1. Field of the Invention
The present invention relates to the oil and gas industry. More particularly, the present invention relates to an oil and gas spider apparatus with a built-in antenna arrangement and related methods for use in a riser management system that monitors and manages a plurality of marine riser assets having identification tags through utilization of the spider apparatus.
2. Description of Related Art
In the oil and gas industry, a riser is a string of pipe between the sea bottom and ship or rig. Oil and gas riser pipe strings are assembled using a device known as a “spider.” The spider feeds and connects each section of riser pipe in the string. Spiders can have different configurations. Some spiders are made of a solid ring that the riser feeds through; some spiders are made of two pieces that close around a riser pipe and then feed the riser pipe through. For each configuration type of spider, the riser pipes are all fed into the spider in the same orientation.
During a typical field installation at sea, marine riser components are individually lifted. from the deck of a vessel, connected to each other at the riser spider, and run down. Riser joints, which comprise the major length of the riser string, are fabricated in lengths ranging from 50′ to 90′. During the running procedure, the portion of the riser string that is fully made up is landed on the riser spider. The next riser joint is then picked up and placed just over the spider, immediately above the suspended riser string. The two riser sections are then joined by means of a mechanical connector.
Riser Lifecycle Management Systems (RLMS) have been described, such as in co-owned U.S. Pat. No. 8,074,720. Such riser lifecycle management systems, for example, can provide asset managers a list of all the riser assets allocated to specific vessels and provide a further breakdown of those assets that are currently deployed, are on deck, or are out for maintenance, along with the expected return date; a list of upcoming scheduled maintenance events; an estimate of the amount of operational life being expanded by a particular riser asset; and an estimate of the total amount of operational life used by a particular riser asset, along with the details of the most damaging events (i.e., a certain hurricane event). Such riser lifecycle management systems can include, for example, a central database that can be used by field and maintenance personnel to maintain and communicate critical riser information, and that can enhance both routine maintenance scheduling and identifying a need for an unscheduled maintenance event.
Conventional stationary readers associated with a riser spider can interfere with normal operation of the spider. For example, known designs can require contact of an antenna and tag. Other conventional designs may call for the reader to be positioned too far away from the tag to be read without substantial loss in tag signal or data collisions from other adjacent tags if the tags do not include anti-collision provisions. Currently, directional 125 kHz RFID tags are being embedded in drill pipes and read using a handheld reader in a manual process.
Conventionally, directional 125 kHz RFID tags are being embedded in drill pipes and read using a handheld reader in a manual process.
In view of the foregoing, Applicants recognize that a manual process for reading riser pipes is error-prone and expensive. Moreover, Applicants recognize the need for apparatuses and related methods for automatically reading riser pipes, without requiring hand-held readers, manual processes, or interference with normal operations. Specifically, Applicants recognize that a low frequency (LF), stationary reader antenna assembly built into a spider would allow riser pipes to be read automatically, as the pipes are loaded. Moreover, Applicants recognize the advantages of an antenna configuration for various spider designs, including both ring and two-piece spiders. Accordingly, embodiments of the present invention advantageously provide an oil and gas spider apparatus with a built-in antenna assembly and related methods. Various embodiments can, for example, enhance a riser management system that monitors and manages a plurality of riser assets, e.g., marine riser assets such as, for example, riser pipes, drilling pipes, or other tubulars capable of fitting through the spider apparatus.
Various embodiments of the present invention include, for example, an apparatus. The apparatus can include a riser spider to connect a plurality of riser pipe sections during assembly of a riser pipe string. The riser spider can be positioned to form an annulus around a first section of the plurality of riser pipe sections and to support the first section of the plurality of riser pipe sections during connection to a second section of the plurality of riser pipe sections. The apparatus can include an antenna to read a plurality of radio frequency identification tags attached to or embedded within outer surface portions of the plurality of riser pipe sections. The antenna can be a single antenna or part of an antenna assembly. According to a configuration, the antenna includes an oblong loop attached to and substantially spanning about half of an internal surface of the riser spider so that the antenna follows the contour of the riser spider. In this configuration, the riser normally carries at least two identification tags (e.g., RFID tags) radially separated from each other by at least approximately 90°. According to another configuration, a second similar hemispherical extending loop is on a second section of a split section riser spider.
