Information
-
Patent Grant
-
6269514
-
Patent Number
6,269,514
-
Date Filed
Friday, June 5, 199826 years ago
-
Date Issued
Tuesday, August 7, 200123 years ago
-
CPC
-
US Classifications
Field of Search
US
- 015 1671
- 015 179
- 015 182
- 015 194
- 015 195
- 015 204
- 015 205
- 015 1591
- 300 21
-
International Classifications
-
Abstract
Several brush assemblies are disclosed. All employ bristle strings that include a base string connected to a plurality of monofilaments. The preferred monofilaments are nylons and other polymeric thermoplastic materials. The monofilaments may be linear segments or loop segments disposed in two rows. The bristle strings may be connected to brush bodies to form virtually any of the various types of brushes. Bristle strings employing loops may be braided together to form entangled, monofilament articles for brush or other applications.
Description
BACKGROUND OF THE INVENTION
The present invention relates generally to brushes and the art of brush making, and more particularly, to brushes having monofilament bristles and methods of assembling monofilament bristle sub-assemblies to brush bodies.
Brush making involves the attachment of bristles to a brush body. In one type of brush, known as the “solid block/staple set,” a solid block acting as the brush body is drilled, molded, or otherwise worked to form an array of holes. Individual tufts are placed in individual holes and secured to the block by wire staples, plugs or other anchoring means. Hand drawn brushes are similar except that the tufts are secured by drawing them through the holes with an elongated strand.
Another type of brush employs a “ferrule and monofilaments” technique for attaching the bristles to the brush body. A cluster of monofilaments and cavity creating spacers are inserted into a ferrule and set with a binding resin. Ferrule brushes, such as the paint brush, are used to primarily apply liquids, and in particular, viscous solutions.
In metal strip brushes, fibers are held in a “U” shaped channel of a metal strip by an anchoring wire, string, or monofilament. The channel is then crimped closed to mechanically clamp the proximal end portions of the monofilaments and anchor wire within the strip. Once formed, the brush-strips can be attached to brush bodies or otherwise shaped for specific applications.
Fused brushes are those in which polymeric tufts are fused directly to a brush body that is preferably made of the same material. One variation of fused brushes employs ultrasonic welding to secure polymeric fibers directly to a base.
With respect to the toothbrush, it is now commonplace to employ nylon monofilaments that are grouped together to form “bristle tufts.” Each bristle tuft is typically arranged in a circular cluster, and a complete bristle head includes a matrix of bristle tufts arranged in rows or other patterns. The folded proximal bases of the bristle tufts are typically embedded and held in place by an anchor wire that extends across the field of the tufts and into the polymeric material that forms the head portion of the toothbrush body, while the distal ends extend upwardly therefrom, often terminating in a common plane. A more recent tufting method employs the process of cutting the tuft of monofilaments to the desired length, heat fusing the proximal ends and embedding the fused proximal ends into the polymeric material of the toothbrush head.
More recent innovations in the toothbrush art have included bristle tufts cut to provide differing lengths to provide an array of shorter and longer tufts to achieve a desired action on the user's teeth. In some tufts the monofilaments are of differing length. While these improvements can result in better functional aspects of the toothbrush, few innovations have been made over the years in techniques for manufacturing the toothbrush head; this is particularly evident in the manner in which bristles are assembled with the brush body.
In all types of known brushes, the assembly process can represent a substantial portion of the cost of manufacture since individual bristle filaments have to be held in a desired grouping and then bound to the brush body in a manner that ensures that the bristle filaments do not become detached during use. Also, recycling becomes more problematic for brushes which employ metal staples or other combinations of different classes of materials (plastics and metals, for example) in one structure.
A continuing need exists for improved brush designs and methods of manufacturing brushes which are efficient and cost effective.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a brush that is relatively easy to assemble, and thus, cost effective to produce.
An object of the present invention is to provide a means to expand brush design beyond the range possible with current tufting techniques.
Another object of the present invention is to provide a bristle sub-assembly for a brush in which individual filaments are positionally fixed with respect to each other prior to connection to a brush body.
Still another object of the present invention is to provide a method of assembling brushes in which bristle sub-assemblies can be permanently connected to the brush body or, alternatively, detachably connected for subsequent replacement, thereby avoiding wastefully discarding otherwise functional brush bodies.
These and other objects are met by providing a bristle sub-assembly which includes a base string and a plurality of polymeric monofilaments connected transversely to the base string. Each monofilament, when connected to the base string, forms a pair of monofilament segments, and the monofilament segments are disposed in two rows along the base string. The monofilament segments of the two rows extend outwardly from the base string to form a V-shaped bristle string which can be used in a variety of different brush applications.
In an alternative embodiment, the bristle sub-assembly includes a plurality of monofilament loops connected to a base string. Each loop is connected transversely to the base string to form a pair of loop segments extending outwardly from opposite sides of the base string to form two rows of loop segments.
Two or more looped or cut monofilament sub-assemblies can be twisted or braided together to form cylindrical structures having value in many applications, such as brushes.
The bristle sub-assemblies can be attached to brush bodies in a variety of ways to form unique brush/bristle assemblies.
Other objects and features of the invention will become more apparent from the following detailed description when taken in conjunction with the illustrative embodiments in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a top view of a bristle sub-assembly according to a preferred embodiment of the present invention;
FIG. 2
is a front view of the bristle sub-assembly of the embodiment of
FIG. 1
;
FIG. 3
is a side view of the base string and monofilaments of the bristle sub-assembly of FIG.
