1. Field of the Invention
The present invention relates generally to spin valve sensors for magnetic heads, and more particularly to plasma smoothing of the pinned magnetic layer surface of a spin valve sensor structure.
2. Description of the Prior Art
Magnetic heads for hard disk drives typically have a read head portion including a magnetoresistive (MR) spin valve sensor structure for reading data from the disk of the hard disk drive. As is well known to those skilled in the art, such MR sensor structures include a plurality of thin film layers disposed between two magnetic shields that define the read gap. The thin film layers have particular magnetic properties, and are sensitive to the magnetic field of the data bits on the hard disk.
The thin film layers of a typical MR spin valve sensor will include at least one antiferromagnetic layer, at least one pinned magnetic layer, a spacer layer and at least one free magnetic layer. When the magnetic field direction of the free magnetic layer is parallel to the magnetic field direction of the pinned magnetic layer, the electrical resistance R of the MR sensor is lowest. When reading data, a magnetic data bit of a hard disk will cause the magnetic field direction of the free magnetic layer to change, whereupon the electrical resistance of the sensor increases. This change in resistance (ΔR) affects the electrical current passing through the sensor, which is thus detected as a data signal.
It is desirable to develop MR sensors having a decreased thickness, while maintaining or even increasing the ΔR value. Where the metallic MR sensor layers, and particularly the spacer layer, are made thinner, the electrical resistance of the thinner layers increases and there is less shunting of electrical current through these layers and away from the free magnetic layer. This leads to an increase in the sensor resistance R and in ΔR, and this results in improved magnetic head performance. Another parameter that is significant in spin valve sensor performance is the magnetic coupling field strength between the pinned and free magnetic layers, and it is important to maintain this coupling field strength to maintain the spin valve performance.
Many different materials and fabrication steps have been utilized in the prior art in attempts to increase ΔR of the MR sensor. The present invention relates to a MR spin valve sensor that is fabricated utilizing a surface smoothed pinned magnetic layer. This allows the use of a thinner spacer layer, thus leading to an increased electrical resistance R of the sensor and a higher ΔR, which correlates to a stronger read head signal.
It has been described in an abstract of prior art paper entitled “Effect of Plasma Treatment on the GMR Properties of PtMn Based Synthetic Spin Valve,” by K. Tsunekawa, D. Nakagima and N. Watanabe, presented as paper BD-04 at the 46th Annual Conference on Magnetism and Magnetic Materials, in Seattle, Wash., USA on Nov. 12-16, 2001, that with respect to a GMR spin valve sensor, that the surface of a pinned magnetic layer can be smoothed utilizing a low voltage argon plasma. A copper spacer layer and a free magnetic layer are then deposited. The resulting GMR sensor was shown to be improved by having an increased signal strength.
The present invention is an improvement upon this prior art in that it's utilizes an improved plasma comprised of argon plus oxygen, and that it utilizes an MR head having a CuOx spacer layer between the pinned and free magnetic layers.
The magnetic head of the present invention includes a spin valve sensor read head having a sensor layer stack that includes a pinned magnetic layer, a spacer layer formed on the pinned magnetic layer, and a free magnetic layer formed on the spacer layer. In a preferred embodiment the spacer layer is comprised of CuOx. Improved spin valve sensor properties are obtained by plasma smoothing the upper surface of the pinned magnetic layer prior to depositing the spacer layer, and a preferred plasma gas is a mixture of argon and oxygen. The plasma smoothing of the pinned magnetic layer has the effect of increasing the negativity of the magnetic coupling field strength between the pinned and free magnetic layers, and the spacer layer can then be made thinner to adjust the coupling field strength to its desired value. The reduced thickness of the spacer layer results in increased sensor resistance and an increase in the sensor signal amplitude. In the preferred embodiment, the CuOx spacer thickness is reduced from approximately 20 Å to approximately 16 Å.
It is an advantage of the magnetic head of the present invention that it includes a magnetoresistive sensor having a decreased sensor spacer layer thickness.
It is another advantage of the magnetic head of the present invention that it includes a magnetoresistive sensor having a decreased sensor spacer layer thickness, an increased sensor signal amplitude.
It is a further advantage of the magnetic head of the present invention that it includes a CuOx spacer layer disposed upon a pinned magnetic layer having a smoothed surface.