According to another configuration, the antenna includes an oblong loop substantially spanning the entire inner circumference of a portion of the riser spider. According to yet another configuration, a plurality of loop antennas are positioned along an inner circumference of either a single-piece spider or a split section riser spider to form an antenna arrangement. According to further configurations, the antenna design can be of various geometric shapes configured to provide mutual coverage along the longitudinal axis of the riser spider so that a marine tabular having a single identification tag connected to or embedded within it surface and passing through the riser spider will pass along one of the antenna and be read by an associated reader. That is, the antenna arrangement configuration can provide 360° coverage, allowing the tubular to pass through with its identification tag at any radial position (orientation) and still be read with a high degree of confidence.
Various embodiments of the present invention can include, for example, a method of tracking marine riser pipe sections. The method can include, for example, providing a plurality of radio frequency identification tags attached to outsides of and associated with a plurality of riser pipe sections. The method can include, for example, utilizing a riser spider to connect the plurality of riser pipe sections during assembly of a riser pipe string or connecting drill pipe to form a drilling string. The riser spider can form an annulus around a first section of the plurality of riser pipe sections and support the first section of the plurality of riser pipe sections during connection to a second section of the plurality of riser pipe sections. The method can include, for example, reading each of the plurality of, e.g., radio frequency identification tags during a feeding of the associated riser pipe section through the riser spider utilizing an antenna or antenna arrangement described above. The antenna or antenna arrangement can be such that the plurality of identification tags are read regardless of their radial position with respect to the riser spider when being operationally deployed.
Various embodiments of the present invention can further include, for example, a method of tracking a plurality of riser pipe sections. The method can include, for example, for each of a plurality of riser pipe sections, receiving riser pipe section identification data from a radio frequency identification tag attached to or embedded within an outside surface of and associated with a riser pipe section utilizing a single antenna or antenna assembly during a feeding of the riser pipe section through a riser spider during assembly of a riser pipe string to separately identify each one of the plurality of riser pipe sections from each other of the plurality of riser pipe sections. The antenna or antenna arrangement can be such that the plurality of identification tags are read regardless of their radial position with respect to the riser spider when being operationally deployed. The method can include, for example, determining a relative deployed position location of the each of the plurality of riser pipe sections to form the riser pipe string.
Other prior solutions require hand-held or stationary readers that alter or interfere with normal operation of the riser pipe string. Various embodiments of the invention negate the need for handheld readers and beneficially do not interfere with the normal operation of either the riser spider or deployment of the riser pipe or drilling string. In addition, embodiments of the present invention advantageously provide a solution for various riser spider configurations, including spiders that are made of two pieces that close around a riser pipe.
So that the manner in which the features and advantages of the invention, as well as others which will become apparent, may be understood in more detail, a more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings, which form a part of this specification. It is to be noted, however, that the drawings illustrate only various embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it may include other effective embodiments as well.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Applicants recognize that a manual process for reading riser pipes is error-prone and expensive. Moreover, Applicants recognize the need for apparatuses and related methods for automatically reading riser pipes, without requiring hand-held readers, manual processes, or interference with normal operations. Specifically, Applicants recognize that a low frequency (LF), stationary reader antenna built into a riser spider would allow riser pipes to be read automatically, as the pipes are fed through the riser spider. Moreover, Applicants recognize the advantages of an antenna for various spider designs, including both ring and two-piece spiders. Accordingly, embodiments of the present invention advantageously provide an oil and gas spider apparatus with a built-in antenna and related methods. One or more embodiments can, for example, enhance a riser management system that monitors and manages a plurality of riser assets, e.g., marine riser assets, drill pipe assets, etc.
