The present invention relates to a predistorter that compensates for a distortion of a power amplifier for amplifying power of high frequency signals that changes in a plurality of frequency bands. More specifically, the present invention relates to a multi-band lookup table type predistorter for collectively amplifying high frequency signals of a plurality of bands.
The predistortion linearizer method based on digital signal processing (hereinafter referred to as a digital predistortion method) (for example, GB 2 335 812 A, hereinafter referred to as Patent literature 1) is known as one of the non-linear compensation method for a microwave power amplifier. The digital predistortion method is characteristic in that a complicate analog circuit is eliminated by implementing a predistorter using digital signal processing. A conventional linear amplifier such as a feed forward amplifier or a negative feedback amplifier is mainly realized by an analog circuit. The predistorter is also realized by an analog circuit (for example, H. Girard and K. Feher, “A new baseband linearizer for more efficient utilization of earth station amplifiers used for QPSK transmission”, IEEE J. Select. Areas Commun. SAC-1, No. 1, 1983, hereinafter referred to as Non Patent literature 1, and Nojima and Okamoto, “Analysis and Compensation of TWT Nonlinearities Based on Complex Power Series Representation”, the IEICE Transactions B, Vol. J64-B, No. 12, December 1981, hereinafter referred to as Non Patent literature 2). The art of the analog linearization circuits, however, generally requires a highly accurate adjustment technique. The analog circuits need to be easily configured to be simple in order to make a transmitter including a modulator more compact and more cost effectiveness.
As a conventional digital predistorter, a configuration having a lookup table for linealizing non-linear characteristics of an amplifier has been known (for example, L. Sundstrom, M. Faulkner, and M. Johansson, “Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers”, IEEE Trans. Vech. Tech., Vol. 45, No. 4, pp. 707-719, 1996. 11, hereinafter referred to as Non Patent literature 3). A lookup table type predistorter reads out distortion compensation data from a lookup table by using a difference signal between the input signal of the power amplifier and the output signal of the power amplifier and adds the distortion compensation data to the input signal of the power amplifier. If distortion component is completely compensated for in the output signal of the power amplifier, i.e., the output signal of the power amplifier has been linealized, the difference signal would become nothing. In the lookup table type predistorter, the lookup table is updated in stages so that an absolute value of the difference signal is nothing. In such a manner, the lookup table type predistorter can perform distortion compensation without previously recognizing non-linear characteristics of the power amplifier.
For the existing wireless systems, for example, PDC (Personal Digital Cellular), GSM (Global System for Mobile Communications), IMT-2000 (International Mobile Telecommunication 2000) have been operated. It is known that each wireless system allocates each frequency band. On the other hand, an art for realizing software defined radio so that a single hardware accommodates a plurality of wireless systems has been known. If a single hardware can accommodate a plurality of wireless systems, a user of the single hardware can use a single mobile communication provided by a wireless system without being aware of a wireless system or a core network behind the wireless system. Such a single hardware corresponding to a plurality of wireless systems, however, has not been actually realized.
As the services provided by wireless systems differ for each area or for each operator, wireless systems required for the services will also be diversified. For that purpose, wireless systems suitable for respective objects need to be mixed in the same period of time and in the same place.
As a transmission method for using the plurality of wireless systems, a multi-band wireless system has been known. The wireless system makes use of one or more of frequency bands to be used according to a propagation environment or a traffic status variable in accommodative manner. A multi-band transmission by using an unused frequency band is effective to reserve predetermined quality or predetermined capacity of transmission. In a multi-band wireless system, the number of frequency bands used can be always changed depending on a transmission status to be secured in each wireless system. Similarly, a bandwidth can also be changed in the same band. If a frequency band used by a business entity is different from a frequency band used by another business entity, the multi-band wireless system can improve efficiency of using a frequency by executing adaptive transmission control so as to use a free frequency band based on the technologies of interference recognition, frequency sharing, interference canceling, suppression of giving-interference, or multi-band controlling.
In the base station lookup table type predistorter accommodating such a multi-band wireless system, a frequency range to which distortion compensation is available requires generally more than three times transmission bandwidth centering on a carrier frequency. For example, a system for transmitting both signals in 800 MHz band and in 1.5 GHz band simultaneously, it is not possible to achieve predetermined distortion compensation while performing distortion compensation on the frequency band signals. Because it is known that the conventional look-up table type predistorter can operate less than 20-MHz bandwidth. Therefore, in order to transmit signals in a plurality of frequency bands, while executing distortion compensation by using a lookup table type predistorter, the transmitter needs to build a lookup table type predistorter for each frequency band and also prepare a vector modulator, a frequency converter and a power amplifier for each frequency band. That makes the entire device cumbersome, increases power consumption and overgrows a device.
