The present invention generally relates to driver assist and active safety technologies in vehicles, and more particularly to methods for inputting an intended path of a vehicle and a trailer using a display.
Operating a vehicle that is connected to a trailer is very challenging for many drivers. Thus, there is a need for a system allowing a user to input an intended path in a simple yet intuitive manner.
According to one aspect of the present invention, a method of inputting a backing path is provided. The method includes the steps of generating an aerial view of a vehicle and a trailer based on at least one of image data and satellite image data, displaying the aerial view on a display having a touch screen, and registering a touch event on the touch screen that inputs an intended backing path for the vehicle and the trailer.
According to another aspect of the present invention, a method of inputting a backing path is provided. The method includes the steps of generating an aerial view of a vehicle and a trailer, displaying the aerial view on a touch screen, and registering a second touch event on the touch screen that inputs a modification of the intended backing.
According to yet another aspect of the invention, a method of inputting a backing path is provided. The method includes the steps of generating an aerial view of a vehicle and a trailer, displaying the aerial view on a touch screen, and performing a first touch event on the touch screen that inputs an intended backing path for the vehicle and the trailer.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
Backing and maneuvering a trailer can be a difficult task due to challenges in vision and path prediction. Challenges may vary based on vehicle dimensions, trailer dimensions, and environmental conditions. With large trailers a field of view behind the trailer may be completely occluded. With smaller trailers, small changes in steering can cause a hitch angle between the vehicle tow and the trailer to inflect quickly. In view of these and other concerns, the following improvements provide various implementations to bolster the functionality of a trailer backup assist system.
Backing and maneuvering a trailer can be a difficult task due to challenges in vision and path prediction. Challenges may vary based on vehicle dimensions, trailer dimensions, and environmental conditions. With large trailers a field of view behind the trailer may be completely occluded. With smaller trailers, small changes in steering can cause a hitch angle between the vehicle tow and the trailer to inflect quickly. In view of these and other concerns, the following improvements provide various implementations to bolster the functionality of a trailer backup assist system.
As shown in
The imaging devices C1, C3, C4, and C5 are disposed on the vehicle 10, each oriented to have a field of view directed towards a substantially different region of the operating environment 14. Imaging device C1 is disposed centrally on a rear portion 16 (e.g. a tailgate) of the vehicle 10 and may employ object detection to monitor the position of a target 18 disposed on the trailer 12 so that a hitch angle γ between the vehicle 10 and the trailer 12 can be determined. As used herein, the hitch angle γ is defined as the angle between a longitudinal centerline axis 20 of the vehicle 10 and the longitudinal centerline axis 22 of the trailer 12. In addition to imaging device C1, or alternatively thereto, imaging device C1′ may be disposed centrally on a rear facing portion 24 of the vehicle 10 proximate a roof portion 26.
Imaging device C3 is disposed centrally on a front facing portion 28 of the vehicle 10 proximate a front grill portion 30. In addition to imaging device C3, or alternatively thereto, imaging device C3′ may be disposed centrally on a front facing portion 32 of the vehicle proximate the roof portion 26. Imaging devices C1 (and/or C1′) and C3 (and/or C3′) are oriented such that the corresponding fields of view encompass substantially the entire operating environment 14 in the aft and fore directions relative to the vehicle 10.
Imaging devices C4 and C5 are disposed on a passenger side 34 and a driver side 36, respectively, and are configured to capture image data corresponding to the operating environment 14 to the sides of the vehicle 10. In some implementations, imaging device C4 is disposed proximate a passenger side mirror 38 and imaging device C5 is disposed proximate a driver side mirror 40. Imaging devices C4 and C5, in combination with imaging devices C1 and C3, are configured to capture image data corresponding to approximately the entire operating environment 14 surrounding the vehicle 10. However, when the vehicle is towing the trailer 12, the trailer 12 may occlude a large portion of a rearward facing field of view from the vehicle 10.
Imaging device C2 may be configure to operate in combination with the imaging devices C1 and C3-C5 to provide a combined field of view of the operating environment 14 surrounding the vehicle 10 and the trailer 12. Imaging device C2 may be disposed on a rear structure 42 of the trailer 12. Imaging device C2 may be located centrally in an upper portion 44 of the trailer 12 and have a rearward facing field of view relative to the trailer 12. Imaging device C2 can be variously located depending on trailer type and trailer geometry. In various implementations, the imaging device C2 may have a substantially rearward facing field of view configured to capture image data corresponding to the operating environment 14 that may be occluded from imaging devices C1 and C3-C5 by the trailer 12.
Referring to
Referring to
In the various implementations discussed herein, each of the fields of view 62-70 may be combined in any combination to form various expanded fields of view and corresponding viewing angles based on operating states and relative orientations of the vehicle 10 and the trailer 12. The operating states and relative orientations of the vehicle 10 and the trailer 12 may be determined from the heading of the vehicle 10, the velocity of the vehicle 10, the steering angle δ, and the hitch angle γ between the vehicle 10 and the trailer 12. In some implementations, the fields of view 62-70 may also be combined to form a composite aerial view or bird's eye view of the vehicle 10 and the trailer 12. Information related to the operating state and orientation of the vehicle 10 relative to the trailer 12 may also be utilized to generate a simulated aerial view of the vehicle 10 and the trailer 12 demonstrating the hitch angle γ about point 80.
The various views of the vehicle 10 and the trailer 12, as discussed herein, may be generated and displayed by a controller on the display 13 such that an operator of the vehicle 10 may view the information corresponding to the vehicle 10, the trailer 12, and the surrounding operating environment 14. The display 13 may be implemented in the vehicle 10 as a center stack monitor, rear view display mirror, gauge cluster monitor, a heads-up display, or any other device configured to present the image data processed from the imaging devices C1-C5. The image data from the imaging devices C1-C5 may be raw image data, lens corrected camera image data, composite image data, or any other form of image data captured by the imaging devices C1-C5 or any other form of imaging device.
Referring to
The controller 82 may also be in communication with a first navigational system 88 that includes a GPS device 90, a compass 92, and one or more inertial sensors 94, each of which can be equipment already on-board the vehicle 10. The GPS device 90 can include GPS receiver 91 and is operable to determine a global position and location of the vehicle 10 and communicate the position and location to the controller 82. The compass 92 can be operable to determine the heading direction of the vehicle 10 relative to a geographic compass direction and communicate the heading direction to the controller 82. The inertial sensors 94 can be operable to determine the motion and rotation of the vehicle 10. They may include one or more motion sensors 96 (e.g. an accelerometer) and rotation sensors 98 (e.g. a gyroscope).
The controller 82 may further be in communication with a second navigational system 100, which can include a GPS receiver 102 and one or more inertial sensors 104. According to one implementation, GPS receiver 102 is integrated with imaging device C2. Optionally, inertial sensors 104 may also be integrated with imaging device C2, which can be configured as the portable electronic device 46 shown in
GPS receiver 102 may be operable to determine a global position and location of the trailer 12 and communicate the position and location to the controller 82. Inertial sensors 104 may be operable to determine the motion and rotation of the trailer 12 and can include any sensor configurations described herein. By providing a navigational system 100 on the trailer 12, the hitch angle γ between the vehicle 10 and the trailer 12 can be determined without the need for image based target recognition. This would also eliminate the need for an operator to attach a target (e.g. target 18) on the trailer 12 or perform vehicle/trailer measurements related to setting up an image based target detection system.