One or more embodiments of the present invention include, for example, RFID tags, e.g., 125 kHz RFID tags. As illustrated in
As illustrated in
As shown in
In a typical arrangement, the distance between antenna need to be such that the antennas do not couple as would be understood by one of ordinary skill in the art. However, in order to provide 360° of coverage with 100% reliability when using multiple antenna, the antenna design requires the absence of a vertical line separation between antenna loops. Such a separation or gap could result in a missed reading of a tag 71 attached to its associated tubular (e.g., riser, drilling pipe) as it travels through the spider 32. As such, a desirable antenna design would include no vertical gap between antenna loops.
Note, in the two-section riser spider 32 configuration, a vertical line separation can occur along the separation points, resulting in a reduction of reliability that a tubular having a single identification tag 71 will be read to about 96% when the rotational orientation is substantially random. Alternatively, according to one or more embodiments, portions of antenna loops can be connected across the splits between section 32A, 32B, through use of antenna bridges as would be understood by one of ordinary skill in the art.
Embodiments of the present invention also include, for example, an apparatus. The apparatus can include, for example, a riser spider 32 to connect a plurality of tubular sections, e.g., riser pipe sections 29, during assembly of, e.g., a riser pipe string. The riser spider 32 can form an annulus around a first section of the plurality of riser pipe sections and support the first section of the plurality of riser pipe sections during connection to a second section of the plurality of riser pipe sections. The apparatus can include, for example, an antenna arrangement including one or more of antenna 161, 162, 163, 164165, and/or 166 to read a plurality of radio frequency identification tags 71 attached to, or embedded within, outer surface portions of the plurality of riser pipe sections 29. The antenna design can include an oblong loop 161 attached to and substantially spanning about half of an internal surface of the riser spider section 32A so that the antenna follows the contour of the riser spider, and/or a similar antenna design on the other riser spider section 32B. One or more of the other antenna arrangements using a plurality of antenna designs 162-165 or one or an opposing pair of antenna designs 166 can also or alternatively be used.
The apparatus can also include an adhesive 231 (see, e.g.,
In an example embodiment of an apparatus, the riser spider 32 can include two portions 32A, 32B that together close around the first section of the plurality of riser pipe sections 29 to form the annulus, with each portion comprising a semi-circumference of the annulus. The riser spider 32 can also include the two portions being connected by a hinge 232 (see, e.g.,
Placement of the antenna 161, 162, 163, 164, 165, and/or 166 on the inner surface 157 of the spider 32 allows the tag 71 on the riser pipe 29 to be read as it moves through the spider 32, automatically and without manually bringing a reader to the riser pipe 29 or the riser pipe 29 to a reader, for example. In addition, because no direct contact between the riser pipe 29 and the antenna 201 for the reader is necessary, the exemplary embodiments of the present invention beneficially do not interfere with normal operation of the riser pipe string.
Other prior solutions require hand-held or stationary readers, and necessarily alter or interfere with normal operation of the riser pipe string. In addition, embodiments of the present invention advantageously provide a solution for various riser spider configurations, including both uni-piece spiders and spiders that are made of two pieces that close around a riser pipe.
As illustrated in
The antenna arrangement can include either of the antenna/antenna designs 161-166, described previously, attached to or embedded within, and substantially spanning along the entire inner-facing surface of a single-section riser spider or a multi-section spider if each sections include joint double connectors connecting any antenna loops traversing the splits between riser sections 32A, 32B; about half of one or both of the inner-facing surface sections of the riser spider 32 defined by the split between riser sections 32A, 32B, so that the respective antenna or antennae follow the contour of respective portions of the riser spider 32.
As illustrated in
More specifically, as illustrated in
The riser lifecycle management system 30 can also include riser pipe section measurement instrument modules 91 and a subsurface communication medium 95, described herein.
The riser lifecycle management system 30 can also include, in communication with the onshore communication network 53, a receiver/transmitter 54 providing, for example, satellite-based communication to a plurality of vessels/drilling/production facilities each having a receiver/transmitter 44. The riser lifecycle management system 30 can also include, for example, a global communication network 61 providing a communication pathway between the shipboard computers 41 of each respective vessel 27 and the riser lifecycle management server 51 to permit transfer of riser asset information between the shipboard computers 41 and the riser life cycle management server 51.