If the transmitter can collectively execute a lookup table type predistortion processing on a plurality of frequency bands, it can simplify a device, suppress power consumption and downsize the device. When the transmitter is about to execute lookup table type distortion processing on a plurality of frequency bands by using a single lookup table under the condition that frequency bands are away from each other by frequency separation more than a bandwidth between respective frequency bands such as 800 MHz and 1.5 GHz, a compensation parameter stored in the lookup table would be inaccurate to signals in both frequency bands simultaneously. Therefore, distortion components produced in both frequency bands cannot be appropriately compensated for.
In a multi-band wireless system with a plurality of transmission frequency bands, it can be assumed that a frequency band may be changed in consideration of a service state of the wireless system and interference or the like to the other wireless systems. When a frequency band in such a wireless system is being changed, a conventional lookup table type predistorter that has a fixed frequency band to execute distortion compensation cannot adaptively change even an operating frequency. The lookup table type predistorter used for a long time needs to execute lookup table type predistorter modification and change at each base station for changing a frequency band. That requires tremendous time and effort to readjust many lookup table type predistorters. Therefore, a lookup table type predistorter configuration for making a transmitter more cost effectiveness by eliminating the requirements mentioned above is needed now.
For example, the lookup table type predistorter, which can execute distortion compensation in the frequencies f1 and f2 simultaneously, cannot execute the distortion compensation in the frequencies f1 and f3 simultaneously when the frequency band for signals used is changed from f2 to f3. This is because that an operating frequency band for conventional lookup table type predistorter is fixed.
Conventional lookup table type predistorters cannot adaptively change a frequency band to be subject to distortion compensation and the bandwidth, when frequency bands of a wireless system are being changed. Conventionally, it is required to update or exchange a lookup table type predistorter for each of plural frequency bands.
The present invention intends to provide a lookup table type predistorter that can easily execute distortion compensation on a plurality of frequency bands.
According to the present invention, a multi-band lookup table type predistorter for adding predistortion components for canceling distortion components produced by a power amplifier to an input transmitting signal and outputting the result is adapted to include:
N output side variable band signal extractors for extracting output signals in N frequency bands from output signals from the power amplifier, wherein N is an integer of 2 or greater;
N difference detectors for detecting differences between transmitting signals in N frequency bands and N output signals from said N output side variable band signal extractors;
N lookup tables for reading distortion compensation data of corresponding N frequency bands by using differences of said N frequency bands as reference signals;
N adders for adding said distortion compensation data read out from said N lookup tables to the transmitting signals in the corresponding N frequency bands;
a combiner for combining the added outputs from said N adders and outputting the combined result as a transmitting signal with the predistortion; and
a frequency band controller for controlling frequency bands of said N output side variable band signal extractors.
Embodiments of the present invention will be described with reference to drawings. Like reference numerals are given to like components in the drawings, and repeated descriptions for them will be avoided.
The transmitting signal ST is inputted from a transmitter (not shown) to a divider 10. The divider 10 consists of a wide band directional coupler, for example. Although
The input signal ST including dual frequency bands of transmitting signals is divided into two input side variable band signal extractors 11-1 and 11-2 at the divider 10 and transmitting signals in dual frequency bands are extracted. It is assumed that a frequency band controller 8 sets the variable band signal extractor 11-1 to extract transmitting signal of 800 MHz band and the variable band signal extractor 11-2 to extract transmitting signal of 1.5 GMz band. One of the transmitting signals extracted in the dual frequency bands is divided to an adder 13-1 and a difference detector 16-1 at a divider 12-1, and the other of the transmitting signals is divided to an adder 13-2 and a difference detector 16-2 at a divider 12-2. One of the divided transmitting signals in each of the frequency bands is supplied through corresponding one of the adders 13-1 and 13-2 to the combiner 14 and combined with the other transmitting signal, and the combined signal is provided to a power amplifier (not shown) as an output signal SD of the predistorter 100.