1
and an ultrasonic horn for heat fusing;
FIG. 4
is an enlarged cross-sectional view taken along line
4
—
4
of
FIG. 2
;
FIG. 5
is an enlarged, partial end view of the bristle sub-assembly of
FIG. 1
;
FIGS. 6-10
are sequential, schematic views showing a method of making a brush incorporating a plurality of the bristle sub-assemblies of
FIG. 1
;
FIGS. 11-14
are sequential, schematic views showing an alternative method of making a brush incorporating a plurality of the bristle sub-assemblies of
FIG. 1
;
FIGS. 15-16
are sequential, schematic views showing another alternative method of making a brush incorporating a plurality of the bristle sub-assemblies of
FIG. 1
;
FIGS. 17-18
are sequential, schematic views showing another alternative method of making a brush incorporating a plurality of the bristle sub-assemblies of
FIG. 1
as bristle cartridges;
FIG. 19
is a side elevational view of a bristle cartridge used in the embodiment of
FIGS. 17-18
;
FIG. 20
is a magnified photograph of a monofilament containing grit material for abrasive applications;
FIG. 21
is a side elevational view of a toothbrush according to one embodiment of the present invention;
FIG. 22
is an enlarged sectional view taken along line
22
—
22
of
FIG. 21
;
FIG. 23
is a top view of the head portion of the toothbrush of
FIG. 21
;
FIG. 23A
is an enlarged, sectional view showing an embodiment in which two bristle sub-assemblies are installed in the same groove or otherwise connected to a brush body in tandem to provide greater density and bristles of different lengths;
FIG. 24
is a side elevational view showing a brush body and serrated groove;
FIG. 25
is a side elevational view of a bristle sub-assembly before insertion into the serrated groove of
FIG. 24
;
FIG. 26
is a side elevational view of the brush body of
FIG. 24
assembled with the bristle sub-assembly of
FIG. 25
, where the upper end portions of the bristles adopt a serrated pattern due to conformity of the lower end portions to the serrated groove;
FIG. 27
is a side elevational view of a cylindrical brush according to another embodiment of the present invention, showing the sidewall of the brush body before wrapping of the bristle sub-assembly along its length;
FIG. 28
is a side elevational view of the cylindrical brush of
FIG. 27
, with the bristle sub-assembly fully installed on the cylinder;
FIG. 29
is a schematic view of another embodiment of the present invention, in which three bristle sub-assemblies are twisted or braided together to form a brush;
FIG. 30
is a schematic view of another embodiment of the present invention, in which a bristle sub-assembly and two wires are twisted together to form a wire brush;
FIG. 31
is an end view of the wire brush of
FIG. 30
;
FIG. 32
is a top view of a bristle sub-assembly according to another embodiment of the present invention, in which looped monofilaments are used;
FIGS. 33 and 34
are end views showing how the loops are formed in the monofilament strand for the embodiment of
FIG. 32
;
FIG. 35
is a side elevational view of a looped structure in which four of the bristle sub-assemblies of
FIG. 32
are twisted or braided together;
FIG. 36
is an end view of the looped structure of
FIG. 35
;
FIG. 37
is a partial top view of a bristle sub-assembly according to another embodiment of the present invention;
FIG. 38
is a vertical cross-sectional view taken along line
38
—
38
of
FIG. 37
;
FIG. 39
is an exploded, end view of a bristle sub-assembly according to another embodiment of the present invention;
FIG. 40
is an end view of the bristle sub-assembly of
FIG. 39
;
FIG. 41
is a transverse, cross-sectional view of a base string, or monofilament, having a continuous cavity;
FIG. 42
is a longitudinal plan view of the base string, or monofilament, of
FIG. 42
;
FIG. 43
is a transverse, cross-sectional view of a base string, or monofilament, having non-continuous voids;
FIG. 44
is a longitudinal plan view of the base string, or monofilament, of
FIG. 43
;
FIG. 45
is a perspective view of a bundle of two base strings;
FIG. 46
is an end view of a bristle sub-assembly in which the monofilament bristles are non-linear, and
FIG. 47
is a cross-sectional view of a monofilament having an oval shape.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to
FIGS. 1 and 2
, a bristle sub-assembly
10
includes a base string
12
and a plurality of monofilaments
14
connected to the base string
12
. The monofilaments
14
are preferably connected to the base string
12
substantially perpendicularly, as shown in
FIG. 1
, with the base string
12
dividing each monofilament
14
into first and second opposite side legs
16
,
18
which extend outwardly from the base string
12
in two rows. In the illustrated embodiment the legs
16
and
18
are of substantially equal length. In other embodiments the legs can be made of differing length by displacing the base string
12
laterally to a position offset from the center before bonding the monofilaments to the base string. Also, while the base string
12
is shown to be substantially normal or perpendicular to the monofilaments
14
, the monofilaments could be placed at a variety of angles relative to the base string
12
, depending on the brush characteristics desired for the finished product.
As seen in
FIG. 2
, the legs
16
and
18
are acutely angled relative to the horizontal plane A—A to form a V-shaped structure. The polymeric monofilaments
14
are linear and flexible so that when deflected or bent, a spring restoring force is generated to return them to a linear or substantially linear disposition.
In a preferred method of making the sub-assembly
10
, heat is used to fuse the monofilaments
14
to the base string
12
. In order to facilitate this process, either the monofilaments
14
or the base string
12
, preferably both, are made of a polymeric thermoplastic material. Also, in every embodiment, the monofilaments
14
are each a single filament, as opposed to a “multi-filament,” such as yarn, twine, etc., although the monofilament may be a co-extrusion of one or more polymers to form a coaxial structure.
The monofilaments
14
and the base string
12
may be made of several different materials, including aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, styrenes, polybutylene terephthalate (PBT) fluoropolymers, polyvinylchloride (PVC), polyurethane, polyvinylidene chloride, and polystyrene and styrene copolymers. A particularly suitable polymeric material for toothbrush applications is 6,12 nylon; other nylons may be used, including 4 nylon, 6 nylon, 11 nylon, 12 nylon, 6,6 nylon, 6,10 nylon, 6,14 nylon, 10,10 nylon and 12,12 nylon and other nylon co-polymers.
During manufacture of the bristle sub-assembly, and referring to
FIGS. 3-5
, the monofilaments
14
are arranged substantially parallel to each other in substantially the same plane, with outer surfaces of the monofilaments placed in contact with the outer surface of the base string
12
. In an automated assembly process, the monofilaments
14
and base string
12
, positionally fixed with respect to each other, but not yet bonded together, are transported under a stationary ultrasonic horn
20
, as indicated by the directional arrow in FIG.
3
. The horn
20
, which contacts the monofilaments
14
, delivers energy sufficient to cause either the monofilament material
14
, or the base string
12
, preferably both, to flow. As is well known in the art of ultrasonic welding, the heat is generated by the friction between the outer surfaces of the base string and the monofilaments.