As illustrated in
As illustrated in
According to an embodiment of the present invention, the riser identification and deployment data for each riser joint 29 (or other riser asset of interest) is communicated, for example, to the shipboard computer 41 by means of a tag such as, for example, an RFID chip or tag 71 (see, e.g.,
Further, the system 30 can also include riser joint measurement instrument modules 91 each positioned to sense a load represented by strain, riser pipe curve, or accelerometer data, etc., imposed on a separate one of the riser joints 29 forming the riser string 23, a riser joint load data receiver 93 mounted or otherwise connected to the vessel 27 at or adjacent the surface of the sea and operably coupled to the local shipboard communication network 43 to receive load data for each of the deployed riser joints 29 from the riser joint measurement instrument modules 91, and a subsurface communication medium 95 illustrated as provided via a series of replaceable wireless data telemetry stations providing a communication pathway between each of the joint measurement instrument modules 91 and the riser joint load data receiver 93 through a water column associated with the riser string 23.
The measurement instrument modules 91 can determine the magnitude of the loads imposed on the riser string 23 to calculate the magnitude of the stress at various locations on the riser joint 29 or other riser asset. Examples can include excessive stresses, deflections, accelerations, and high frequency alternating stresses in a cross flow motion due to, for example, vortex induced vibration caused by vortices VX. There are a number of methods under which the riser stresses can be measured. In one embodiment, the riser pipe strain is read at a sensor 103, since conversion of strain data to stresses is fairly straightforward and can be done via a relatively simple computer program element. Alternatively, the riser dynamics can be obtained via accelerometers, which may require a more complex set of operations for conversion to material stress from which the operational (e.g., fatigue) life can then be calculated. The load data sent to the riser lifecycle management server 51 can be in either raw data or converted to local stresses by the shipboard computer 41, or some intermediate form if some processing is accomplished by the instrument modules 91. According to an embodiment of the present invention, the sensor 103 is carried by a thin clamp-on composite mat (not shown), which can be used to accurately determine the deflection in the riser joint 29.
Embodiments of the riser lifecycle management system 30 can also include various methods relating to monitoring and managing a plurality of marine riser assets. For example, the shipboard computer 41 can compare ID data with the list of recently recorded tags. If a duplicate asset is reported, it is disregarded. That is, when utilizing automated reading sensors, the same riser asset may be scanned multiple times while being landed on the spider 32 or during the normal course of handling. As such, the preferred handling procedures can include disregarding duplicate records or duplicate reads within a preselected time period.
Embodiments of the apparatuses and associated methods according to the present invention provide several advantages and enhancements, in the context of a riser lifecycle management system 30. For example, embodiments provide for automatically reading identification tags on riser pipes, without requiring hand-held readers, manual processes, or interference with normal operations. That is, embodiments provide a low frequency (LF), stationary reader antenna built into a riser spider that allows riser pipes to be read automatically, as the pipes are fed through the riser spider.
In conjunction with a riser lifecycle management system 30, embodiments of the present invention can track marine riser pipe sections to thereby enable the system to notify automatically an operator of both routine and unscheduled maintenance events. A routine maintenance event is one that is scheduled sometime in advance, but may have been aided by load history information in the database. An unscheduled maintenance event is one associated with an unexpected incident. For example, one or more riser joints in a string that has been subjected to a direct hit by a hurricane may reach a preset fatigue life trigger level, requiring an inspection of the riser joint at the very least. In such a scenario, the operator would have a high degree of confidence that the remaining riser assets are suitable for marine deployment, reducing the down time associated with inspection of the entire riser string.