A part of an output of a power amplifier, which is to be subject to distortion compensation by the predistorter 100, is fed back as a monitor signal SM and divided into output side variable band signal extractors 15-1 and 15-2 by a divider 21. The variable band signal extractors 15-1 and 15-2 extract signals in the same frequency bands as those of the variable band signal extractors 11-1 and 11-2, respectively, and provide the extracted signals to the difference detectors 16-1 and 16-2, respectively. The difference detectors 16-1 and 16-2 detect differences e1 and e2 between transmitting signals and the amplifier output signals (monitor signal SM) in the corresponding frequency bands. Thus, distortion components produced by the power amplifier in the respective frequency bands are detected as the difference signals. By using the differences e1 and e2 detected in respective frequency bands, i.e., distortion components, as reference signals, corresponding distortion compensation data are read out from the lookup tables 17-1 and 17-2 and provided to the adders 13-1 and 13-2, respectively. The distortion compensation data are such one for canceling the detected distortion components. The distortion compensation data, which are predetermined for the distortion components produced by a power amplifier at respective frequency bands, are stored in the lookup tables 17-1 and 17-2.
The adders 13-1 and 13-2 add the distortion compensation data D1 and D2 to signals to be transmitted in frequency bands to perform distortion compensation (addition of predistortion). Since the distortion compensation is carried out for each frequency band, it is possible to achieve highly accurate distortion compensation in the plural frequency bands.
The transmitting signals added with distortion compensation data at the adders 13-1 and 13-2 are combined with each other at the combiner 14, and the combined output is power-amplified by a power amplifier (not shown) or converted into a radio signal, and then amplified by a power amplifier and transmitted.
When the lookup table type predistorter according to the present invention is applied to mobile communication, frequency band signals extracted by the variable band signal extractors 11-1 and 11-2 are those in the 800 MHz band and the 1.5 GHz band, for example. The number of the frequency bands is not limited to two. If signals in the 2 GHz band and the 5 GHz band are also to be transmitted simultaneously, the number of the input side variable band signal extractors is four, and the numbers of the dividers, adders, difference detectors, lookup tables and output side variable band signal extractors are each four, too.
Characteristics of the variable band signal extractors 11-1 and 11-2 and the variable band signal extractors 15-1 and 15-2 can be materialized by band-pass filters, for example, with desired frequency bands and center frequencies of f1 and f2, respectively.
In the case where a filter is constructed of a microstrip line, for example, a center frequency can be made variable by switching the length of a resonator with such a switch as diode or MEMS switch. Whereas, the bandwidth of each of the variable band signal extractors 11-1, 11-2, 15-1 and 15-2 can be changed by switching a bank of the filters of different center frequencies.
An input transmitting signal ST which can be in any one of a plurality of frequency bands is inputted from the divider 10 (
Conduction/non-conduction of each contact of single-pole four-throw switches 11A and 11B is controlled by a common control signal from the band controller 8. Supposing that the center frequency of BPF2 is f1, the center frequency of BPF1 is f1−Δf1, the center frequency of BPF3 is f1+Δf2, and the center frequency of BPF4 is f1+Δf3, as shown in
A bold line in
The frequency band controller 8 controls the variable band signal extractor by control signals from an operation center or the like. Alternatively, as shown by a dashed line in
The frequency bands to be extracted by the variable band signal extractors 11-1 and 11-2 are determined based on control signals from the frequency band controller 8 as mentioned above.
Since the basic configuration of the lookup table type digital predistorter 100 is the same as that described in
A directional coupler 29 is provided at the output side of the power amplifier 28. The directional coupler 29 branches a part of the transmitting signal as a monitor signal SM. The signal SM is demodulated at a monitor receiver 31 to obtain analog I signal and analog Q signal, which are converted into a digital I signal and a digital Q signal by analog-to-digital converters (ADCs) 32-1 and 32-2. The digital I signal and the digital Q signal are divided to the variable band signal extractors 15-1 and 15-2 by the divider 21 in the predistorter 100, and an I signal and a Q signal in the respective frequency bands are extracted. Differences between the I signal and the Q signal in the frequency bands and the I signal and the Q signal in the corresponding frequency bands from the dividers 12-1 and 12-2 are taken at the difference detectors 16-1 and 16-2 to produce difference signals e1 and e2. The difference signals e1 and e2 are used as reference signals for reading compensation data D1 and D2 from the lookup tables 17-1 and 17-2.