In one implementation, the controller 82 can calculate the hitch angle γ by comparing the vehicle position to the trailer position using vehicle position data received from GPS receiver 91 and trailer position data received from GPS receiver 102. In another implementation, the controller 82 may include a hitch angle detection module 106 configured to alternate between receiving vehicle position data outputted from GPS receiver 91 and trailer position data outputted from GPS receiver 102. The hitch angle detection module 106 can include a Kalman filter 108 for smoothing and extrapolating a vehicle position and a trailer position from the vehicle position data and the trailer position data and subsequently computing a hitch angle γ based on the extrapolated vehicle position and the extrapolated trailer position. In yet another implementation, the controller 82 may calculate the hitch angle γ based on data received from the inertial sensors 94 associated with the vehicle 10 and the inertial sensors 104 associated with the trailer 12. For instance, inertial sensors 94 and 104 can provide the controller 82 with data related to an instantaneous vehicle direction and an instantaneous trailer direction, respectively, which the controller 82 can use to calculate the hitch angle γ. In yet another implementation, the controller 82 may utilize position data for the vehicle 10 as a reference to compute differential position biases for the trailer 12 and vice versa. Doing so may result in more accurate relative position calculations between the vehicle 10 and the trailer 12, thereby resulting in more precise hitch angle γ calculations. It should be appreciated that each of the abovementioned implementations can be combined or performed separately.
As is further shown in
The controller 82 may include a memory 120 coupled to one or more processors 122 for executing instructions 124 stored in the memory 120. The memory 120 and instructions 124 together define an example of a non-transient processor-readable medium. The controller 82 may further include a plurality of modules for combining the image data received from the imaging devices C1-C5 with satellite image data (e.g. from GPS device 90) to form various composite views of the operating environment 14 surrounding the vehicle 10 and the trailer 12. The plurality of modules may include a distortion correction module 126, a view conversion module 128, an image trimming/scaling module 130, an image reference identification module 132, and an image compositor 134.
To generate a composite view combining imaging data corresponding to two or more of the image devices C1-C5, the controller 82 may receive image data from the imaging devices C1-C5 and correct any distortion in the image data with the distortion correction module 126. Distortion in the image data may be the result of lens distortion, viewpoint correction, or any other form of distortion common in imaging devices. The view conversion module 128 may the convert a viewpoint of the image data. A viewpoint correction may correspond to altering the orientation of a perspective of the image data corresponding to a field of view of an imaging device. For example, the image data may be adjusted from a side view to an aerial view. The image data from each of the two or more imaging devices may then be trimmed and scaled by the image trimming/scaling module 130 and combined in the image compositor 134. The composite image data output by the compositor 134 may form an expanded field of view, an aerial view, or any combination of the image data received from the imaging devices C1-C5.
In some implementations, the relative location of the image data received from the two or more imaging devices may further be aligned by the image reference identification module 132. The image reference identification module 132 may be operable to detect and identify objects in the image data received from each of the imaging devices C1-C5 and utilize objects in different fields of view to align and accurately combine the image data. The image compositor 134 may further be able to identify occluded and/or missing image data and request satellite image data or other feature data from the GPS device 90 to further supplement and enhance the composite image data. The resulting enhanced composite image data may then be output to the screen 86 for display to the operator of the vehicle 10.
Referring to
The controller 82 may further utilize the hitch angle γ to process and compare image data of the trailer 12 in different positions relative to the vehicle 10 to gain additional image data to determine the proportions, approximate dimensions, and shape of the trailer 12. The hitch angle γ may further be utilized by the controller 82 to display the trailer model 138 relative to the vehicle model 136 at the corresponding hitch angle γ. By demonstrating the vehicle model 136 and the trailer model 138, the controller 82 may provide useful information to the operator of the vehicle 10. In some implementations, a graphic outline simulating the trailer 12 may also be included in the image data displayed on the screen 86 for a reference to the operator of the vehicle 10 to demonstrate the position of the trailer model 138 relative to the vehicle model 136 and an operating environment model 140. Based on the determined proportions, approximate dimensions, and shape of the trailer 12, the controller 82 may automatically select a trailer graphic or a stock image of a trailer model 138 from a library of trailer images or graphics via memory 120.
A plurality of environmental features 142 may also be displayed on the screen 86 by the controller 82. The environmental features 142 may be incorporated in the image data displayed on the screen 86 to demonstrate a location of the environmental features 142 relative to the vehicle model 136 and the trailer model 138. The locations of the environmental features 142 may be extrapolated from the composite image data captured by the imaging devices C1-C5 by the image reference identification module 132 of the controller 82. Each of the environmental features 142 may be identified based on one or more feature identification algorithms configured to identify various natural and man-made features that may obstruct the path of the vehicle 10 and the trailer 12. Additionally or alternatively, sensors and/or radar may be used for detecting environmental features that may be in the path of the vehicle 10 and the trailer 12.
The environmental features 142 may be identified and incorporated in the aerial view based on image data, satellite image data, and any other data corresponding to the position and heading of the vehicle 10. Based on the position and heading of the vehicle 10, the environmental features 142 may be added to the composite image data and located on the screen 86 relative to the vehicle model 136 and the trailer model 138 by utilizing global positions of each of the environmental features 142. The location of the environmental features 142 may be determined by the controller 82 from the GPS device 90 and the compass 92. By enhancing the aerial view with satellite image data, the controller 82 may provide additional information that may be used in addition to the information identified from the imaging devices C1-C5. In some implementations, satellite image data may further be utilized by the controller 82 to provide information corresponding to a region that may be occluded from the fields of view 62-70 of the imaging devices C1-C5.
The screen 86 of display 13 may be configured as a touchscreen of any type such as a resistive type, capacitive type, surface acoustic type, infrared type, and optical type. The plurality of user inputs 84 may be implemented as soft keys and provide options for the operator of the vehicle 10 to alter a view displayed by the controller 82. The soft keys may allow the operator of the vehicle 10 to view the operating environment 140 and select a view corresponding to each of the imaging devices C1-C5, a combination of the imaging devices C1-C5, or the composite aerial view. The soft keys may further provide an option for a manual mode to manually control the view displayed on the screen 86 or an automatic mode to automatically control the view displayed on the screen 86.
While the composite aerial view is selected, an operator of the vehicle 10 may touch soft key 144 to enter a path input mode. When the path input mode is activated, the controller 82 may prompt the display 13 to display a path input screen 145 as shown in
According to one implementation, the screen 86 is configured to register a touch event that inputs an intended backing path for the vehicle 10 and the trailer 12. Before the intended backing path can be inputted, certain prerequisite conditions may be required. For instance, it may be required for the gear selection device 116 of the vehicle 10 to be in either a park or a reverse position and that the vehicle 10 and the trailer 12 be aligned with one another. To input an intended backing path, the operator of the vehicle 10 may touch the new path soft key 151 and then trace the intended backing path on the screen 86. At any point, the operator may touch the exit soft key 153 to exit the path input mode.