In one embodiment, the flow of monofilament material causes adjacent monofilaments
14
to become interconnected through a flow zone
22
. This is preferred when the monofilaments are placed shoulder-to-shoulder with adjacent monofilaments abutting each other. In order to facilitate this process either the monofilaments
14
or the base string
12
, preferably both, are made of a polymeric thermoplastic material. In the flow zone
22
, preferably material from the base string
12
also flows during heating by the ultrasonic horn so that material from the base string inter-mixes with material from the monofilaments. This inter-mixing causes the monofilaments
14
to become interconnected to the base string along the flow zone
22
with interfaces between the base string
12
, the flow zone
22
, and monofilaments
14
. Bonding may also occur by other means and with differing degrees of melt, where for example, the monofilaments are bonded to the base string by encapsulation or simple mechanical interlocking to the base string.
When the monofilaments are shoulder-to-shoulder as in
FIG. 3
, the interconnection of adjacent monofilaments
14
to each other in flow zone
22
may be relatively strong compared to the interconnection of the base string
12
to the flow zone
22
which is substantially composed of monofilament material. This feature allows, in some applications, the removal of the base string
12
from the monofilaments
14
anytime after thermal fusing. Alternatively, the adhesion between the monofilaments and the base string can be at least as strong as the adhesion between monofilaments.
While
FIG. 3
shows the monofilaments in a single row, shoulder-to-shoulder, the density can be varied such that the adjacent monofilaments do not touch each other. Also, the density may be such that a second or greater number of rows of monofilaments are stacked upon each other. Where eight (8) mil nylon monofilament is used, for example, a density of about 125 monofilaments per inch of base string can be achieved with a single row, shoulder-to-shoulder monofilaments.
A method of making a brush using the bristle sub-assemblies described above is illustrated in
FIGS. 6-10
. First, a brush head blank
24
made of thermoplastic polymeric material is provided in a general size and shape suitable for any one of numerous particular brush applications. In the next step, the blank
24
is thermally processed to form a plurality of grooves
26
,
28
,
36
, and
32
. Displaced polymeric material forms ridges that extend above the plane encompassing the upper surface of the blank
24
. The grooves can be formed with a heated male forming die. Alternatively, the grooves can be molded into the blank
24
during formation of the blank
24
.
The number of grooves, their length, depth and orientation with respect to each other, depends on the size, type and function of the brush. The four (4) grooves shown are illustrative and do not have limiting significance. Also, while the grooves shown in the figures are “U-shaped,” they could easily adopt other shapes depending on the shape of the mold or male die, including rectangular.
As shown in
FIG. 8
, a bristle sub-assembly
36
is forced into the groove
26
, forcing the legs
38
and
40
into a substantially vertical position, as seen in FIG.
9
. The base string
42
preferably seats in the bottom of the groove
26
. Preferably, all bristle sub-assemblies, corresponding to the four grooves
26
,
28
,
30
, and
32
are forced into position simultaneously. The four bristle sub-assemblies are locked into position by heat forming the upper surface of the blank
24
, thus closing the grooves and forming the structure shown in FIG.
10
. Once closed, the base string
42
helps anchor the bristle sub-assembly in its respective groove.
Once the monofilaments are forced into a vertical orientation, with the legs
38
and
40
substantially parallel to each other, the bristle sub-assembly
36
becomes a “bristle string” in that the monofilaments from the two legs tend to commingle and form a “bristle” row.
As seen in
FIGS. 11-14
, a brush blank
44
is processed to form a plurality of grooves
46
,
48
,
50
, and
52
. Groove formation can result from any known techniques, depending on the type of material which comprises the blank
44
. For blanks made of thermoplastic polymeric material, formation can be accomplished by molding, thermal displacement or mechanical removal of material. In the case of thermal displacement, accumulation slots may be needed within the brush body to accumulate displaced thermoplastic material. Other blank materials could be employed, including wood and metal. Also, while the base string is shown to have a rectangular shape which fits into similarly shaped rectangular grooves, grooves and base strings of other shapes can be employed. Exact coincidence between the shape of the grooves and the base strings is not necessary.
As seen in
FIG. 12
, the bristle sub-assembly
54
includes first and second monofilament legs
56
and
58
connected to a rectangular-shaped base string
60
. Preferably, all four bristle sub-assemblies are fitted into respective grooves in a single motion. When fitted in the grooves, the legs adopt a substantially vertical orientation as shown in FIG.
13
. Each vertical pair of legs of each base string defines a bristle string. Preferably, the grooves have a lesser width than the respective bristle sub-assemblies to ensure a tight, interference fit. If desired, either the bottom portion of the bristle sub-assembly or the surface of the groove, or both, can be treated with a suitable material so as to form a bond between the bristle sub-assembly and the brush base by means of solvent bonding, adhesive bonding, or other means known in the art.
Once fitted in the grooves, an ultrasonic welding step can be employed to ensure that the bristle strings do not separate from the brush body. As seen in
FIG. 14
, an ultrasonic horn
62
is shaped to fit between legs
56
and
58
and make contact with the base string
60
. The ultrasonic horn
62
may also be employed to insert the bristle sub-assembly
54
into groove
60
and energized by appropriate devices for further productivity improvement.
Alternatively, when the grooves are formed by using a heated male forming die, the base strings are preferably fitted in the grooves while the polymer of the brush body is still soft and flowable. The soft and flowable thermoplastic polymeric material of the brush body allows the elongated bristle sub-assembly to be received in the smaller diameter grooves and will intimately form around the irregular and non-planar surfaces. A clamping device may be used to fix a pre-selected pattern in the monofilament legs
56
and
58
as the bristle sub-assembly
54
is forced into the receiving grooves
46
,
48
,
50
, and
52
. This could be used to form unique patterns of monofilaments at the distal ends thereof. After cooling the bristle sub-assembly is held in the groove by the frictional engagement and preferably partial melt bonding when the brush body and bristle subassembly are of the same or compatible thermoplastic polymeric material.
In the embodiment of
FIGS. 15-16
, a brush body blank
64
is molded or otherwise worked to form a plurality of key-hole shaped grooves
66
,
68
,
70
and
72
. A plurality of bristle sub-assemblies
74
are fitted into respective grooves, preferably from the ends of the grooves rather than from the top since the open top of the grooves is more narrow than the diameter of the bristle sub-assemblies. After the bristle sub-assemblies have been seated in the grooves, the open ends of the grooves can be sealed thermally and/or with plugs or filler material
78
. Alternatively, if the material of the brush body is elastomeric, it can be suitably flexed without permanently deforming the brush body
64
, so as to spread open the grooves
66
,
68
,
70
, and
72
, the bristle sub-assemblies
74
may be laterally inserted through the top of the key hole, thereby obviating open ends for installation.