This application is a continuation-in-part of and claims priority to and the benefit of: U.S. patent application Ser. No. 13/919,573, titled “Oil and Gas Riser Spider with Low-Frequency Antenna Apparatus and Method,” which is a continuation of and claims priority to and the benefit of U.S. patent application Ser. No. 12/710,707, titled “Oil and Gas Riser Spider with Low-Frequency Antenna Apparatus and Method”; and U.S. patent application Ser. No. 13/707,121, titled. “Riser Lifecycle Management System, Computer Readable Medium and Program Code,” which claims priority to and the benefit of U.S. application Ser. No. 13/300,155, titled “Riser Lifecycle Management System, Program Product, and Related Methods,” which claims priority to and the benefit U.S. patent application Ser. No. 12/029,376, titled “Riser Lifecycle Management System, Program Product, and Related Methods,” filed on Feb. 11, 2008, now U.S. Pat. No. 8,074,720, and is related to co-owned U.S. Pat. No, 7,328,741 B2, titled “System for Sensing Riser Motion” issued on Feb. 12, 2008, each incorporated herein by reference in its entirety.
In the drawings and specification, there have been disclosed a typical preferred embodiment of the invention, and although specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. The invention has been described in considerable detail with specific reference to these illustrated embodiments. It will be apparent, however, that various modifications and changes can be made within the spirit and scope of the invention as described in the foregoing specification.
This application is a continuation-in-part of and claims priority to and the benefit of U.S. patent application Ser. No. 13/919,573, titled “Oil and Gas Riser Spider with Low-Frequency Antenna Apparatus and Method,” which is a continuation of and claims priority to and the benefit of U.S. patent application Ser. No. 12/710,707, titled “Oil and Gas Riser Spider with Low-Frequency Antenna Apparatus and Method”; and U.S. patent application Ser. No. 13/707,121, titled “Riser Lifecycle Management System, Computer Readable Medium and Program Code,” which claims priority to and the benefit of U.S. application Ser. No. 13/300,155, titled “Riser Lifecycle Management System, Program Product, and Related Methods,” which claims priority to and the benefit U.S. patent application Ser. No. 12/029,376, titled “Riser Lifecycle Management System, Program Product, and Related Methods,” filed on Feb. 11, 2008, now U.S. Pat. No. 8,074,720, and is related to co-owned U.S. Pat. No. 7,328,741 B2, titled “System for Sensing Riser Motion” issued on Feb. 12, 2008, each incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4205379 | Fox et al. | May 1980 | A |
4317174 | Dean | Feb 1982 | A |
5088859 | Devlin | Feb 1992 | A |
5202680 | Savage | Apr 1993 | A |
5240446 | Boatman et al. | Aug 1993 | A |
5372531 | Boatman et al. | Dec 1994 | A |
5553504 | Lyons et al. | Sep 1996 | A |
5777239 | Fuglewicz | Jul 1998 | A |
5978739 | Stockton | Nov 1999 | A |
6364021 | Coats | Apr 2002 | B1 |
6588985 | Bernard | Jul 2003 | B1 |
6932542 | Chianis et al. | Aug 2005 | B2 |
7080689 | Guesnon | Jul 2006 | B2 |
7194913 | Morrison et al. | Mar 2007 | B2 |
7252159 | Baek | Aug 2007 | B2 |
7328741 | Allen et al. | Feb 2008 | B2 |
7540200 | Yung et al. | Jun 2009 | B2 |
7766580 | Dartford et al. | Aug 2010 | B2 |
8074720 | Radi | Dec 2011 | B2 |
8464946 | Mackenzie et al. | Jun 2013 | B2 |
8540030 | Radi | Sep 2013 | B2 |
20050100414 | Salama | May 2005 | A1 |
20080289876 | King | Nov 2008 | A1 |
20130092387 | Radi | Apr 2013 | A1 |
Entry |
---|
Chedzoy, C. et al., Design Challenges of Deepwater Dry Tree Riser Systems for Different Vessel Types, 2003. |
International Search Report and Written Opinion for related PCT Application PCT/US09/33826, Apr. 2007. |
Number | Date | Country | |
---|---|---|---|
20140060851 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12710707 | Feb 2010 | US |
Child | 13919573 | US | |
Parent | 13707121 | Dec 2012 | US |
Child | 12710707 | US | |
Parent | 13300155 | Nov 2011 | US |
Child | 13707121 | US | |
Parent | 12029376 | Feb 2008 | US |
Child | 13300155 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13919573 | Jun 2013 | US |
Child | 14079143 | US |