It is yet another advantage of the magnetic head of the present invention that it includes a laminated pinned magnetic layer having a plasma smoothed upper surface, with a reduced thickness CuOx spacer layer disposed thereon, that results in a sensor an increased signal amplitude.
It is an advantage of the hard disk drive of the present invention that it includes a magnetic head of the present invention that includes a magnetoresistive sensor having a decreased sensor spacer layer thickness.
It is another advantage of the hard disk drive of the present invention that it includes a magnetic head of the present invention that includes a magnetoresistive sensor having a decreased sensor spacer layer thickness, an increased sensor signal amplitude.
It is a further advantage of the hard disk drive of the present invention that it includes a magnetic head of the present invention that includes a CuOx spacer layer disposed upon a pinned magnetic layer having a smoothed surface.
It is yet another advantage of the hard disk drive of the present invention that it includes a magnetic head of the present invention that includes a laminated pinned magnetic layer having a plasma smoothed upper surface, with a reduced thickness CuOx spacer layer disposed thereon, that results in a sensor an increased signal amplitude.
It is an advantage of the method for fabricating a magnetic head of the present invention that it includes a pinned magnetic layer having a plasma smoothed upper surface and a CuOx spacer layer having a reduced thickness, such that increased signal amplitude of the sensor results.
The foregoing and other objects, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments which make reference to the several figures of the drawing.
The following drawings are not made to scale of an actual device, and are provided for illustration of the invention described herein.
A typical prior art magnetic head is fabricated to include a read head portion for reading data from the hard disk and a write head portion for writing to a hard disk, and
The present invention is directed towards improvements in the specific layers that comprise the sensor layer stack 50 of the spin valve, and a more detailed depiction of a magnetoresistive (MR) spin valve sensor, such as may be utilized as an improved sensor 80 of the present invention in the magnetic head 20 of
Magnetoresistive spin valve sensors, such as are described herein, operate by detecting magnetic data bits written upon a hard disk through a change in electrical resistance within the spin valve sensor when the sensor is exposed to the magnetic field of the data bit. Specifically, the orientation of the magnetic field of the free magnetic layer field is altered by the magnetic field of a data bit, and the change in the orientation of the free layer magnetic field creates a change in the electrical resistance R of the sensor. The electrical resistance of the sensor is lowest (Rmin) when the free layer magnetic field is oriented parallel to the pinned layer magnetic field, and the resistance of the sensor increases when the free layer magnetic field is oriented other than parallel to the pinned layer magnetic field direction. This change in resistance R-Rmin is generally designated as ΔR. Significantly, the resistance R of the sensor is determined in large part by the resistance of the spacer layer, and generally a thinner spacer layer will typically have a higher resistance R, which will generally result in a higher value for ΔR, provided the magnetoresistance coefficient ΔR/R remains constant. Another important parameter in spin valve performance is the strength of the magnetic coupling field between the pinned magnetic layer and the free magnetic layer. This magnetic coupling field is held within a desired range to promote good SV performance, as is described more fully herebelow.
Therefore, it is a performance goal for the spin valve sensor of the present invention to have an increased electrical resistance R and an increased ΔR while maintaining the magnetic coupling field within a desired range, as well as to not negatively affect other sensor properties such as ΔR/R and coercivity. As will appear from the following description, an improvement in the smoothness of the upper surface of the pinned magnetic layer results in improved spin valve sensor properties.
Returning to
The effects of smoothing the surface of the pinned magnetic layer of a GMR spin valve sensor having a copper spacer layer have been reported by others, see “Effect of Plasma Treatment on the GMR Properties of PtMn Based Synthetic Spin Valve,” by K. Tsunekawa, D. Nakagima and N. Watanabe, presented as paper BD-04 at the 46th Annual Conference on Magnetism and Magnetic Materials, in Seattle, Wash., USA on Nov. 12-16, 2001. A low voltage argon plasma was used in this prior art pinned layer smoothing process, with a Cu spacer then being deposited upon the argon plasma smoothed surface.
