The present invention relates to methods or arrangements for processing numerical data by electrical computers and digital processing systems, and in particular relates to arithmetic processing and calculating methods directed to finite field or congruence operations, including integer division operations, especially upon polynomials with binary coefficients.
In modern cryptographic systems, such as the symmetric block cipher known as Rinjdael (adopted by the U.S. National Institute of Standards and Technology as its Advanced Encryption Standard or AES), blocks of data (bit strings) are subject to numerous substitution and permutation operations, which at a deeper level typically involve byte shifts, XOR additions, and congruence operations upon polynomials (represented as bit strings). Thus, in AES, finite field arithmetic over polynomials in GF(28) are performed using g(x)=x8+x4+x3+x+1 and h(x)=x8+1 as moduli. Methods of rapidly computing polynomial quotients and residues are desired for efficient operation of these cryptographic systems.
U.S. Pat. No. 6,523,053 to Lee et al. describes a method and apparatus for performing finite field polynomial division. The long polynomial is split into segments or groups, and the partial quotient and remainder are computed in parallel for each group, then combined. This technique is used for large polynomials (of high degree).
U.S. Pat. Nos. 5,615,220 to Pharris and 5,185,711 to Hattori perform finite field division using Euclid's algorithm, which is a technique that involves multiple iterations of divisions. The technique is useful for divisions involving large polynomials.
The present invention is a method that performs fast quotient computations on polynomials for efficient congruence operations where the degree of the polynomial to be reduced is not more than the degree of the polynomial modulus plus the distance between the two highest degrees of coefficients of the modulus minus 1. Thus, for example, where the modulus is x8+x4+x3+x+1, with degree 8 and distance 4 between the coefficients of two highest degrees, the quotient computation can be rapidly computed for polynomials up to and including a degree of 11. In particular, in this special case, the lower degrees of the modulus become irrelevant, and the quotient is simply a division of the polynomial by the highest degree term of the modulus. The quotient will have a degree not more than the above-noted distance between the modulus' two highest degree coefficients minus 1.
For binary finite fields GF(2n), this method is easily implemented in processing hardware by loading the equivalent bit string of the polynomial to be reduced and then right bit shifting the string by a number of bits equal to the degree of the modulus to obtain the quotient. For prime fields GF(pk), p>2, the same basic principles apply, but sets of bits will be manipulated, such as by executing an equivalent firmware or software program in a data processor or computer.
Because finding the quotient is the most computationally intensive part of the reduction operation, the present fast quotient computation allows for fast reduction of the polynomial to its residue, as well as adding to the quotient (without increasing its degree) to obtain other congruences of the polynomial.
The fast quotient computation method of the present invention takes advantage for special cases of an inherent property of polynomial operations in a finite field. If we have a polynomial modulus which is of the form, say f(x)=x8+x4+x3+x+1 (example given in GF(28)), one may notice that the degree of f(x) is deg[f(x)]=8 and the distance between the coefficients of two highest degrees minus 1 is d=3. Now let g(x) be a polynomial of maximum degree d, deg[g(x)]≦d. Let h(x) be another polynomial which is the product of f(x) and g(x). That is, h(x)=g(x)·f(x)=g(x)·x8+g(x)·x4+g(x)·x3+g(x)·x+g(x)·1. Because deg[g(x)]≦3, we can remark that the degrees of the coefficients of h(x) higher than deg[f(x)]=8 are equal to g(x)·x8. Consequently, if we have a polynomial i(x) to be reduced modulo f(x), with deg[i(x)]<deg[f(x)]+d, the quotient of the division i(x)/f(x) will be the polynomial division of i(x) by the highest degree term of f(x), i.e. by x8.
(This concludes the fast quotient computation.)
(This completes the residue calculation using the previously obtained quotient). Note that over the binary finite field, we can implement addition and subtraction with a bitwise XOR operation.
Implemented in hardware processors or the like, the polynomials represent strings of bits, where the location of the bits within a string corresponds to the degree of a polynomial coefficient. For the above given example, with leading zeros provided to complete a byte:
A hardware multiplier can handle the multiplication of modulus f(x) and quotient q(x).
With reference to
In addition to performing quick quotient computation and quick reduction, we can also compute different congruences of a given polynomial. With a given quotient q(x) of degree less than or equal to d, we can add a random polynomial value s(x) of same or lesser degree to q(x), then recalculate i(x)⊕(f(x)·q(x)) using the altered quotient q′(x)=q(x)+s(x) in place of q(x). Alternatively, once the residue value is found, a random multiple of the modulus can be added to the residue. In many cases, working with different congruences improves security against side-channel cryptographic attacks without affecting the final result. When working with congruences, it may be desired to avoid having congruent values cancel each other out when added together. This can be ensured by quickly computing the quotient with the same modulus for both polynomial values and comparing. Two different polynomials with the same quotient are not congruent.
When working in a prime finite field GF(pk), the same basic principles of quick quotient calculation and residue calculation apply, except that each polynomial coefficient has a value from 0 to p−1 and is therefore represented by sets of bits instead of individual bits. Additionally, the operation i(x)−p(x)·q(x) can no longer be replaced by an XOR operation. The difference in each coefficient must be calculated using adder hardware.
Number | Date | Country | Kind |
---|---|---|---|
06 01781 | Feb 2006 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
5185711 | Hattori | Feb 1993 | A |
5615220 | Pharris | Mar 1997 | A |
5799088 | Raike | Aug 1998 | A |
5954788 | Suh et al. | Sep 1999 | A |
6470369 | Ikegami | Oct 2002 | B1 |
6523053 | Lee et al. | Feb 2003 | B1 |
20080019511 | Akiyama et al. | Jan 2008 | A1 |
20080109501 | Douguet et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 0148706 | Jul 2001 | WO |
WO 2004111831 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070217602 A1 | Sep 2007 | US |