An intended backing path 152 is exemplarily shown in
When the intended backing path 152 has been traced, the operator may touch soft key 156 to accept the intended backing path 152 or otherwise touch soft key 158 to trace a new one. While the intended backing path 152 is being traced or afterwards, the controller 82 may determine if any unacceptable path conditions are present. An unacceptable path condition may arise if any traced portions of the intended backing path 152 would result in a hitch angle γ between the vehicle 10 and the trailer 12 exceeding a maximum hitch angle γ, thereby creating a possible jackknife condition. Another unacceptable path condition may arise if one or more obstacles block the intended backing path 152. If one or more unacceptable path conditions arise, the controller 82 may generate a warning to the operator indicating that the intended backing path 152 requires revision or that a new intended backing path needs to be inputted. The warning may be of any type intended to stimulate the senses of an operator and may include warnings that are visual, auditory, tactile, or a combination thereof.
In
According to one implementation shown in
Once a backing path has been entered via soft key 168, the controller 82 may extrapolate GPS coordinates for all points along the backing path. The controller 82 may work in conjunction with the GPS device 90 and send instructions to the powertrain system 110, steering system 112, and/or brake system 114 to back the vehicle 10 and the trailer 12 along the inputted backing path. Depending on which systems 110, 112, 114 are employed, the backing maneuver may be completely autonomous or require some actions on the part of the operator of the vehicle 10. While the vehicle 10 and the trailer 12 are backing along the backing path, the operator may adjust the path curvature using the steering input apparatus 118 and/or performing another touch event on the screen 86 (e.g. dragging a traced portion of the backing path). The final resulting backing path may be saved to the GPS device 90 or other location, either manually or automatically. Additionally, the GPS coordinates along with the orientation of the vehicle 10 and trailer 12 may also be saved to the GPS device 90 and/or other location. In this manner, an operator performing repetitive backing maneuvers can simply retrieve and order a saved backing path to be performed instead of having to manually input the backing path each time. Similarly, when an operator pulls of a parking spot, the corresponding pull out path may also be saved accordingly and may be subsequently or concurrently displayed as an overlay on the screen 86. It should be appreciated that an operator may input a pull out path via one or more touch events in a similar way to inputting a backing path, as described herein. Furthermore, saved backing and/or pull out paths may be offered as suggested paths when applicable.
Referring now to
The systems and methods described herein may offer improvements to the functionality of a trailer backup assist system. Though the systems and methods were described and illustrated herein as being implemented on a specific vehicle and trailer, it should be appreciated that the systems and methods described herein may be utilized with any vehicle and trailer combination in accordance with the disclosure.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This patent application is continuation-in-part of U.S. patent application Ser. No. 14/289,888, which was filed on May 29, 2014, entitled “DISPLAY SYSTEM UTILIZING VEHICLE AND TRAILER DYNAMICS,” which is a continuation-in-part of U.S. patent application Ser. No. 14/256,427, which was filed on Apr. 18, 2014, entitled “CONTROL FOR TRAILER BACKUP ASSIST SYSTEM,” which is a continuation-in-part of U.S. patent application Ser. No. 14/249,781, which was filed on Apr. 10, 2014, entitled “SYSTEM AND METHOD FOR CALCULATING A HORIZONTAL CAMERA TO TARGET DISTANCE,” which is a continuation-in-part of U.S. patent application Ser. No. 14/188,213, which was filed on Feb. 24, 2014, entitled “SENSOR SYSTEM AND METHOD FOR MONITORING TRAILER HITCH ANGLE,” which is a continuation-in-part of U.S. patent application Ser. No. 13/847,508, which was filed on Mar. 20, 2013, entitled “HITCH ANGLE ESTIMATION.” U.S. patent application Ser. No. 14/188,213 is also a continuation-in-part of U.S. patent application Ser. No. 14/068,387, which was filed on Oct. 31, 2013, entitled “TRAILER MONITORING SYSTEM AND METHOD,” which is a continuation-in-part of U.S. patent application Ser. No. 14/059,835, which was filed on Oct. 22, 2013, entitled “TRAILER BACKUP ASSIST SYSTEM,” which is a continuation-in-part of U.S. patent application Ser. No. 13/443,743 which was filed on Apr. 10, 2012, entitled “DETECTION OF AND COUNTERMEASURES FOR JACKKNIFE ENABLING CONDITIONS DURING TRAILER BACKUP ASSIST,” which is a continuation-in-part of U.S. patent application Ser. No. 13/336,060, which was filed on Dec. 23, 2011, entitled “TRAILER PATH CURVATURE CONTROL FOR TRAILER BACKUP ASSIST,” which claims benefit from U.S. Provisional Patent Application No. 61/477,132, which was filed on Apr. 19, 2011, entitled “TRAILER BACKUP ASSIST CURVATURE CONTROL.” U.S. patent application Ser. No. 14/249,781 is also a continuation-in-part of U.S. patent application Ser. No. 14/161,832 which was filed Jan. 23, 2014, entitled “SUPPLEMENTAL VEHICLE LIGHTING SYSTEM FOR VISION BASED TARGET DETECTION,” which is a continuation-in-part of U.S. patent application Ser. No. 14/059,835 which was filed on Oct. 22, 2013, entitled “TRAILER BACKUP ASSIST SYSTEM.” Furthermore, U.S. patent application Ser. No. 14/249,781 is a continuation-in-part of U.S. application Ser. No. 14/201,130 which was filed on Mar. 7, 2014, entitled “SYSTEM AND METHOD OF CALIBRATING A TRAILER BACKUP ASSIST SYSTEM,” which is a continuation-in-part of U.S. patent application Ser. No. 14/068,387, which was filed on Oct. 31, 2013, entitled “TRAILER MONITORING SYSTEM AND METHOD.” The aforementioned related applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3605088 | Savelli | Sep 1971 | A |