With the configuration mentioned above, predistortion linearization is previously produced at the multi-band lookup table type digital predistorter and added to the transmitting signal so that the predistorter cancels intermodulation distortion components produced by non-linear characteristics of the power amplifier 28 when a transmitting signal is amplified at the power amplifier 28. Accordingly, it is possible to compensate for distortion components generated in the amplification by the power amplifier.
Input/output characteristics of the power amplifier 28 may be measured and in each frequency in advance and written as the distortion compensation data in the lookup tables 17-1 and 17-2, or a default value may be written and updated so as to lessen absolute values of difference signals e1 and e2. Since the intermodulation distortion components produced at the power amplifier 28 by input signals in a plurality of frequency bands has frequency intervals wide enough compared to a bandwidth of each frequency band of the power amplifier 28, a duplexer or a band-pass filter at the output side of the power amplifier 28 can easily remove the intermodulation distortion components.
Also in the embodiment in
As such, the present invention can also consist of an analog circuit.
The update controller 22 controls updating of coefficients, which are compensation data in the lookup tables 17-1 and 17-2, so as to minimize absolute values of difference signals e1 and e2.
As the first updating method, in the predistorter 100 for executing distortion compensation on N frequency bands at the same time, the updating of the lookup table by the update controller 22 is controlled by expressions below, where a reference signal of the ith frequency band at time t is represented by ei(t), a coefficient matrix of the ith frequency band lookup table 17-i is represented by wi(t).
W(t)=(w1(t) . . . wN(t)) (1)
E(t)=(e1(t) . . . eN(t)) (2)
W(t+1)=W(t)+μ(t)E(t) (3),
where μ(t) is a forgetting coefficient matrix represented by the expression below.
μ(t)=(μ1(t) . . . μN(t)) (4)
Each forgetting coefficient is a predetermined value less than 0 and larger than −1. The equation (3) is an updating algorithm stored in the update controller 22. The update controller 22 updates coefficients of the lookup table so as to minimize an absolute value of the reference signal matrix E(t). That is to say, in this example, the update controller 22 minimizes the absolute value of the reference signal matrix E(t) by updating coefficients of all the lookup tables instead of minimizing the reference signal ei(t) by updating a coefficient of each frequency band lookup table 17-i. The forgetting coefficient matrix is obtained under the condition of minimizing an absolute value of the reference signal matrix. That enables distortion compensation of N frequency bands to be executed at the same time. The equation (3) does not update a coefficient of each lookup table.
As the second updating method, a controlling method for minimizing reference signals inputted in each frequency band lookup table. The controller 22 sets a forgetting coefficient μ(t) to a fixed value μ as shown in the equation (5) below.
W(t+1)=W(t)+μE(t) (5)
According to the equation (5), a coefficient of each frequency band lookup table is independently controlled so as to minimize each reference signal. The equation (5) may update coefficients of a plurality of lookup tables at the same time. Similarly, the equation (5) may be updated in order. In such a case, the number of coefficients of the lookup table to be controlled at the same time is 1.
In this embodiment, a part of the output from the power amplifier 28 is branched as a monitor signal SM from a directional coupler 29, and the monitor signals SM is down-converted at a monitor receiver 31 to produce baseband signals, which are converted to digital baseband signals by the ADCs 32-1 and 32-2. The difference detectors 16-1 and 16-2 obtain the differences between digital baseband signals and signals provided by the dividers 12-1 and 12-2 as reference signals e1 and e2. The update controller 22 updates coefficients of the lookup tables 17-1 and 17-2 by control signals based on the reference signals e1 and e2 and also read distortion compensation data from the lookup tables 17-1 and 17-2. This series of signal processing is performed for each transmission frequency band. In this manner, it is possible to perform distortion compensation on the transmitting signals of a plurality of frequency bands, independently.
The update controller 22 instructs two lookup tables 17-1 and 17-2 to update coefficients so as to minimize the sum of absolute values of the reference signals e1 and e2 in dual frequency bands. Alternatively, an instruction to each of the lookup tables 17-1 and 17-2 to update coefficients may be done with a coefficient that minimizes an absolute value of each of the reference signals e1 and e2.
Initial coefficients of lookup tables 17-1 and 17-2 are obtained previously by measuring input/output characteristics of the power amplifier 28 for each frequency band. The update of coefficients in the frequency bands lookup tables 17-1 and 17-2 for each frequency band is repeated until a predetermined distortion suppression amount is reached for each frequency band. By repeating the process, it is possible to adaptively improve distortion suppression amount for each frequency band.