In a preferred embodiment of the present invention, as depicted in
With regard to the surface smoothing process of the present invention, the wafer chuck having a wafer with the pinned magnetic layer deposited thereon is disposed in a process chamber at a pressure of from approximately 1×10−3 Torr to approximately 3×10−3 Torr. The argon plus oxygen plasma gas mixture is introduced at a flow rate of approximately 50 sccm and it is comprised of approximately 49.5 sccm pure argon plus 0.5 sccm of an 80% argon plus 20% oxygen gas mixture. This correlates to an oxygen partial pressure of approximately 2×10−6 Torr. It has been discovered that an oxygen partial pressure of from 0.5×10−6 to approximately 6×10−6 Torr will provide superior surface smoothing results. A wafer chuck bias voltage of from approximately 25 to approximately 70 volts, and preferably from 30 to 60 volts, is used to support the plasma, where the plasma striking voltage is approximately 25 volts. A surface smoothing plasma exposure time of from approximately 15 to approximately 60 seconds is sufficient to achieve the surface smoothing effects of the present invention. As will be appreciated by those skilled in the art, the surface smoothing time exposure is a function of parameters such as the bias voltage and plasma composition.
Following the plasma surface smoothing step, the wafer chuck is moved to a spacer deposition chamber, and a CuOx spacer layer 102 is next deposited upon the smoothed surface 120 of the pinned magnetic layer 98. The CuOx is deposited at approximately 1 Å per second, thus a deposition time of approximately 16 to 20 seconds is utilized in the present invention to obtain a CuOx thickness of approximately 16 to 20 Å, with a preferred CuOx thickness being approximately 17 Å. Thereafter, the free magnetic layer and cap layer are sequentially deposited.
The CuOx spacer layer has an increased electrical resistance as compared to the prior art Cu spacer. Additionally, the properties of the CuOx spacer result in a negative magnetic coupling field between the pinned and free magnetic layers. The strength of this coupling field is a significant sensor parameter that affects the rotation of the magnetic field of the free magnetic layer and thus the performance of the sensor. The strength of the coupling field is affected by the thickness of the spacer layer between the pinned and free magnetic layer, and as is discussed more fully below, it is an important feature of the present invention to maintain the coupling field strength within a desired range, and thereby reduce the thickness of the spacer layer.
It is therefore to be understood that a key contributor to the coupling field strength is the nano-scale roughness of the pinned layer spacer layer interface, and as is shown in
The spin valve sensor of the present invention is an improvement over the prior art described above, in that the smoothing of the surface of the pinned magnetic layer is conducted utilizing a plasma gas mixture comprising argon plus oxygen, and also in that the spacer layer is comprised of CuOx instead of Cu. Each of these changes results in an improvement over the prior art, and when combined together in a preferred embodiment of the present invention, they create a further improved device.
While the present invention has been shown and described with regard to certain preferred embodiments, it is to be understood that those skilled in the art will no doubt develop certain alterations and modifications in form and detail therein. It is therefore intended that the following claims cover all such alterations and modifications that nevertheless include the true spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4575475 | Nakayama et al. | Mar 1986 | A |
4699847 | Nakayama et al. | Oct 1987 | A |
4837046 | Oishi et al. | Jun 1989 | A |
5556707 | Usuki et al. | Sep 1996 | A |
5862021 | Deguchi et al. | Jan 1999 | A |
6063244 | Pinarbasi | May 2000 | A |
6108177 | Gill | Aug 2000 | A |
6226159 | Pinarbasi | May 2001 | B1 |
6301088 | Nakada | Oct 2001 | B1 |
6306266 | Metin et al. | Oct 2001 | B1 |
6338899 | Fukuzawa et al. | Jan 2002 | B1 |
6396669 | Gill | May 2002 | B1 |
6398924 | Pinarbasi | Jun 2002 | B1 |
6548114 | Mao et al. | Apr 2003 | B2 |
6600638 | Gill | Jul 2003 | B2 |
20010014412 | Jongill et al. | Aug 2001 | A1 |
20010026470 | Gillies et al. | Oct 2001 | A1 |
20010036046 | Mizuguchi | Nov 2001 | A1 |
20020041473 | Hoshiya et al. | Apr 2002 | A1 |
20020054463 | Mukoyama et al. | May 2002 | A1 |
20020159205 | Kula et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
2000348311 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040264070 A1 | Dec 2004 | US |