3833928 | Gavit et al. | Sep 1974 | A |
3924257 | Roberts | Dec 1975 | A |
4044706 | Gill | Aug 1977 | A |
4430637 | Koch-Ducker et al. | Feb 1984 | A |
4846094 | Woods | Jul 1989 | A |
4848499 | Martinet et al. | Jul 1989 | A |
4897642 | DiLullo et al. | Jan 1990 | A |
4947097 | Tao | Aug 1990 | A |
5097250 | Hernandez | Mar 1992 | A |
5132851 | Bomar et al. | Jul 1992 | A |
5155683 | Rahim | Oct 1992 | A |
5191328 | Nelson | Mar 1993 | A |
5235316 | Qualizza | Aug 1993 | A |
5247442 | Kendall | Sep 1993 | A |
5455557 | Noll et al. | Oct 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5650764 | McCullough | Jul 1997 | A |
5690347 | Juergens et al. | Nov 1997 | A |
5734336 | Smithline | Mar 1998 | A |
5781662 | Mori et al. | Jul 1998 | A |
5905433 | Wortham | May 1999 | A |
5951035 | Phillips, Jr. et al. | Sep 1999 | A |
5957232 | Shimizu et al. | Sep 1999 | A |
5999091 | Wortham | Dec 1999 | A |
6041582 | Tiede et al. | Mar 2000 | A |
6100795 | Otterbacher et al. | Aug 2000 | A |
6178650 | Thibodeaux | Jan 2001 | B1 |
6182010 | Berstis | Jan 2001 | B1 |
6198992 | Winslow | Mar 2001 | B1 |
6226226 | Lill et al. | May 2001 | B1 |
6351698 | Kubota et al. | Feb 2002 | B1 |
6366202 | Rosenthal | Apr 2002 | B1 |
6411898 | Ishida et al. | Jun 2002 | B2 |
6434486 | Studt et al. | Aug 2002 | B1 |
6480104 | Wall et al. | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6526335 | Treyz et al. | Feb 2003 | B1 |
6539288 | Ishida et al. | Mar 2003 | B2 |
6573833 | Rosenthal | Jun 2003 | B1 |
6577952 | Geier et al. | Jun 2003 | B2 |
6580984 | Fecher et al. | Jun 2003 | B2 |
6604592 | Pietsch et al. | Aug 2003 | B2 |
6643576 | O Connor et al. | Nov 2003 | B1 |
6683539 | Trajkovic et al. | Jan 2004 | B2 |
6801125 | McGregor et al. | Oct 2004 | B1 |
6816765 | Yamamoto et al. | Nov 2004 | B2 |
6837432 | Tsikos et al. | Jan 2005 | B2 |
6847916 | Ying | Jan 2005 | B1 |
6857494 | Kobayashi et al. | Feb 2005 | B2 |
6933837 | Gunderson et al. | Aug 2005 | B2 |
6959970 | Tseng | Nov 2005 | B2 |
6970184 | Hirama et al. | Nov 2005 | B2 |
6989739 | Li | Jan 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7026957 | Rubenstein | Apr 2006 | B2 |
7047117 | Akiyama et al. | May 2006 | B2 |
7085634 | Endo et al. | Aug 2006 | B2 |
7089101 | Fischer et al. | Aug 2006 | B2 |
7136754 | Hahn et al. | Nov 2006 | B2 |
7142098 | Lang et al. | Nov 2006 | B2 |
7154385 | Lee et al. | Dec 2006 | B2 |
7161616 | Okamoto | Jan 2007 | B1 |
7175194 | Ball | Feb 2007 | B2 |
7204504 | Gehring et al. | Apr 2007 | B2 |
7207041 | Elson et al. | Apr 2007 | B2 |
7220217 | Tamai et al. | May 2007 | B2 |
7225891 | Gehring et al. | Jun 2007 | B2 |
7229139 | Lu et al. | Jun 2007 | B2 |
7239958 | Grougan et al. | Jul 2007 | B2 |
7266435 | Wang et al. | Sep 2007 | B2 |
7309075 | Ramsey et al. | Dec 2007 | B2 |
7310084 | Shitanaka et al. | Dec 2007 | B2 |
7315299 | Sunda et al. | Jan 2008 | B2 |
7319927 | Sun et al. | Jan 2008 | B1 |
7352388 | Miwa et al. | Apr 2008 | B2 |
7353110 | Kim | Apr 2008 | B2 |
7366892 | Spaur et al. | Apr 2008 | B2 |
7401871 | Lu et al. | Jul 2008 | B2 |
7425889 | Widmann et al. | Sep 2008 | B2 |
7451020 | Goetting et al. | Nov 2008 | B2 |
7463137 | Wishart et al. | Dec 2008 | B2 |
7505784 | Barbera | Mar 2009 | B2 |
7537256 | Gates et al. | May 2009 | B2 |
7552009 | Nelson | Jun 2009 | B2 |
7602782 | Doviak et al. | Oct 2009 | B2 |
7623952 | Unruh et al. | Nov 2009 | B2 |
7640108 | Shimizu et al. | Dec 2009 | B2 |
7689253 | Basir | Mar 2010 | B2 |
7690737 | Lu | Apr 2010 | B2 |
7692557 | Medina et al. | Apr 2010 | B2 |
7693661 | Iwasaka | Apr 2010 | B2 |
7715953 | Shepard | May 2010 | B2 |
7777615 | Okuda et al. | Aug 2010 | B2 |
7783699 | Rasin et al. | Aug 2010 | B2 |
7786849 | Buckley | Aug 2010 | B2 |
7801941 | Conneely et al. | Sep 2010 | B2 |
7825782 | Hermann | Nov 2010 | B2 |
7827047 | Anderson et al. | Nov 2010 | B2 |
7840347 | Noguchi | Nov 2010 | B2 |
7904222 | Lee et al. | Mar 2011 | B2 |
7907975 | Sakamoto et al. | Mar 2011 | B2 |
7917081 | Voto et al. | Mar 2011 | B2 |
7932623 | Burlak et al. | Apr 2011 | B2 |
7932815 | Martinez et al. | Apr 2011 | B2 |
7950751 | Offerle et al. | May 2011 | B2 |
7969326 | Sakakibara | Jun 2011 | B2 |
7974444 | Hongo | Jul 2011 | B2 |
8009025 | Engstrom et al. | Aug 2011 | B2 |
8010252 | Getman et al. | Aug 2011 | B2 |
8019592 | Fukuoka et al. | Sep 2011 | B2 |
8024743 | Werner | Sep 2011 | B2 |
8033955 | Farnsworth | Oct 2011 | B2 |
8036792 | Dechamp | Oct 2011 | B2 |
8037500 | Margis et al. | Oct 2011 | B2 |
8038166 | Piesinger | Oct 2011 | B1 |
8044776 | Schofield et al. | Oct 2011 | B2 |
8044779 | Hahn et al. | Oct 2011 | B2 |
8121802 | Grider et al. | Feb 2012 | B2 |
8131458 | Zilka | Mar 2012 | B1 |
8140138 | Chrumka | Mar 2012 | B2 |
8150474 | Saito et al. | Apr 2012 | B2 |
8165770 | Getman et al. | Apr 2012 | B2 |
8169341 | Toledo et al. | May 2012 | B2 |
8174576 | Akatsuka et al. | May 2012 | B2 |
8179238 | Roberts, Sr. et al. | May 2012 | B2 |
8195145 | Angelhag | Jun 2012 | B2 |
8205704 | Kadowaki et al. | Jun 2012 | B2 |
8244442 | Craig et al. | Aug 2012 | B2 |
8245270 | Cooperstein et al. | Aug 2012 | B2 |