The variable band signal extractors 11-1, 11-2, 15-1 and 15-2 have been described only in examples consisting of band-pass filters as shown in
As a result, a delay of each frequency band signals extracted from the monitor signals by the variable band signal extractors 15-1 and 15-2 relative to the difference signals from the dividers 12-1 and 12-2 provided to the difference detectors 16-1 and 16-2 becomes longer, causing a problem that the length of lines from the dividers 12-1 and 12-2 to the difference detectors 16-1 and 16-2 needs to be longer according to the delayed amount and that an attenuation of signals increases. Then, it is considered that each of BPF1 to BPF4 of the variable band signal extractor shown in
In the case of extracting a signal in the frequency band FB1, three filters of BEF2 whose elimination center frequency is f2, BEF3 whose elimination center frequency is f3, and BEF4 whose elimination center frequency is f4 are connected in cascade as shown in
The input transmitting signal ST of the predistorter 100 is branched to the mixer 8A1 of the band controller 8 by the divider 9 of each of the abovementioned embodiments. The transmitting signal ST is assumed to include signals in dual frequency bands FB1 and FB2 whose center frequencies are f1 and f2 as shown in
The mixer 8A1 multiplies the local signal SL from the local oscillator 8A2 by the input signal ST. The components around a direct current are extracted by LPF 8A4 from the output of the mixer 8A1 and provides the direct current components to the frequency band setting unit 8B as an output from the band detector 8A. The direct current components are outputted from the LPF 8A4 during intervals where the frequency components of the input signal ST and a sweep frequency of the local oscillation signal SL match, as shown in
Specifically, the band setting unit 8B determines sweep frequencies at which the threshold Vth matches the rise and fall of direct current component voltages outputted from the LPF 8A4 as the local oscillation frequency is swept as shown in
The band setting unit 8B sets the center frequency f1, the lower limit frequency f1L and the upper limit frequency f1H of the frequency band FB1 determined in this manner to the variable band signal extractors 11-1 and 15-1, and sets the center frequency f2, the lower limit frequency f2L and the upper limit frequency f2H of the frequency band FB2 to the variable band signal extractors 11-2 and 15-2. For the variable band signal extractors shown in
If the frequency of the input signal ST of the lookup table type predistorter 100 is dynamically changed, i.e., if the frequency of the signal inputted into the power amplifier is dynamically changed, the frequency band controller 8 needs to control the variable band signal extractors according to the dynamically changed frequency. The time period for changing the frequency is determined by the frequency sweep time of the local oscillator 8A2. That is to say, the time period is determined by the time for one cycle of frequency sweep. In the example of
The voltage controlled oscillator that can sweep the oscillation frequency may be such one used for a general signal generator. The low-pass filter 8A4 can be realized by an LC filter or an active filter using an operational amplifier. The frequency band setting unit 8B can be realized by an analog digital converter that digitizes direct current components and a microprocessor. Although the frequency band controller 8 shown in
The frequency band information can be obtained from the input signal by using the frequency band controller 8 of
The frequency band controller 8 consists of the frequency band detector 8A and the band setting unit 8B. The frequency band detector 8A consists of a fast Fourier transform unit (FFT). The band setting unit 8B consists of level determiner 8B1, adders 8B2 and 8B4 and ½ multipliers 8B3 and 8B5.
The frequency components of the input signal ST are detected by the FFT which converts the input signal ST divided by the divider 9 from a time domain to a frequency domain. The level determiner 8B1 compares the frequency components detected by the FFT with a threshold Vth preset as in the case of
Commercialized ICs can be used as an FFT. The frequency band detector 8A can be realized by using a DSP (Digital Signal Processor) or an FPGA (Field Programmable Gate Array) instead of the FFT. The level determiner 8B1 can consist of a comparator. The frequency band detector 8A and the band setting unit 8B can be constructed of such simple circuits. It is possible to calculate the lower limit frequency, the upper limit frequency and the center frequency by mathematical operations with a DSP for the band setting unit 8B.