The key-hole slots can be formed by any conventional technique, including molding the grooves when the blank is formed or milling the grooves after the blank is formed.
In the embodiment of
FIGS. 17-19
, the brush body blank
80
is provided with a plurality of dove-tail grooves
82
,
84
,
86
, and
88
which can be formed pursuant to any of the known and/or previously discussed techniques. In this embodiment, the base string
90
and proximal end portions of the monofilaments of each bristle sub-assembly are separately fabricated into a dove-tail shaped strip
92
from which the legs
94
and
96
extend. The dove-tail geometry of the grooves and strips shown are but one illustrative example; other appropriate shapes could easily be adopted. The strips slide into respective grooves from the ends thereof and are held in place by ball and detent or other complementary mechanical means. In this embodiment, the bristle sub-assemblies and respective strips form cartridges that are detachable and replaceable when the bristles experience excessive wear or when other bristle properties are preferred. Alternatively, the strips or bristle sub-assemblies could be molded directly into the brush body.
In the embodiment of
FIGS. 21-23
, a toothbrush
98
has a brush body
100
made of polymeric material. The body
100
includes an integrally formed head portion
102
and a handle portion
104
. A bristle array
106
is connected to the head portion
102
by any appropriate means such as the techniques described above, and consists of four bristle strings
108
,
110
,
112
, and
114
, each consisting of a base string and two rows of monofilaments bent, pressed or otherwise brought together to form a single, thicker row of monofilament bristles.
In the illustrated embodiment, the bristle array
106
consists of four longitudinally oriented rows of bristles. However, the rows can be oriented in various directions and in various numbers. For example, the rows could be oriented in a lateral, transverse, or other direction. For transverse or lateral rows in the illustrated toothbrush, the rows would likely be more numerous and shorter to provide the same amount of bristles in the array.
While the illustrated embodiment shows that the length of the bristles are substantially the same, the lengths can be varied to achieve desired patterns and effects. For example, the outer bristle string monofilaments could be made longer than the adjacent, inner bristle string monofilaments. Also, the monofilaments of a particular bristle string could be cut or otherwise formed to varying lengths. As seen in
FIG. 23A
, two bristle sub-assemblies
109
and
111
are laterally inserted, one on top of the other, into the same groove with the result that the bristles of each will have distinctly different lengths.
Another way to vary the lengths of the bristles is shown in
FIGS. 24-26
. This method could be used for the toothbrush of
FIGS. 21-23
or for any other brushes described herein or brushes otherwise within the scope of the present invention where varying length bristles are desired; As seen in
FIGS. 24-26
, a brush body
99
has a serrated groove
101
which is open at the top. The groove can be formed by molding, machining or other means. When the body
99
is made of thermoplastic material, a male die having a serrated end could be used to form the groove.
A bristle sub-assembly
103
having a base string
105
and connected monofilaments
107
is forced into the groove
101
so that the base string
105
adopts the profile of the serrations at the bottom of the groove. As the proximal end portions of the bristles
107
follow the serrations, the distal end portions mirror the serrated pattern, as seen in FIG.
26
.
The brush bodies described above have planar surfaces from which the bristle arrays extend. However, the present invention is not limited to a particular shape of brush body. In the embodiment of
FIGS. 27 and 28
, a cylindrical brush body
116
has first and second opposite axial ends
118
and
120
and a generally cylindrical sidewall
122
. A spiral groove
124
is formed in the cylindrical sidewall
122
and extends from end
118
to end
120
. A single elongated bristle string
126
is wrapped around the brush body
116
and fitted into the groove
124
, as shown in FIG.
28
. The width and depth of the groove
124
and its bottom profile can be selected to determine the spreading of the monofilaments; a wider groove will result in a wider spread.
As long as the ends of the bristle string
126
are secured to the body
116
, no means should be required between the opposite ends to hold the bristle string
126
in the groove
124
. One particular advantage of the embodiment of
FIGS. 27 and 28
is that the bristle string
126
can be removed and replaced with relative ease.
Rather than one continuous bristle string wrapped around the periphery of a cylinder, a plurality of bristle strings could be mounted axially to the periphery, each in their own radial plane, to cover the outer surface of the cylinder with monofilaments. To facilitate connection of the bristle strings, the outer surface of the cylinder could be provided with parallel grooves which could be formed and shaped according to the preceding embodiments. If the cylinder is made of metal, the grooves would preferably be machined according to conventional machining techniques. Another variation of the cylindrical brush would be to provide a hollow cylinder and mount the tuft strings on the interior cylindrical surface, either in a spiral or axially linear pattern.
For very long cylindrical brush bodies, where relaxation or elongation is problematic, or where cutting or abrasion of the bristle sub-assembly base string is probable, the bristle sub-assembly can be attached according to prior descriptions contained herein, by adhesive bonding, or by any suitable mechanical reinforcement, such as a wire over-wrap.
For some brush applications, the monofilaments may include abrasive particles or grit material for particular brush applications. Referring to
FIG. 20
, two typical abrasive monofilaments are shown in magnification. The grit material is seen to protrude from the outer surface of the monofilaments. These abrasive monofilaments are commercially available under the name TYNEX® A by E. I. Du Pont De Nemours and Company of Wilmington, Del. USA. Preferably, the abrasive material comprises 0-50% by weight of the polymeric monofilaments. TYNEX®A is a 6,12 nylon monofilament containing particles of silicon carbide or aluminum oxide, which are distributed throughout the monofilament. Other particles that could be used include those abrasive particles selected for their abrasive properties such as oxides, carbides, silicates, nitrides, borides, boro-nitrides, and metals.