8255007 | Saito et al. | Aug 2012 | B2 |
8267485 | Barlsen et al. | Sep 2012 | B2 |
8270933 | Riemer et al. | Sep 2012 | B2 |
8280607 | Gatti et al. | Oct 2012 | B2 |
8308182 | Ortmann et al. | Nov 2012 | B2 |
8310353 | Hinninger et al. | Nov 2012 | B2 |
8315617 | Tadayon et al. | Nov 2012 | B2 |
8319618 | Gomi | Nov 2012 | B2 |
8319663 | Von Reyher et al. | Nov 2012 | B2 |
8352575 | Samaha | Jan 2013 | B2 |
8362888 | Roberts, Sr. et al. | Jan 2013 | B2 |
8370056 | Trombley et al. | Feb 2013 | B2 |
8374749 | Tanaka | Feb 2013 | B2 |
8380416 | Offerle et al. | Feb 2013 | B2 |
8392066 | Ehara et al. | Mar 2013 | B2 |
8401744 | Chiocco | Mar 2013 | B2 |
8406956 | Wey et al. | Mar 2013 | B2 |
8417263 | Jenkins et al. | Apr 2013 | B2 |
8417417 | Chen et al. | Apr 2013 | B2 |
8417444 | Smid et al. | Apr 2013 | B2 |
8427288 | Schofield et al. | Apr 2013 | B2 |
8451107 | Lu et al. | May 2013 | B2 |
8471691 | Zhang et al. | Jun 2013 | B2 |
8473575 | Marchwicki et al. | Jun 2013 | B2 |
8494439 | Faenger | Jul 2013 | B2 |
8498757 | Bowden et al. | Jul 2013 | B2 |
8538785 | Coleman et al. | Sep 2013 | B2 |
8548680 | Ryerson et al. | Oct 2013 | B2 |
8560175 | Bammert et al. | Oct 2013 | B2 |
8571758 | Klier et al. | Oct 2013 | B2 |
8626382 | Obradovich | Jan 2014 | B2 |
8755984 | Rupp et al. | Jun 2014 | B2 |
8786417 | Holmen et al. | Jul 2014 | B2 |
8788204 | Shimizu | Jul 2014 | B2 |
8797190 | Kolbe | Aug 2014 | B2 |
8798860 | Dechamp | Aug 2014 | B2 |
8807261 | Subrt et al. | Aug 2014 | B2 |
8823796 | Shen et al. | Sep 2014 | B2 |
8868329 | Ikeda | Oct 2014 | B2 |
8888120 | Trevino | Nov 2014 | B2 |
8892360 | Otani | Nov 2014 | B2 |
8909426 | Rhode et al. | Dec 2014 | B2 |
8928757 | Maekawa et al. | Jan 2015 | B2 |
8930140 | Trombley et al. | Jan 2015 | B2 |
9008913 | Sears et al. | Apr 2015 | B1 |
9013286 | Chen et al. | Apr 2015 | B2 |
9042603 | Elwart et al. | May 2015 | B2 |
9082315 | Lin et al. | Jul 2015 | B2 |
9094583 | Shih et al. | Jul 2015 | B2 |
9102271 | Trombley et al. | Aug 2015 | B2 |
9114832 | Wang et al. | Aug 2015 | B2 |
9120359 | Chiu et al. | Sep 2015 | B2 |
9132856 | Shepard | Sep 2015 | B2 |
9208686 | Takamatsu | Dec 2015 | B2 |
9248858 | Lavoie et al. | Feb 2016 | B2 |
9315212 | Kyrtsos et al. | Apr 2016 | B1 |
9335162 | Kyrtsos et al. | May 2016 | B2 |
20020005780 | Ehrlich et al. | Jan 2002 | A1 |
20020098853 | Chrumka | Jul 2002 | A1 |
20020111118 | Klitsner | Aug 2002 | A1 |
20030079123 | Mas Ribes | Apr 2003 | A1 |
20030147534 | Ablay et al. | Aug 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20030234512 | Holub | Dec 2003 | A1 |
20040119822 | Custer et al. | Jun 2004 | A1 |
20040203660 | Tibrewal et al. | Oct 2004 | A1 |
20040207525 | Wholey et al. | Oct 2004 | A1 |
20040260438 | Chernetsky et al. | Dec 2004 | A1 |
20050000738 | Gehring et al. | Jan 2005 | A1 |
20050073433 | Gunderson et al. | Apr 2005 | A1 |
20050074143 | Kawai | Apr 2005 | A1 |
20050091408 | Parupudi et al. | Apr 2005 | A1 |
20050128059 | Vause | Jun 2005 | A1 |
20050146607 | Linn et al. | Jul 2005 | A1 |
20050168331 | Gunderson | Aug 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050206225 | Offerle et al. | Sep 2005 | A1 |
20050206231 | Lu et al. | Sep 2005 | A1 |
20050206299 | Nakamura et al. | Sep 2005 | A1 |
20050236201 | Spannheimer et al. | Oct 2005 | A1 |
20050236896 | Offerle et al. | Oct 2005 | A1 |
20060071447 | Gehring et al. | Apr 2006 | A1 |
20060076828 | Lu et al. | Apr 2006 | A1 |
20060089794 | DePasqua | Apr 2006 | A1 |
20060092129 | Choquet et al. | May 2006 | A1 |
20060103511 | Lee et al. | May 2006 | A1 |
20060111820 | Goetting et al. | May 2006 | A1 |
20060142936 | Dix | Jun 2006 | A1 |
20060156315 | Wood et al. | Jul 2006 | A1 |
20060190097 | Rubenstein | Aug 2006 | A1 |
20060238538 | Kapler | Oct 2006 | A1 |
20060244579 | Raab | Nov 2006 | A1 |
20060250501 | Widmann et al. | Nov 2006 | A1 |
20060276959 | Matsuoka | Dec 2006 | A1 |
20060287821 | Lin | Dec 2006 | A1 |
20060293800 | Bauer et al. | Dec 2006 | A1 |
20070027581 | Bauer et al. | Feb 2007 | A1 |
20070057816 | Sakakibara et al. | Mar 2007 | A1 |
20070106466 | Noguchi | May 2007 | A1 |
20070132560 | Nystrom et al. | Jun 2007 | A1 |
20070132573 | Quach et al. | Jun 2007 | A1 |
20070198190 | Bauer et al. | Aug 2007 | A1 |
20070216136 | Dietz | Sep 2007 | A1 |
20070260395 | Matsuoka | Nov 2007 | A1 |
20080027599 | Logan | Jan 2008 | A1 |
20080027635 | Tengler et al. | Jan 2008 | A1 |
20080148374 | Spaur et al. | Jun 2008 | A1 |
20080177443 | Lee et al. | Jul 2008 | A1 |
20080180526 | Trevino | Jul 2008 | A1 |
20080186384 | Ishii et al. | Aug 2008 | A1 |
20080231701 | Greenwood et al. | Sep 2008 | A1 |
20080312792 | Dechamp | Dec 2008 | A1 |
20080313050 | Basir | Dec 2008 | A1 |
20090005932 | Lee et al. | Jan 2009 | A1 |
20090045924 | Roberts, Sr. et al. | Feb 2009 | A1 |
20090063053 | Basson et al. | Mar 2009 | A1 |
20090075624 | Cox et al. | Mar 2009 | A1 |
20090079828 | Lee et al. | Mar 2009 | A1 |
20090082935 | Leschuk et al. | Mar 2009 | A1 |
20090093928 | Getman et al. | Apr 2009 | A1 |
20090106036 | Tamura et al. | Apr 2009 | A1 |
20090117890 | Jacobsen et al. | May 2009 | A1 |
20090138151 | Smid | May 2009 | A1 |
20090140064 | Schultz et al. | Jun 2009 | A1 |
20090219147 | Bradley et al. | Sep 2009 | A1 |
20090253466 | Saito et al. | Oct 2009 | A1 |
20090271078 | Dickinson | Oct 2009 | A1 |
20090306854 | Dechamp | Dec 2009 | A1 |
20090318119 | Basir et al. | Dec 2009 | A1 |
20100060739 | Salazar | Mar 2010 | A1 |
20100063670 | Brzezinski et al. | Mar 2010 | A1 |
20100098853 | Hoffmann et al. | Apr 2010 | A1 |
20100114471 | Sugiyama | May 2010 | A1 |
