876 Aug 2017 JP
1999-0081973 Nov 1999 KR
20-0203233 Nov 2000 KR
10-0304044 Nov 2001 KR
10-2004-0084899 Oct 2004 KR
10-2005-0065896 Jun 2005 KR
10-0495099 Nov 2005 KR
10-2006-0121638 Nov 2006 KR
10-0782063 Dec 2007 KR
10-1012472 Feb 2011 KR
10-2011-0096548 Aug 2011 KR
10-1062248 Sep 2011 KR
20-2011-0008931 Sep 2011 KR
10-2012-0027029 Mar 2012 KR
10-2012-0050568 May 2012 KR
20-0460461 May 2012 KR
10-1174189 Aug 2012 KR
10-2012-0101637 Sep 2012 KR
10-2012-0102131 Sep 2012 KR
10-2012-0104533 Sep 2012 KR
10-2012-0115488 Oct 2012 KR
20-2012-0007263 Oct 2012 KR
20-2012-0008751 Dec 2012 KR
10-2013-0031025 Mar 2013 KR
10-1239080 Mar 2013 KR
10-2013-0084789 Jul 2013 KR
10-2013-0139276 Dec 2013 KR
10-2013-0139298 Dec 2013 KR
10-1338073 Dec 2013 KR
10-2014-0044165 Apr 2014 KR
10-2014-0116055 Oct 2014 KR
10-2014-0116381 Oct 2014 KR
10-2014-0118980 Oct 2014 KR
10-2014-0119029 Oct 2014 KR
10-2014-0135568 Nov 2014 KR
10-1465846 Nov 2014 KR
10-1480423 Jan 2015 KR
10-1486294 Jan 2015 KR
10-2015-0111021 Oct 2015 KR
10-2016-0005323 Jan 2016 KR
20160009678 Jan 2016 KR
10-2016-0012154 Feb 2016 KR
10-2016-0031801 Mar 2016 KR
10-2016-0052607 May 2016 KR
10-1631286 Jun 2016 KR
10-1635340 Jun 2016 KR
10-2016-0082570 Jul 2016 KR
10-2016-0086118 Jul 2016 KR
10-2016-0088163 Jul 2016 KR
10-1660214 Sep 2016 KR
10-1677547 Nov 2016 KR
10-1679163 Nov 2016 KR
10-2017-0006282 Jan 2017 KR
10-2017-0020807 Feb 2017 KR
10-2017-0057535 May 2017 KR
10-1733448 May 2017 KR
10-2017-0067171 Jun 2017 KR
10-2017-0083596 Jul 2017 KR
10-2017-0117444 Oct 2017 KR
10-2017-0118233 Oct 2017 KR
10-2018-0125852 Nov 2018 KR
10-2018-0129637 Dec 2018 KR
10-2019-0016907 Feb 2019 KR
2 132 629 Jul 1999 RU
2551944 Jun 2015 RU
2611487 Feb 2017 RU
2617297 Apr 2017 RU
2 619 735 May 2017 RU
2015152134 Jun 2017 RU
9527412 Oct 1995 WO
9823171 Jun 1998 WO
2007039794 Apr 2007 WO
2009044716 Apr 2009 WO
2010073122 Jul 2010 WO
2011015826 Feb 2011 WO
2011050964 May 2011 WO
2011063970 Jun 2011 WO
2013102609 Jul 2013 WO
2014102092 Jul 2014 WO
2014195679 Dec 2014 WO
2015035510 Mar 2015 WO
2015070402 May 2015 WO
2015082560 Jun 2015 WO
2015117702 Aug 2015 WO
2015150759 Oct 2015 WO
2015168828 Nov 2015 WO
2015174657 Nov 2015 WO
2015177046 Nov 2015 WO
2015189388 Dec 2015 WO
2016005601 Jan 2016 WO
2016009202 Jan 2016 WO
2016012795 Jan 2016 WO
2016091658 Jun 2016 WO
2016096337 Jun 2016 WO
2016111633 Jul 2016 WO
2016123738 Aug 2016 WO
2016127541 Aug 2016 WO
2016120177 Aug 2016 WO
2016138689 Sep 2016 WO
2016184978 Nov 2016 WO
2016199065 Dec 2016 WO
2016199066 Dec 2016 WO
2016207407 Dec 2016 WO
2017001520 Jan 2017 WO
2017001818 Jan 2017 WO
2017005471 Jan 2017 WO
2017029089 Feb 2017 WO
2017077466 May 2017 WO
2017133056 Aug 2017 WO
2017163046 Sep 2017 WO
2017182485 Oct 2017 WO
2017211600 Dec 2017 WO
2018190606 Oct 2018 WO
2018191766 Oct 2018 WO
2019015343 Jan 2019 WO
Non-Patent Literature Citations (111)
Entry
Translation of KR 20160009678 (Year: 2016).
Office Action dated Jan. 24, 2022 in Chinese Application No. 201880030661.5.
Office Action dated Dec. 24, 2021 in Chinese Application No. 201880055847.6.
Office Action dated Dec. 20, 2021 in Chinese Application No. 201880048655.2.