The bristle sub-assembly described above can be used to make brushes that do not have block-type bodies or handles and do not require strands of wire to hold the monofilament bristles in place nor for structural support. Referring to
FIG. 29
, a cylindrical brush
128
may be formed by twisting, plying or wrapping together two or more bristle sub-assemblies, such as bristle sub-assemblies
130
,
132
, and
134
. A twisting machine
136
of any appropriate design can be used to twist together the bristle sub-assemblies. Twisted bristle sub-assemblies may be bonded together by a fast setting adhesive or solvent applied by device
137
at the junction of the converging bristle sub-assemblies. Other fastening techniques may be employed, such as extrusion of a polymeric material, heat fusion and frictional interlocking.
The bristle sub-assemblies
130
,
132
, and
134
are of the same type described in the preceding embodiments, in that they each include a plurality of monofilaments connected to a base string. Also, braiding may be used as an alternative approach, rather than bonding, to interconnect the plurality of sub-assemblies.
FIG. 30
shows a variation of the embodiment of
FIG. 29
, in which a twisted-in wire brush
129
is made by spiral wrapping two wires
131
and
133
with a bristle sub-assembly
135
having a base string and transverse monofilaments. A twisting device
139
takes the three separate feeds and produces the spiral-wrapped twisted-in wire brush
129
. An end view of the brush
129
is shown in FIG.
31
.
The twisted bristle sub-assemblies of
FIGS. 29 and 30
are appropriate for many brushes, including, for example, cosmetic brushes, bottle brushes, mascara brushes and interdental brushes. The wireless brush sub-assemblies have particular value since there can be no metal corrosion and its by-products. Eye safety, in particular, will greatly improve with wireless mascara brushes.
Referring to
FIGS. 32-34
, a bristle sub-assembly
138
includes a base string
140
and a plurality of continuously looped monofilaments
142
. The looped monofilaments
142
are formed by taking a single strand of monofilament and forming a plurality of “ovals” along the length of the base string
140
. Each oval is compressed to form “figure eights” and is then bonded by ultrasonic welding to the base string
140
so as to bisect the oval and create two individual loops which provide first and second legs
142
A and
142
B on opposite sides of the base string. The legs
142
A and
142
B extend outwardly and symmetrically or non-symmetrically from the base string in two rows.
One way to form the bristle sub-assembly
138
is to take a monofilament strand and wrap it around a supporting structure (not shown) to form the plurality of elongated loops
142
.
FIG. 33
is an end view that illustrates one of the plurality of loops. The loops
142
are then pressed at a transverse medial point into contact with the base string
140
and welded thereto by ultrasonic heating. The resulting structure, where one of the loops is transformed into two loops, is shown in FIG.
34
. When ultrasonic welding is used, at least the monofilament strand
142
or the base string
140
, preferably both, are made of thermoplastic polymeric materials. These have been described above in reference to other embodiments.
The looped bristle sub-assemblies can be used in many brushes, such as those described above, in place of the straight monofilament segments, or in combination therewith. For example, in the toothbrush embodiment, a mixture of looped and straight monofilaments may be used to achieve a desired effect. Also, a looped monofilament bristle string could be twisted to form a structure similar to that shown in FIG.
35
.
As seen in
FIGS. 35 and 36
, looped monofilament bristle strings
144
,
146
,
147
, and
148
are twisted together to form a looped monofilament structure
150
in which the monofilament loops are plied together to provide a twist stable, three-dimensional aspect. The structure
150
can be used in brush applications, with or without a supporting body, or in other non-brush applications where a high surface area structure is desired.
In the embodiments employing a looped monofilament, it is preferable to make the length of the loop legs (such as
142
A and
142
B) substantially greater than the maximum width of the loop legs. It is also preferable that the monofilament strand is bonded to the base string at the point where the legs of each loop intersect the base string, so that a continuous length of looped bristle sub-assembly can be cut into segments without causing unraveling of the loops. While not preferred, the bond point may be at other locations.
The monofilaments used in any of the above embodiments may be co-extrusions of one or more polymers. Also, to achieve the desired physical characteristics of the bristles, it has been found that the preferred monofilaments are those having a diameter between 2 and 200 mils, and preferably between 2 and 20 mils. In a particularly preferred embodiment for the toothbrush, the monofilaments are 6-10 mils in diameter. Monofilaments of different diameters, polymer composition where compatible, and/or colors can be combined in one bristle assembly or sub-assembly to achieve specific brushing characteristics and/or appearance.
In embodiments using nylon for either the monofilament or the base string, or both, a preferred nylon filament is sold under the name TYNEX®, and is manufactured by E. I. Du Pont De Nemours and Company of Wilmington, Del. USA. TYNEX® is a 6,12 nylon filament made of polyhexamethylene dodecanamide. It has a melting point of between 208 and 215° C. and has a specific gravity of 1.05-1.07, and is available commercially in many cross-sectional shapes and diameters.
Monofilaments and/or base strings suitable for use in the present invention can have shapes other than circular cross-sections, as shown in
FIGS. 12-14
, which the base string is rectangularly shaped, and
FIG. 39
where a lower rectangular base string
164
is provided with an opening to receive an upper base string
166
. The monofilaments and/or base strings may be hollow, as shown in
FIGS. 41 and 42
, where a monofilament
172
has at least one continuous cavity
174
, which in the structure illustrated defines a hollow core or have voids in their cross-section as illustrated in
FIGS. 43 and 44
, where a monofilament
176
has a plurality of voids
178
. Embodiments described above show circular cross-sectional shapes for the base string and monofilaments. In one embodiment, the base string had a rectangular cross-sectional shape. Either or both the base string and monofilaments could have oval or other shapes. In any shape, the preferred thicknesses for the base string and monofilaments are selected to provide a level of functionality to the individual brush applications.
With respect to the base string, the preferred embodiments described above show a single strand of monofilament material. However, the base string could be a bundle of monofilaments having at least one of the monofilaments made of polymeric thermoplastic material. For example,
FIG. 45
illustrates a bundle consisting of two base strings
182
and
184
.
The polymeric monofilaments used for bristles in the various embodiments described above can have other additives. For example, the polymeric monofilaments could include 0-50% by weight particles having functional and/or aesthetic quality. One example would be particulate material that provides a color feature that would enhance the visual appearance of the bristles. Other functional particles could also be included such as anti-microbil additives in the polymeric monofilaments. Other particulate materials or coatings may be applied to or embodied within the monofilament such as therapeutic agents or colorants, or other desirable additives. Also, the monofilaments may be surface treated to provide desired properties, such as to alter the frictional coefficient.