20100152989 | Smith et al. | Jun 2010 | A1 |
20100156671 | Lee et al. | Jun 2010 | A1 |
20100157061 | Katsman et al. | Jun 2010 | A1 |
20100171828 | Ishii | Jul 2010 | A1 |
20100174422 | Jacobsen | Jul 2010 | A1 |
20100191421 | Nilsson | Jul 2010 | A1 |
20100198491 | Mays | Aug 2010 | A1 |
20100222964 | Dechamp | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100305815 | Trueman et al. | Dec 2010 | A1 |
20100306309 | Santori et al. | Dec 2010 | A1 |
20100324770 | Ramsey et al. | Dec 2010 | A1 |
20110022282 | Wu et al. | Jan 2011 | A1 |
20110025482 | Alguera et al. | Feb 2011 | A1 |
20110063425 | Tieman | Mar 2011 | A1 |
20110088659 | Wang et al. | Apr 2011 | A1 |
20110102583 | Kinzalow | May 2011 | A1 |
20110110530 | Kimura | May 2011 | A1 |
20110112721 | Wang et al. | May 2011 | A1 |
20110112762 | Gruijters et al. | May 2011 | A1 |
20110125457 | Lee et al. | May 2011 | A1 |
20110129093 | Karam et al. | Jun 2011 | A1 |
20110140872 | McClure | Jun 2011 | A1 |
20110149077 | Robert | Jun 2011 | A1 |
20110153198 | Kokkas et al. | Jun 2011 | A1 |
20110160956 | Chung et al. | Jun 2011 | A1 |
20110181457 | Basten | Jul 2011 | A1 |
20110185390 | Faenger et al. | Jul 2011 | A1 |
20110195659 | Boll et al. | Aug 2011 | A1 |
20110216199 | Trevino et al. | Sep 2011 | A1 |
20110257860 | Getman et al. | Oct 2011 | A1 |
20110281522 | Suda | Nov 2011 | A1 |
20110296037 | Westra et al. | Dec 2011 | A1 |
20120004805 | Gray et al. | Jan 2012 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120062744 | Schofield et al. | Mar 2012 | A1 |
20120065815 | Hess | Mar 2012 | A1 |
20120079002 | Boll et al. | Mar 2012 | A1 |
20120084292 | Liang et al. | Apr 2012 | A1 |
20120086808 | Lynam et al. | Apr 2012 | A1 |
20120095649 | Klier et al. | Apr 2012 | A1 |
20120185131 | Headley | Jul 2012 | A1 |
20120191285 | Woolf et al. | Jul 2012 | A1 |
20120200706 | Greenwood et al. | Aug 2012 | A1 |
20120224059 | Takamatsu | Sep 2012 | A1 |
20120265416 | Lu et al. | Oct 2012 | A1 |
20120271512 | Rupp et al. | Oct 2012 | A1 |
20120271514 | Lavoie et al. | Oct 2012 | A1 |
20120271515 | Rhode et al. | Oct 2012 | A1 |
20120271522 | Rupp et al. | Oct 2012 | A1 |
20120283909 | Dix | Nov 2012 | A1 |
20120283910 | Lee et al. | Nov 2012 | A1 |
20120288156 | Kido | Nov 2012 | A1 |
20120290150 | Doughty | Nov 2012 | A1 |
20120314073 | Shimoda et al. | Dec 2012 | A1 |
20120316732 | Auer | Dec 2012 | A1 |
20130006472 | McClain et al. | Jan 2013 | A1 |
20130024064 | Shepard | Jan 2013 | A1 |
20130027195 | Van Wiemeersch et al. | Jan 2013 | A1 |
20130038436 | Brey et al. | Feb 2013 | A1 |
20130041524 | Brey | Feb 2013 | A1 |
20130046559 | Coleman | Feb 2013 | A1 |
20130057397 | Cutler et al. | Mar 2013 | A1 |
20130076007 | Goode et al. | Mar 2013 | A1 |
20130148748 | Suda | Jun 2013 | A1 |
20130158803 | Headley | Jun 2013 | A1 |
20130158863 | Skvarce | Jun 2013 | A1 |
20130158872 | Shimizu | Jun 2013 | A1 |
20130166190 | Ikeda | Jun 2013 | A1 |
20130226390 | Luo et al. | Aug 2013 | A1 |
20130250114 | Lu | Sep 2013 | A1 |
20130253814 | Wirthlin | Sep 2013 | A1 |
20130268160 | Trombley et al. | Oct 2013 | A1 |
20140005918 | Qiang | Jan 2014 | A1 |
20140012465 | Shank et al. | Jan 2014 | A1 |
20140025260 | McClure | Jan 2014 | A1 |
20140052337 | Lavoie et al. | Feb 2014 | A1 |
20140058614 | Trombley et al. | Feb 2014 | A1 |
20140058622 | Trombley et al. | Feb 2014 | A1 |
20140058655 | Trombley et al. | Feb 2014 | A1 |
20140058668 | Trombley et al. | Feb 2014 | A1 |
20140074401 | Otani | Mar 2014 | A1 |
20140074743 | Rademaker | Mar 2014 | A1 |
20140085472 | Lu | Mar 2014 | A1 |
20140088797 | McClain et al. | Mar 2014 | A1 |
20140088824 | Ishimoto | Mar 2014 | A1 |
20140121883 | Shen et al. | May 2014 | A1 |
20140121930 | Allexi et al. | May 2014 | A1 |
20140156148 | Kikuchi | Jun 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140172232 | Rupp et al. | Jun 2014 | A1 |
20140188344 | Lavoie | Jul 2014 | A1 |
20140188346 | Lavoie | Jul 2014 | A1 |
20140210456 | Crossman | Jul 2014 | A1 |
20140218506 | Trombley et al. | Aug 2014 | A1 |
20140218522 | Lavoie et al. | Aug 2014 | A1 |
20140222288 | Lavoie et al. | Aug 2014 | A1 |
20140236532 | Trombley et al. | Aug 2014 | A1 |
20140249691 | Hafner et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140267689 | Lavoie | Sep 2014 | A1 |
20140267727 | Alaniz | Sep 2014 | A1 |
20140277941 | Chiu et al. | Sep 2014 | A1 |
20140277942 | Kyrtsos et al. | Sep 2014 | A1 |
20140297128 | Lavoie et al. | Oct 2014 | A1 |
20140297129 | Lavoie et al. | Oct 2014 | A1 |
20140303847 | Lavoie | Oct 2014 | A1 |
20140309888 | Smit et al. | Oct 2014 | A1 |
20140324295 | Lavoie et al. | Oct 2014 | A1 |
20140343795 | Lavoie | Nov 2014 | A1 |
20140361955 | Goncalves | Dec 2014 | A1 |
20140379217 | Rupp et al. | Dec 2014 | A1 |
20150002670 | Bajpai | Jan 2015 | A1 |
20150057903 | Rhode et al. | Feb 2015 | A1 |
20150066296 | Trombley et al. | Mar 2015 | A1 |
20150084755 | Chen | Mar 2015 | A1 |
20150094945 | Cheng | Apr 2015 | A1 |
20150115571 | Zhang et al. | Apr 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150120143 | Schlichting | Apr 2015 | A1 |
20150134183 | Lavoie et al. | May 2015 | A1 |
20150138340 | Lavoie | May 2015 | A1 |
20150142211 | Shehata | May 2015 | A1 |
20150158527 | Hafner et al. | Jun 2015 | A1 |
20150165850 | Chiu et al. | Jun 2015 | A1 |
20150179075 | Lee | Jun 2015 | A1 |
20150197278 | Boos et al. | Jul 2015 | A1 |
20150203156 | Hafner et al. | Jul 2015 | A1 |
20150210317 | Hafner et al. | Jul 2015 | A1 |
20150217692 | Yanagawa | Aug 2015 | A1 |
20150217693 | Pliefke | Aug 2015 | A1 |
20150232031 | Kitaura | Aug 2015 | A1 |