Office Action dated Jan. 4, 2022 in Chinese Application No. 201880048703.8.
Office Action dated Jan. 18, 2022 in Chinese Application No. 201880052857.4.
Office Action dated Jan. 30, 2022 in Chinese Application No. 201880052855.5.
“PCB Design and Processing”, Seping, pp. 32-35, Beijing Institute of Technology Publishing House, Feb. 2017, Feb. 28, 2017 (6 pages total).
Office Action dated Dec. 31, 2021 in Chinese Application No. 201880049189.X.
Office Action dated Aug. 12, 2019 in Korean Application No. 10-2019-0033722.
Office Action dated Jul. 2, 2019 in Korean Application No. 10-2019-0017392.
Office Action dated Jul. 3, 2019 in Korean Application No. 10-2019-0016835.
Office Action dated May 18, 2019 in Korean Application No. 10-2018-0090063.
Office Action dated Oct. 25, 2019 in Korean Application No. 10-2018-0078296.
Office Action dated Oct. 15, 2019 in Korean Application No. 10-2018-0074188.
Office Action dated Oct. 8, 2019 in Korean Application No. 10-2018-0072992.
Office Action dated Oct. 8, 2019 in Korean Application No. 10-2018-0072935.
Office Action dated Sep. 6, 2019 in Korean Application No. 10-2018-0069645.
Office Action dated Jul. 10, 2019 in Korean Application No. 10-2018-0064487.
Office Action dated Jun. 24, 2019 in Korean Application No. 10-2018-0062137.
Office Action dated Jun. 19, 2019 in Korean Application No. 10-2018-0059580.
Office Action dated May 13, 2019 in Korean Application No. 10-2018-0058596.
Office Action dated May 3, 2019 in Korean Application No. 10-2018-0055120.
Office Action dated Dec. 9, 2019 in Korean Application No. 10-2018-0052133.
Office Action dated Dec. 9, 2019 in Korean Application No. 10-2018-0051469.
Office Action dated Dec. 9, 2019 in Korean Application No. 10-2018-0051467.
International Search Report dated Apr. 16, 2019 in International Application No. PCT/KR2018/012899.
International Search Report dated Apr. 26, 2019 in International Application No. PCT/KR2018/012895.
International Search Report dated May 17, 2019 in International Application No. PCT/KR2018/012810.
International Search Report dated May 17, 2019 in International Application No. PCT/KR2018/012809.
International Search Report dated May 17, 2019 in International Application No. PCT/KR2018/012808.
International Search Report dated May 3, 2019 in International Application No. PCT/KR2018/012807.
International Search Report dated May 17, 2019 in International Application No. PCT/KR2018/012776.
International Search Report dated Apr. 3, 2019 in International Application No. PCT/KR2018/012775.
International Search Report dated Apr. 3, 2019 in International Application No. PCT/KR2018/012774.
International Search Report dated Apr. 3, 2019 in International Application No. PCT/KR2018/012773.
International Search Report dated May 20, 2019 in International Application No. PCT/KR2018/012685.
International Search Report dated May 21, 2019 in International Application No. PCT/KR2018/012676.
International Search Report dated Nov. 26, 2018 in International Application No. PCT/KR2018/005767.
International Search Report dated Aug. 28, 2018 in International Application No. PCT/KR2018/005693.
International Search Report dated Nov. 2, 2018 in International Application No. PCT/KR2018/005306.
Communication dated Jul. 27, 2020 by the Russian Patent Office in application No. 2020110821.
Communication dated Jun. 11, 2020 by the Korean Patent Office in application No. 10-2018-0051469.
Extended European Search Report dated Jan. 15, 2021 in European Application No. 18799246.6.
Office Action dated May 25, 2020 in Russian Application No. 2019135871.
Office Action dated Jun. 10, 2020 in Korean Application No. 10-2018-0052137.
Office Action dated Oct. 5, 2020 in Korean Application No. 10-2020-0090577.
Office Action dated Oct. 16, 2020 in Korean Application No. 10-2020-0092553.
Extended European Search Report dated Nov. 16, 2020 in European Application No. 20189002.7.
Office Action dated Dec. 8, 2020 in Russian Application No. 2020113632.
Office Action dated Nov. 25, 2020 in Russian Application No. 2020124810.
Office Action dated Jan. 26, 2021 in Japanese Application No. 2020-502671.
Office Action dated Dec. 22, 2020 in Japanese Application No. 2020-502181.
Office Action dated Dec. 22, 2020 in Japanese Application No. 2020-503856.
Extended European Search Report dated Nov. 13, 2020 in European Application No. 20188970.6.
Office Action dated Nov. 10, 2020 in Japanese Application No. 2020-523671.
Office Action dated Nov. 24, 2020 in Russian Application No. 2020124811.
Communication dated Feb. 24, 2021 by the Japanese Patent Office in application No. 2020-503962.
Communication dated Mar. 23, 2021 by the Japanese Patent Office in application No. 2020-522897.
Communication dated Mar. 2, 2021 by the Japanese Patent Office in application No. 2020-523669.
Communication dated Mar. 30, 2021 by the Japanese Patent Office in application No. 2020-501446.