The embodiments described above require “connection” between the monofilaments and the base string. In this context, “connection” means that the monofilaments are attached to the base string by a frangible joint formed by melting, adhesive bonding, solvent bonding, or similar means. The degree of frangibility can be controlled so that, if desired, the base string can be easily separated from the monofilaments after bonding.
In an alternative embodiment, shown in
FIGS. 37 and 38
, a plurality of monofilaments
152
are disposed in a substantially linear, parallel array
154
. Rather than bond-connecting, the monofilaments
152
are interlocked by weaving or stitching at least two base strings
156
and
158
. The resulting bristle sub-assembly would have two relatively flat rows of monofilament segments disposed on opposite sides of the base strings, and could be used in various brush bodies including those described above. In the woven or stitched embodiment, it is not as important for the monofilaments and the base strings to be thermoplastic or polymeric since heat fusion is not needed. Indeed, nonpolymeric materials can be used, including ceramic filaments, glass filaments, and metal wire filaments.
Another embodiment that does not require connection between the monofilaments and the base string is shown in
FIGS. 39 and 40
. There, a bristle sub-assembly
160
includes a plurality of monofilaments
162
that are captured between a lower base string
164
and an upper base string
166
. A force is applied in the direction of the arrow to push the upper base string
166
and plurality of monofilaments
162
into a groove formed in the lower base string
164
. The fit clearance between strings
164
and
166
are predetermined and selected for the diameter of monofilament
162
to be captured by the interlocking of strings
164
and
166
as the monofilaments
162
are gap filling. Any appropriate shape of the groove can be provided to ensure mechanical interlocking of the two strings. This mechanical interlock is achieved by using polymeric materials that are resilient to permit passage of the upper string into the groove of the lower string. After the two strings are interfitted, the monofilaments will bend upward to form two rows of legs
168
and
170
as in the other embodiments. The two base strings are disposed respectively below and above the monofilaments and in alignment with each other and thus interlock with each other to capture the monofilaments therebetween.
The embodiments of
FIGS. 37-40
preferably use the materials described in the previous embodiments, along with additional non-thermoplastic and non-polymeric materials that may be used in the absence of heat, adhesive, or solvent fusion.
In the various embodiments described herein, the non-looped monofilaments have been described as linear and parallel. It is possible to use polymeric monofilaments that are non-linear, however, such as in the case of monofilaments that have been crimped wavy as illustrated in
FIG. 46
with monofilaments
180
or otherwise conditioned to a predisposed non-linear formation.
Although the invention has been described with reference to several particular embodiments, it will be understood to those skilled in the art that the invention is capable of a variety of alternative embodiments within the spirit and scope of the appended claims.
Claims
- 1. A bristle sub-assembly comprising:a first support structure comprising an elongated base string having a defined, solid physical structure with a regular, geometric shape and an outer surface; and a second bristle structure comprising a plurality of monofilaments, each having a defined, solid physical structure with a regular, geometric shape and an outer surface and; a flow zone disposed at locations where the outer surfaces of the monofilaments of the second bristle structure contact the outer surface of the base string, the flow zone defining a joint between outer surfaces of the monofilaments and the outer surface of the base string.
- 2. A bristle subassembly according to claim 1, wherein the monofilaments are made of a polymeric material.
- 3. A bristle sub-assembly according to claim 2, wherein the polymeric material is a thermoplastic polymeric material.
- 4. A bristle sub-assembly according to claim 1, wherein the base string comprises a monofilament strand made of a polymeric material.
- 5. A bristle sub-assembly according to claim 4, wherein the polymeric material is a thermoplastic polymeric material.
- 6. A bristle sub-assembly according to claim 1, wherein the monofilaments are made of a material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, styrenes, polyvinylchloride (PVC), fluoropolymers, polyurethane, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 7. A bristle sub-assembly according to claim 1, wherein the monofilaments are made of a material selected from the group consisting of nylon and nylon co-polymers.
- 8. A bristle sub-assembly according to claim 7, wherein the material is selected from the group consisting of 4 nylon, 6 nylon, 11 nylon, 12 nylon, 6,6 nylon, 6,10 nylon, 6,12 nylon, 6,14 nylon, 10,10 nylon and 12,12 nylon.
- 9. A bristle sub-assembly according to claim 1, wherein at least one of the base string and the monofilaments are made of polybutylene terephthalate (PBT).
- 10. A bristle sub-assembly according to claim 1, wherein the monofilaments have non-circular cross-sectional shapes.
- 11. A bristle sub-assembly according to claim 1, wherein at least one of the base string and the monofilaments have at least one continuous cavity.
- 12. A bristle sub-assembly according to claim 1, wherein at least one of the base string and the monofilaments have non-continuous voids.
- 13. A bristle sub-assembly according to claim 1, wherein the base string is a monofilament made of thermoplastic material having a diameter of 2-200 mils.
- 14. A bristle sub-assembly according to claim 1, wherein the monofilaments have substantially circular cross-sectional shapes.
- 15. A bristle sub-assembly according to claim 1, wherein the base string has a non-circular cross-sectional shape.
- 16. A bristle sub-assembly according to claim 1, wherein the base string has a substantially circular cross-sectional shape.
- 17. A bristle sub-assembly according to claim 1, wherein the base string is a bundle of monofilaments, at least one of which is made of a thermoplastic, polymeric material.
- 18. A bristle sub-assembly according to claim 17, wherein the at least one monofilament included in the bundle is made of material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, styrenes, polyvinylchloride (PVC), polyurethane, fluoropolymers, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 19. A bristle sub-assembly according to claim 1, wherein the monofilaments include an additive selected from the group consisting of colorants, color particles, therapeutic agents, anti-microbial agents, and combinations thereof.
- 20. A bristle sub-assembly according to claim 1, wherein the monofilaments include 0-50% by weight abrasive particles.
- 21. A bristle sub-assembly according to claim 20, wherein the abrasive particles are selected for their abrasive properties from the group consisting of oxides, carbides, silicates, nitrides, borides, boro-nitrides, and metals.
- 22. A bristle sub-assembly according to claim 1, wherein at least one of the base string and the monofilaments are co-extrusions of at least one polymer.