20150232092 | Fairgrieve et al. | Aug 2015 | A1 |
20150234386 | Zini | Aug 2015 | A1 |
20160152263 | Singh | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
101610420 | Dec 2009 | CN |
101833869 | Sep 2010 | CN |
202541524 | Nov 2012 | CN |
3931518 | Apr 1991 | DE |
9208595 | Aug 1992 | DE |
10065230 | Jul 2002 | DE |
10154612 | May 2003 | DE |
102005043467 | Mar 2007 | DE |
102005043468 | Mar 2007 | DE |
102006035021 | Jan 2008 | DE |
102006048947 | Apr 2008 | DE |
102008020838 | Nov 2008 | DE |
102009012253 | Sep 2010 | DE |
102010004920 | Jul 2011 | DE |
102008004158 | Oct 2011 | DE |
102008004159 | Oct 2011 | DE |
102008004160 | Oct 2011 | DE |
102010021052 | Nov 2011 | DE |
102011108440 | Jan 2013 | DE |
0418653 | Mar 1991 | EP |
0849144 | Jun 1998 | EP |
1361543 | Nov 2003 | EP |
1695888 | Aug 2006 | EP |
1593552 | Mar 2007 | EP |
2168815 | Mar 2010 | EP |
2199188 | Jun 2010 | EP |
2452549 | May 2012 | EP |
2551132 | Jan 2013 | EP |
2644477 | Oct 2013 | EP |
1569073 | Sep 2014 | EP |
2803944 | Nov 2014 | EP |
2515379 | Oct 1981 | FR |
2606717 | May 1988 | FR |
2716145 | Aug 1995 | FR |
2786456 | Jun 2000 | FR |
2980750 | Apr 2013 | FR |
2265587 | Oct 1993 | GB |
2342630 | Apr 2000 | GB |
2398048 | Aug 2004 | GB |
2398049 | Aug 2004 | GB |
2398050 | Aug 2004 | GB |
63-085568 | Jun 1988 | JP |
06-028598 | Apr 1994 | JP |
2003148938 | May 2003 | JP |
2003175852 | Jun 2003 | JP |
2004114879 | Apr 2004 | JP |
3716722 | Nov 2005 | JP |
2008027138 | Feb 2008 | JP |
2008123028 | May 2008 | JP |
2009171122 | Jul 2009 | JP |
2012166647 | Sep 2012 | JP |
2014034289 | Feb 2014 | JP |
20060012710 | Feb 2006 | KR |
20060133750 | Dec 2006 | KR |
20110114897 | Oct 2011 | KR |
20140105199 | Sep 2014 | KR |
200930010 | Jul 2009 | TW |
8503263 | Aug 1985 | WO |
2011117372 | Sep 2011 | WO |
2014019730 | Feb 2014 | WO |
2014037500 | Mar 2014 | WO |
2014123575 | Aug 2014 | WO |
2015074027 | May 2015 | WO |
Entry |
---|
Hwang et al., “Mobile Robots at Your Fingertip: Bezier Curve On-line Trajectory Generation for Supervisory Control”, Proceedings of the 2003 IEEE/RSJ, Intl. Conference on Intelligent Robots and Systems, Oct. 2003, pp. 1444-1449. |
Khatib et al., “Dynamic Path Modification for Car-Like Nonholonomic Mobile Robots”, Proceedings of the 1997 IEEE, International Conferences on Robotics and Automation, Apr. 1997, pp. 2920-2925. |
“Ford Super Duty: Truck Technology”, Brochure, www.media.ford.com, Sep. 2011, pp. 1-2. |
“Ford Guide to Towing”, Trailer Life, Magazine, 2012, pp. 1-38. |
“Dodge Dart: The Hot Compact Car”, Brochure, www.dart-mouth.com/enginerring-development.html, pp. 1-6; date unknown. |
M. Wagner, D. Zoebel, and A. Meroth, “Adaptive Software and Systems Architecture for Driver Assistance Systems” International Journal of Machine Learning and Computing, Oct. 2011, vol. 1, No. 4, pp. 359-365. |
Christian Lundquist, Wolfgang Reinelt, Olof Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, SAE Int'l, ZF Lenksysteme Gmbh, Schwaebisch Gmuend, Germany, 2006, pp. 1-8. |
“Understanding Tractor-Trailer Performance”, Caterpillar, 2006, pp. 1-28. |
Divelbiss, A.W.; Wen, J.T.; “Trajectory Tracking Control of a Car-Trailer System”, IEEE, Control Systems Technology, Aug. 6, 2002, vol. 5, No. 3, ISSN: 1063-6536, pp. 269-278. |
Stahn, R.; Heiserich, G.; Stopp, A., “Laser Scanner-Based Navigation for Commercial Vehicles”, IEEE, Intelligent Vehicles Symposium, Jun. 2007, pp. 969-974, print ISBN: 1931-0587. |
Widrow, B.; Lamego, M.M., “Neurointerfaces: Applications”, IEEE, Adaptive Systems for Signal Processing, Communications, and Control Symposium, Oct. 2000, pp. 441-444. |
Dieter Zoebel, David Polock, Philipp Wojke, “Steering Assistance for Backing Up Articulated Vehicles”, Systemics, Cybernetics and Informatics, Universitaet Koblenz-Landau, Germany, vol. 1, No. 5, pp. 101-106; date unknown. |
Stephen K. Young, Carol A. Eberhard, Philip J. Moffa, “Development of Performance Specifications for Collision Avoidance Systems for Lane Change, Merging and Backing”, TRW Space and Electronics Group, Feb. 1995, pp. 1-31. |
Ford Motor Company, “09 F-150”, Brochure, www.fordvehicles.com, pp. 1-30; date unknown. |
Michael Paine, “Heavy Vehicle Object Detection Systems”, Vehicle Design and Research Pty Lmited for VicRoads, Jun. 2003, pp. 1-22. |
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, pp. 21-34. |
“2012 Edge—Trailer Towing Selector”, Brochure, Preliminary 2012 RV & Trailer Towing Guide Information, pp. 1-3. |
“Meritor Wabco Reverse Detection Module for Trailers with 12-Volt Constant Power Systems”, Technical Bulletin, TP-02172, Revised Oct. 2004, pp. 1-8. |
Simonoff, Adam J., “USH0001469 Remotely Piloted Vehicle Control and Interface System”, Aug. 1, 1995, pp. 1-7. |
“Range Rover Evoque's Surround Camera System”; MSN Douglas Newcomb Jun. 15, 2012, pp. 1-2. |
“Electronic Trailer Steering”, VSE, Advanced Steering & Suspension Solutions, Brochure, 2009, The Netherlands, pp. 1-28. |
“WABCO Electronic Braking System—New Generation”, Vehicle Control Systems—An American Standard Company, www.wabco-auto.com, 2004, pp. 1-8. |
T. Wang, “Reverse-A-Matic-Wheel Direction Sensor System Operation and Installation Manual”, Dec. 15, 2005, pp. 1-9. |
“Wireless-Enabled Microphone, Speaker and User Interface for a Vehicle”, The IP.com, Aug. 26, 2004, pp. 1-5, IP.com disclosure No. IPCOM000030782D. |
“RFID Read/Write Module”, Grand Idea Studio, 2013, pp. 1-3, website, http://www.grandideastudio.com/portfolio/rfid-read-write-module/. |
Laszlo Palkovics, Pal Michelberger, Jozsef Bokor, Peter Gaspar, “Adaptive Identification for Heavy-Truck Stability Control”, Vehicle Systems Dynamics Supplement, vol. 25, No. sup1, 1996, pp. 502-518. |