The frequency components in a narrow range of the digital input transmitting signal ST from the divider 9 are extracted by using the variable filter 8A5. The center frequency of the narrow pass band of the variable filter 8A5 is discretely swept in a sawtooth shape as shown in
The level determiner 8B1 references a discrete frequency represented by the frequency sweep signals from the frequency sweeper 8A6, and detects the frequencies at which levels of the output from the power determiner 8A10 are equal to or greater than the preset threshold Vth as shown in
The variable filter 8A5 of the frequency band detector 8A may be constructed of is a digital filter. The pass-bandwidth and the center frequency are determined by coefficients of the digital filter. The variable filter 8A5 sets the pass-bandwidth and the center frequency by using a previously calculated coefficients list according to the output from the frequency sweeper 8A6. The pass-bandwidth is set so as to be narrow enough in comparison to the bandwidth of the input transmitting signal ST. For example, if a bandwidth of a base band transmitting signal ST is 15 MHz, the pass-bandwidth of the variable filter 8A5 may be set around 1 kHz. The frequency sweeper 8A6 may be adapted to keep the value of the discrete sweep frequencies of one cycle in a shift register, for example, and output the frequency while cycling the frequencies. Alternatively, the frequency sweeper 8A6 may be adapted to store the values of the discrete sweep frequencies of a cycle in ROM and repeatedly read out a series of frequency values. The integrators 8A8I and 8A8Q may consist of FIR filters, for example. Alternatively, the integrators 8A8I and 8A8Q may be adapted to store data outputted from a multiplier and obtain a simple average.
Although the eighth to tenth embodiments mentioned above describe the case where the input signal ST of the digital predistorter 100 is divided to the band controller 8 by the divider 9 and frequency bands of the signals contained in the input signal ST with respect to the frequency bands FB1 and FB2 are detected, it is also possible to arrange such that the power amplifier output monitor signal SM is divided by a divider 20 to the frequency band controller 8 as shown by a broken line in
As described above, according to the present invention, appropriate distortion compensation can be made for each frequency band by extracting signals of each frequency band from the input signals including signals in a plurality of frequency bands by the variable band signal extractor, and distortion compensation for each frequency band by distortion compensation values read out from the lookup table provided for each frequency band. Specifically, the signals in each frequency band can be amplified by a common power amplifier because a distortion compensation value is added to signals in each frequency band and then the added results are combined by the combiner. Therefore, even if many numbers of frequency band signals to be transmitted exists, the signals in each frequency band can be amplified by the common power amplifier, while performing appropriate distortion compensation in each frequency band. As a result, the present invention can simplify the device and also suppress power consumption and downsize the device.
With the predistorter of the present invention provided for a power amplifier, it is possible to linearly amplify signals in the frequency bands corresponding to the service state of a wireless system. It is advantageous in that the present invention can eliminate additional equipment which would be required as the frequency band changes or carrier waves increase.
The present invention can use the variable band signal extractor consisting of a variable filter to simplify and make affordable the change of the frequency bands. The variable filter can make the center frequency and the bandwidth variable. The variable filter can accommodate the change in the frequency of wireless system by using a single lookup table type predistorter. As such, an operating frequency band of the lookup table type predistorter of the present invention is switched by a frequency switching instruction from an operation center, for example, or an operating frequency band is automatically switched when the frequency band is detected from the input signal. Therefore, the present invention is advantageous as it eliminates operation for executing adjustment with tremendous efforts required in the conventional lookup table type predistorters.
Number | Date | Country | Kind |
---|---|---|---|
2005-164436 | Jun 2005 | JP | national |
This application is a divisional of U.S. application Ser. No. 11/444,494, filed Jun. 1, 2006, the contents of which are incorporated herein by reference, and is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2005-164436, filed Jun. 3, 2005.
Number | Name | Date | Kind |
---|---|---|---|
6996378 | Helms | Feb 2006 | B2 |
6999523 | Posti | Feb 2006 | B2 |
7038540 | Gurvich et al. | May 2006 | B2 |
7142615 | Hongo et al. | Nov 2006 | B2 |
7183847 | Suzuki et al. | Feb 2007 | B2 |
7340005 | Kim et al. | Mar 2008 | B2 |
20010014592 | Helms | Aug 2001 | A1 |
20030053552 | Hongo et al. | Mar 2003 | A1 |
20040105510 | Tomerlin et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
1 394 954 | Mar 2004 | EP |
1 560 327 | Aug 2005 | EP |
2 335 812 | Sep 1999 | GB |
2 351 624 | Jan 2001 | GB |
06-132847 | May 1994 | JP |
07-50841 | May 1995 | JP |
2002-280999 | Sep 2002 | JP |
2003-092518 | Mar 2003 | JP |
2003-143020 | May 2003 | JP |
2004-128867 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090264089 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11444494 | Jun 2006 | US |
Child | 12493725 | US |