- 23. A bristle sub-assembly according to claim 1, wherein at least one of the base string and the monofilaments are surface treated.
- 24. A bristle sub-assembly according to claim 1, wherein the monofilaments are nonlinear.
- 25. A bristle subassembly according to claim 1, wherein the monofilaments are heat fused to the base string.
- 26. A bristle sub-assembly according to claim 1, wherein the monofilaments are connected transversely to the base string to form first and second rows of monofilament segments.
- 27. A bristle sub-assembly according to claim 26, wherein the first row of monofilament segments are substantially straight and disposed in a first plane with minimum angular variance, and the second row of the monofilament segments are substantially straight and disposed in a second plane with minimum angular variance.
- 28. A bristle sub-assembly according to claim 1, wherein the monofilaments have a diameter of 2 to 200 mils.
- 29. A bristle sub-assembly according to claim 1, wherein the monofilaments have varying diameters of 2 to 200 mils.
- 30. A bristle sub-assembly according to claim 1, wherein the monofilaments have varying properties selected from the group consisting of shapes, lengths, materials, and colors, and combinations thereof.
- 31. A bristle sub-assembly according to claim 1, wherein each of the monofilaments is a loop connected to the base string.
- 32. A bristle subassembly according to claim 31, wherein the monofilament loops are connected to the base string substantially in first and second rows.
- 33. A bristle sub-assembly according to claim 1, wherein the monofilaments include a combination of straight polymeric monofilament segments and looped polymeric monofilament segments.
- 34. A bristle sub-assembly according to claim 1, wherein the monofilaments have a diameter of 2 to 20 mils.
- 35. A bristle sub-assembly according to claim 1, wherein the monofilaments have varying diameters of 2 to 20 mils.
- 36. A brush assembly comprising:a brush body; and at least one bristle sub-assembly connected to the brush body, and including a first support structure comprising a an elongated base string having a defined, solid physical structure with a regular, geometric shape and an outer surface and a second bristle structure comprising a plurality of monofilaments, each having a defined, solid physical structure with a regular, geometric shape and an outer surface; and a flow zone disposed at locations where the outer surfaces of the monofilaments of the second bristle structure contact the outer surface of the base string, the flow zone defining a joint between outer surfaces of the monofilaments and the outer surface of the base string.
- 37. A brush assembly according to claim 36, wherein the monofilaments are made of a polymeric material.
- 38. A brush assembly according to claim 37, wherein the polymeric material is a thermoplastic polymeric material.
- 39. A brush assembly according to claim 36, wherein the base string is a single monofilament made of a polymeric material.
- 40. A brush assembly according to claim 39, wherein the polymeric material is a thermoplastic polymeric material.
- 41. A brush assembly according to claim 36, wherein the base string is a bundle of monofilaments, at least one of which is made of a thermoplastic, polymeric material.
- 42. A brush assembly according to claim 41, wherein the at least one monofilament included in the bundle is made of material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, styrenes, polyvinylchloride (PVC), fluoropolymers, polyurethane, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 43. A brush assembly according to claim 36, wherein the monofilaments are made of a material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyester, polyolefins, styrenes, polyvinylchloride (PVC), fluoropolymers, polyurethane, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 44. A brush assembly according to claim 36, wherein the monofilaments are made of a material selected from the group consisting of nylon and nylon co-polymers.
- 45. A brush assembly according to claim 44, wherein the nylon material is selected from the group consisting of 4 nylon, 6 nylon, 11 nylon, 12 nylon, 6,6 nylon, 6,10 nylon, 6,12 nylon. 6,14 nylon, 10,10 nylon, and 12,12 nylon.
- 46. A brush assembly according to claim 36, wherein at least one of the base string and the polymeric monofilaments are made of polybutylene teraphthalate (PBT).
- 47. A brush assembly according to claim 36, wherein the brush body is made of a material selected from the group consisting of polymer, metal, and wood.
- 48. A brush assembly according to claim 36, wherein the monofilaments are heat fused to the base string.
- 49. A brush assembly according to claim 36, wherein the monofilaments includes a plurality of polymeric monofilament segments connected transversely to the base string to form first and second legs.
- 50. A brush assembly according to claim 49, wherein the first and second legs of each bristle string are bent substantially parallel to each other and the base string is embedded in the brush body to thereby maintain the first and second legs in the substantially parallel position.
- 51. A brush assembly according to claim 36, wherein the brush body includes a plurality of grooves and the brush assembly further includes means for detachably coupling at least one of the bristle sub-assemblies in a corresponding groove.
- 52. A brush assembly according to claim 36, wherein the body comprises at least one wire intertwined with the bristle sub-assembly.
- 53. A brush assembly according to claim 36, wherein the body includes a plurality of grooves and each bristle sub-assembly includes a cartridge having the base string embedded therein and the monofilaments extending upwardly from the cartridge.
- 54. A brush assembly according to claim 53, wherein the cartridge of each bristle sub-assembly is detachably received in the grooves of the body.
- 55. A brush assembly according to claim 36, wherein the body includes a handle portion and a head portion, wherein the monofilaments of each bristle sub-assembly include first and second monofilament segments disposed in first and second rows, wherein the first and second rows are bent toward each other to form a bristle string, and wherein at least one bristle string is connected to the head portion of the body.
- 56. A brush assembly according to claim 36, wherein each of the monofilaments is a loop connected to the base string.
- 57. A brush assembly according to claim 56, wherein the monofilament loops are connected to the base string substantially in first and second rows.
- 58. A brush assembly according to claim 36, wherein at least one of the base string and the monofilaments has a diameter of 2 to 200 mils.
- 59. A brush assembly according to claim 36, wherein the polymeric monofilaments have a diameter of 2 to 20 mils.
- 60. A brush assembly according to claim 36, wherein at least one of the base string and the monofilaments have diameters that vary between 2 and 20 mils.
- 61. A brush assembly according to claim 36, wherein the monofilaments include a combination of substantially linear monofilament segments and substantially looped monofilament segments.
- 62. A brush assembly according to claim 36, wherein the at least one bristle sub-assembly includes at least two bristle sub-assemblies disposed in a common row.
- 63. A brush assembly according to claim 62, wherein one bristle sub-assembly has straight monofilaments and the other has looped monofilaments.