“Convenience and Loadspace Features” Jaguar Land Rover Limited, 2012, pp. 1-15, http://www.landrover.com/us/en/lr/all-new-range-rover/explore/. |
“Delphi Lane Departure Warning”, Delphi Corporation, Troy, Michigan pp. 1-2; date unknown. |
Micah Steele, R. Brent Gillespie, “Shared Control Between Human and Machine: Using a Haptic Steering Wheel to Aid in Land Vehicle Guidance”, University of Michigan, pp. 1-5; date unknown. |
“Electric Power Steering”, Toyota Hybrid System Diagnosis-Course 072, Section 7, pp. 1-10; date unknown. |
“Telematics Past, Present, and Future,” Automotive Service Association, www.ASAshop.org, May 2008, 20 pgs. |
“Fully Automatic Trailer Tow Hitch With LIN Bus,” https://webista.bmw.com/webista/show?id=1860575499&lang=engb&print=1, pp. 1-5; date unknown. |
Nüsser, René; Pelz, Rodolfo Mann, “Bluetooth-based Wireless Connectivity in an Automotive Environment”, VTC, 2000, pp. 1935-1942. |
Whitfield, Kermit, “A Hitchhiker's Guide to the Telematics Ecosystem”, Automotive Design & Production, Oct. 1, 2003, 3 pgs. |
Narasimhan, N.; Janssen, C.; Pearce, M.; Song, Y., “A Lightweight Remote Display Management Protocol for Mobile Devices”, 2007, IEEE, pp. 711-715. |
Microsoft, Navigation System, Sync Powered by Microsoft, Ford Motor Company, Jul. 2007, 164 pgs. |
Microsoft, Supplemental Guide, Sync Powered by Microsoft, Ford Motor Company, Nov. 2007, 86 pgs. |
Voelcker, J., “Top 10 Tech Cars: It's the Environment, Stupid”, IEEE Spectrum, Apr. 2008, pp. 26-35. |
Microsoft, Navigation System, Sync Powered by Microsoft, Ford Motor Company, Oct. 2008, 194 pgs. |
Microsoft, Supplemental Guide, Sync Powered by Microsoft, Ford Motor Company, Oct. 2008, 83 pgs. |
Chantry, Darryl, “Mapping Applications to the Cloud”, Microsoft Corporation, Jan. 2009, 20 pgs. |
Yarden, Raam; Surage Jr., Chris; Kim, Chong Il; Doboli, Alex; Voisan, Emil; Purcaru, Constantin, “TUKI: A Voice-Activated Information Browser”, 2009, IEEE, pp. 1-5. |
Gil-Castiñeira, Felipe; Chaves-Diéguez, David; González-Castaño, Francisco J., “Integration of Nomadic Devices with Automotive User Interfaces”, IEEE Transactions on Consumer Electronics, Feb. 2009, vol. 55, Issue 1, pp. 34-41. |
Microsoft, Navigation System, Sync Powered by Microsoft, Ford Motor Company, Jul. 2009, 196 pgs. |
Microsoft, Supplemental Guide, Sync Powered by Microsoft, Ford Motor Company, Aug. 2009, 87 pgs. |
Goodwin, Antuan, “Ford Unveils Open-Source Sync Developer Platform”, The Car Tech Blog, Oct. 29, 2009, 5 pgs. [Retrieved from http://reviews.cnet.com/8301-13746—7-10385619-48.html on Feb. 15, 2011]. |
Lamberti, Ralf, “Full Circle: The Rise of Vehicle-Installed Telematics”,Telematics Munich, Nov. 10, 2009, 12 pgs. |
“Apple Files Patent Which Could Allow You to Control Your Computer Remotely Using iPhone”, Dec. 18, 2009, 7 pgs [Retrieved from www.iphonehacks.com on Jun. 22, 2010]. |
Newmark, Zack, “Student develop in-car cloud computing apps; envision the future of in-car connectivity”, May 4, 2010, 3 pgs [Retrieved from www.worldcarfans.com on Jun. 18, 2010]. |
“Service Discovery Protocol (SDP)”, Palo Wireless Bluetooth Resource Center, 7 pgs [Retrieved from http://palowireless.com/infotooth/tutorial/sdp.asp on Aug. 3, 2010]. |
Sonnenberg, Jan, “Service and User Interface Transfer from Nomadic Devices to Car Infotainment Systems”, Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Automotive UI), Nov. 11-12, 2010, pp. 162-165. |
“MobileSafer makes it easy to keep connected and safe”, ZoomSafer Inc., 2010, 5 pgs. [Retrieved from http://zoomsafer.com/products/mobilesafer on Dec. 28, 2010]. |
“PhonEnforcer FAQs”, Turnoffthecellphone.com, 3 pgs. [Retrieved from http://turnoffthecellphone.com/faq.html on Dec. 28, 2010]. |
“How PhonEnforcer Works”, Turnoffthecellphone.com, 2 pgs. [Retrieved from http://turnoffthecellphone.com/howitworks.htm on Dec. 28, 2010]. |
European Patent Office, European Search Report for Application No. EP11151623, Feb. 15, 2011, 7 pgs. |
Wikipedia, “X Window System”, Wikipedia, The Free Encyclopedia, date unknown, 19 pgs. [Retrieved from http://en.wikipedia.org/w/index.php?title=X—Window—System&oldid=639253038]. |
Jung-Hoon Hwang, Ronald C. Arkin, and Dong-Soo Kwon; “Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control,” IEEE/RSJ, International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, Oct. 2003, 6 pages. |
M. Khatib, H. Jaouni, R. Chatila, and J.P. Laumond; “Dynamic Path Modification for Car-Like Nonholonomic Mobile Robots,” IEEE, International Conference on Robotics and Automation, Albuquerque, New Mexico, Apr. 1997, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140358429 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61477132 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14289888 | May 2014 | US |
Child | 14459926 | US | |
Parent | 14256427 | Apr 2014 | US |
Child | 14289888 | US | |
Parent | 14249781 | Apr 2014 | US |
Child | 14256427 | US | |
Parent | 14188213 | Feb 2014 | US |
Child | 14249781 | US | |
Parent | 13847508 | Mar 2013 | US |
Child | 14188213 | US | |
Parent | 14068387 | Oct 2013 | US |
Child | 13847508 | US | |
Parent | 14059835 | Oct 2013 | US |
Child | 14068387 | US | |
Parent | 13443743 | Apr 2012 | US |
Child | 14059835 | US | |
Parent | 13336060 | Dec 2011 | US |
Child | 13443743 | US | |
Parent | 14161832 | Jan 2014 | US |
Child | 14249781 | US | |
Parent | 14059835 | US | |
Child | 14161832 | US | |
Parent | 14201130 | Mar 2014 | US |
Child | 14249781 | US | |
Parent | 14068387 | US | |
Child | 14201130 | US |