Communication dated Mar. 16, 2021 by the Japanese Patent Office in application No. 2020-521441.
Communication dated Feb. 9, 2021 by the Japanese Patent Office in application No. 2020-501205.
Communication dated Mar. 16, 2021 by the European Patent Office in application No. 18806877.9.
Extended European Search Report dated Sep. 9, 2021 in European Application No. 18873562.5.
Office Action dated Aug. 3, 2021 in Japanese Application No. 2020-503856.
Extended European Search Report dated Aug. 18, 2021 in European Application No. 18874344.7.
Extended European Search Report dated Jul. 30, 2021 in European Application No. 18874446.0.
Extended European Search Report dated Aug. 17, 2021 in European Application No. 18872432.2.
Office Action dated Aug. 17, 2021 in Japanese Application No. 2020-503962.
Extended European Search Report dated Aug. 10, 2021 in European Application No. 18873846.2.
Extended European Search Report dated Aug. 17, 2021 in European Application No. 18873943.7.
Extended European Search Report dated Aug. 10, 2021 in European Application No. 18874742.2.
Extended European Search Report dated Aug. 12, 2021 in European Application No. 18874837.0.
Extended European Search Report dated Aug. 20, 2021 in European Application No. 18874962.6.
Extended European Search Report dated Aug. 6, 2021 in European Application No. 18872527.9.
Extended European Search Report dated Sep. 2, 2021 in European Application No. 18874839.6.
Extended European Search Report dated Jul. 20, 2021 in European Application No. 18872006.4.
Office Action dated Sep. 3, 2021 in Chinese Application No. 201880035480.1.
Office Action dated Aug. 11, 2021 in Chinese Application No. 201880029050.9.
Extended European Search Report dated Oct. 15, 2021 in European Application No. 18872138.5.
Communication dated Dec. 3, 2021 from the Chinese Patent Office in Chinese Application No. 201880049465.2.
Communication dated Dec. 2, 2021 from the Chinese Patent Office in Chinese Application No. 201880048657.1.
Communication dated Dec. 2, 2021 from the Chinese Patent Office in Chinese Application No. 201880048444.9.
Office Action dated Apr. 5, 2019 in Korean Application No. 10-2019-0017393.
Office Action dated Apr. 25, 2019 in Korean Application No. 10-2019-0033722.
Office Action dated Apr. 25, 2019 in Korean Application No. 10-2019-0033723.
Office Action dated Jun. 7, 2021 in Canadian Application No. 3,076,886.
Office Action dated Feb. 9, 2018 in Korean Application No. 10-2017-0058786.
Communication dated Feb. 28, 2022 from the Chinese Patent Office in Chinese Application No. 201880063459.2.
Communication dated Mar. 29, 2022 from the Japanese Patent Office in Japanese Application No. 2020-522897.
Communication dated Mar. 3, 2022 from the Chinese Patent Office in Chinese Application No. 201880058682.8.
Wenxue Geng et al., “Technology Manual of a Programmable Controller”, Science Technology, 1st Edition, 1996, p. 132 (2 pages total).
Office Action dated Jul. 4, 2022, issued in Chinese Application No. 201880048657.1.
Office Action dated Aug. 26, 2022, issued in Chinese Application No. 201880048703.8.
Office Action dated Jun. 28, 2022, issued in Japanese Application No. 2020-522897.
Office Action dated Jul. 12, 2022, issued in Chinese Application No. 201880049189.X.
Su Zuen et al., “Heat Transfer”, Dalian Maritime University Press, Feb. 28, 1989, pp. 12-13 (9 pages total).
Office Action dated Jun. 22, 2022, issued in Chinese Application No. 201880048444.9.
Office Action dated Nov. 1, 2022 from Japanese Patent Office in JP Application No. 2020-501205.
Office Action dated Dec. 29, 2022 from the China National Intellectual Property Administration in CN Application No. 201880055847.6.
Office Action dated Dec. 20, 2022 from the Japanese Patent Office in JP Application No. 2021-122551.
Office Action dated Jan. 10, 2023 from the Japanese Patent Office in JP Application No. 2021-080578.
Office Action dated Jan. 20, 2023 from the China National Intellectual Property Administration in CN Application No. 202010761215.0.
Office Action dated Jan. 28, 2023 from the China National Intellectual Property Administration in CN Application No. 202010761219.9.
Office Action dated Feb. 14, 2023 from the Japanese Patent Office in JP Application No. 2022-074915.
Office Action dated Mar. 30, 2023 in Chinese Application No. 201880030661.5.
Office Action dated May 12, 2023 in Chinese Application No. 201880048703.8.
Wei-Ping Jia et al., “Determination of Aerosol Concentration in Mainstream Cigarette Smoke Based on Online Impact”, Tobacco Science & Technology, Manufacturing Technology, Dec. 2010, vol. 281 (4 pages total).
Third Office Action issued in the China National Intellectual Property Administration on Feb. 23, 2024, issued in corresponding CN Patent Application No. 202010761215.0.
Extended European search report dated Dec. 12, 2023 in Application No. 23210344.0.
Related Publications (1)
Number Date Country
20200305512 A1 Oct 2020 US