- 64. A method of making a brush comprising the steps of:forming at least one bristle sub-assembly by joining a base string to a plurality of monofilaments at abutting outer surfaces of the base string and the monofilaments; providing a brush body in a predetermined size and shape; and connecting the at least one bristle sub-assembly to the brush body, wherein the base string has a defined, solid physical structure with a regular, geometric shape and an outer surface, and each of the plurality of monofilaments has a defined, solid physical structure with a regular, geometric shape and an outer surface, and where in the forming step further comprises forming a flow zone disposed at locations where the outer surfaces of the monofilaments contact the outer surface of the base string, the flow zone defining a joint between outer surfaces of the monofilaments and the outer surface of the base string.
- 65. A method according to claim 64, wherein the step of forming at least one bristle sub-assembly includes providing a base string and connecting a plurality of polymeric monofilaments to the base string thereby forming a structure having at least one row of monofilament bristles connected to the base string.
- 66. A method according to claim 65, further comprising forming a plurality of grooves in the brush body and the forming step includes providing an elongated base string and cutting the base string into a plurality of segments, thus forming a plurality of bristle sub-assemblies, and the connecting step includes fitting and anchoring at least two bristle sub-assemblies in at least one of the grooves.
- 67. A method according to claim 64, wherein the step of forming at least one bristle sub-assembly includes forming a plurality of loops from a monofilament strand, and connected the loops to the base string to form substantially two rows of monofilament loop segments.
- 68. A method according to claim 64, wherein the step of providing a brush body includes providing at least one wire, and the step of connecting the at least one bristle sub-assembly to the brush body includes twisting the at least one bristle string and wire together.
- 69. A method according to claim 64, wherein the step of forming at least one bristle sub-assembly includes providing a base string and connecting a plurality of polymeric monofilaments to the base string, thereby forming a V-shaped structure having first and second rows of monofilament bristles, and wherein the bending step includes bending the first and second rows of monofilament bristles together to form a single, substantially vertically oriented row that extends upwardly from the base string, and molding the base string and proximal end portions of the first and second rows of monofilament bristles into the body.
- 70. A method according to claim 64, further comprising forming a plurality of grooves in the brush body, the step of forming at least one bristle sub-assembly includes forming a plurality of bristle sub-assemblies of desired lengths, and the connecting step includes fitting respective ones of the bristle sub-assemblies into a corresponding groove.
- 71. A method according to claim 70, further comprising anchoring each bristle sub-assembly in each corresponding groove by use of at least one of a solvent, thermal and mechanical means.
- 72. A method according to claim 64, wherein the step of providing a brush body includes forming a plurality of substantially parallel grooves, the step of forming at least one bristle sub-assembly includes forming at least one bristle cartridge having a support strip and a plurality of monofilaments extending upwardly from the support strip, and the step of connecting at least one bristle string to the brush body includes fitting the at least one bristle cartridge into a respective groove.
- 73. An article comprising:a first monofilament sub-assembly which includes a base string and a plurality of monofilament loops connected to the base string; and a second monofilament sub-assembly which includes a base string and a plurality of monofilament loops connected to the base string, the monofilament loops of the first and second monofilament sub-assemblies being entangled with each other.
- 74. An article according to claim 73, wherein the base strings of the first and second monofilament sub-assemblies are twisted together to thereby entangle the monofilament loops of the first and second monofilament sub-assemblies.
- 75. An article according to claim 73, wherein the monofilament loops of the first and second monofilament sub-assemblies are made of material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, styrenes, polyvinylchloride (PVC), polyurethane, fluoropolymers, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 76. An article according to claim 73, further comprising a third monofilament sub-assembly which includes a base string and a plurality of monofilament loops connected to the base string, the base strings of the first, second and third monofilament sub-assemblies being braided together to thereby entangle the monofilament loops of the first, second and third monofilament sub-assemblies.
- 77. A bristle sub-assembly comprising:a first base string having a groove; a plurality of monofilaments disposed in a substantially linear, parallel array substantially transverse the groove; a second base string shaped to fit within and interlock with the groove of the first base string, to thereby bind the monofilaments within the groove and form first and second rows of monofilament segments which extend outwardly from the interlocking first and second base strings.
- 78. A bristle sub-assembly according to claim 77, wherein the at least one base string includes at least two base strings woven between the monofilaments.
- 79. A bristle sub-assembly according to claim 77, wherein the plurality of monofilaments are made of material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, styrenes, polyvinylchloride (PVC), polyurethane, fluoropolymers, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 80. A bristle sub-assembly according to claim 77, wherein the at least one base string includes two base strings disposed respectively below and above the monofilaments and in alignment with each other, the two base strings interlocking with each other to capture the monofilaments therebetween.
- 81. A bristle sub-assembly according to claim 77, wherein at least one of the base string and the monofilaments are made of a material selected from the group consisting of polymer, glass, metal, and ceramic.
- 82. A bristle sub-assembly according to claim 77, wherein the base string is made of material selected from the group consisting of aliphatic polyamides, aromatic polyamides, polyesters, polyolefins, polyethylene, polypropylene, styrenes, polyvinylchloride (PVC), fluoropolymers, polyurethane, fluoropolymers, polyvinylidene chloride, and polystyrene and styrene copolymers.
- 83. A bristle sub-assembly according to claim 77, wherein the plurality of monofilaments are made of a nylon material.
- 84. A bristle sub-assembly according to claim 83, wherein the nylon material is selected from the group consisting of 4 nylon, 6 nylon, 11 nylon, 12 nylon, 6,10 nylon, 6,12 nylon, 6,14 nylon, 10,10 nylon and 12,12 nylon and other nylon co-polymers.
US Referenced Citations (29)
Foreign Referenced Citations (11)
Number |
Date |
Country |
4114136 |
Nov 1992 |
DE |
19536775 |
Apr 1997 |
DE |
19604559 |
Aug 1997 |
DE |
2541100A |
Aug 1984 |
FR |
1457074 |
Dec 1976 |
GB |
12-36008A |
Sep 1989 |
JP |
6-154030 |
Jun 1994 |
JP |
WO 9714830 |
Apr 1997 |
WO |
WO 9739651 |
Oct 1997 |
WO |
WO 9825500 |
Jun 1998 |
WO |
WO 9942019 |
Aug 1999 |
WO |