Optical patient monitor

Information

  • Patent Grant
  • 11229408
  • Patent Number
    11,229,408
  • Date Filed
    Monday, July 1, 2019
    4 years ago
  • Date Issued
    Tuesday, January 25, 2022
    2 years ago
Abstract
An optical based patient monitoring system employing an optical sensor and providing an indication of an optical change which does not correlate to a change in a physiological blood parameter and based on that indication, providing a care provider an indication of a condition of a patient. The optical based patient monitoring system providing the indication of the patient condition in relation to a patient using an IV setup.
Description
PRIORITY CLAIM TO RELATED PROVISIONAL APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet are hereby incorporated by reference under 37 CFR 1.57


FIELD OF THE DISCLOSURE

The present disclosure relates to a sensor for measuring physiological parameters and, in particular, relates to using measured physiological parameters to generate an indicator.


BACKGROUND

Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply. Early detection of a low blood oxygen level is critical in the medical field, for example in critical care and surgical applications, because an insufficient supply of oxygen can result in brain damage and death in a matter of minutes. A typical pulse oximetry system utilizes a sensor applied to a patient's finger. The sensor has an emitter configured with both red and infrared LEDs that project light through the finger to a detector so as to determine the ratio of oxygenated and deoxygenated hemoglobin light absorption. In particular, the detector generates first and second intensity signals responsive to the red and IR wavelengths emitted by the LEDs after absorption by constituents of pulsatile blood flowing within a fleshy medium, such as a finger tip. A pulse oximetry sensor is described in U.S. Pat. No. 6,088,607 titled Low Noise Optical Probe, which is assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein.


Capnography comprises the continuous analysis and recording of carbon dioxide concentrations in the respiratory gases of patients. The device used to measure the CO2 concentrations is referred to as a capnometer. CO2 monitoring can be performed on both intubated and non-intubated patients. With non-intubated patients, a nasal cannula is used. Capnography helps to identify situations that can lead to hypoxia if uncorrected. Moreover, it also helps in the swift differential diagnosis of hypoxia before hypoxia can lead to irreversible brain damage. Pulse oximetry is a direct monitor of the oxygenation status of a patient. Capnography, on the other hand, is an indirect monitor that helps in the differential diagnosis of hypoxia so as to enable remedial measures to be taken expeditiously before hypoxia results in an irreversible brain damage.


Early detection of low blood oxygen is critical in a wide variety of medical applications. For example, when a patient receives an insufficient supply of oxygen in critical care and surgical applications, brain damage and death can result in just a matter of minutes. Because of this danger, the medical industry developed pulse oximetry, a noninvasive procedure for measuring the oxygen saturation of the blood. A pulse oximeter interprets signals from a sensor attached to a patient in order to determine that patient's blood oxygen saturation.


A conventional pulse oximetry sensor has a red emitter, an infrared emitter, and a photodiode detector. The sensor is typically attached to a patient's finger, earlobe, or foot. For a finger, the sensor is configured so that the emitters project light from one side of the finger, through the outer tissue of the finger, and into the blood vessels and capillaries contained inside. The photodiode is positioned at the opposite side of the finger to detect the emitted light as it emerges from the outer tissues of the finger. The photodiode generates a signal based on the emitted light and relays that signal to the pulse oximeter. The pulse oximeter determines blood oxygen saturation by computing the differential absorption by the arterial blood of the two wavelengths (red and infrared) emitted by the sensor.


SUMMARY

Multiple physiological parameters, combined, provide a more powerful patient condition assessment tool than when any physiological parameter is used by itself. For example, a combination of parameters can provide greater confidence if an alarm condition is occurring. More importantly, such a combination can be used to give an early warning of a slowly deteriorating patient condition as compared to any single parameter threshold, which may not indicate such a condition for many minutes. Conditions such as hypovolemia, hypotension, and airway obstruction may develop slowly over time. A physiological parameter system that combines multiple parameters so as to provide an early warning could have a major effect on the morbidity and mortality outcome in such cases. Parameters can include ECG, EKG, blood pressure, temperature, SpO2, pulse rate, HbCO, HbMet, Hbt, SpaO2, HbO2, Hb, blood glucose, water, the presence or absence of therapeutic drugs (aspirin, dapson, nitrates, or the like) or abusive drugs (methamphetamine, alcohol, or the like), concentrations of carbon dioxide (“CO2”), oxygen (“O”), ph levels, bilirubin, perfusion quality, signal quality, albumin, cyanmethemoglobin, and sulfhemoglobin (“HbSulf”) respiratory rate, inspiratory time, expiratory time, inspiratory to expiratory ratio, inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds—including rales, rhonchi, or stridor, changes in breath sounds, heart rate, heart sounds—including S1, S2, S3, S4, or murmurs, or changes in heart sounds, or the like. Some references that have common shorthand designations are referenced through such shorthand designations. For example, as used herein, HbCO designates carboxyhemoglobin, HbMet designates Methemoglobin, and Hbt designates total hemoglobin. Other shorthand designations such as COHb, MetHb, and tHb are also common in the art for these same constituents. These constituents are generally reported in terms of a percentage, often referred to as saturation, relative concentration or fractional saturation. Total hemoglobin is generally reported as a concentration in g/dL. The use of the particular shorthand designators presented in this application does not restrict the term to any particular manner in which the designated constituent is reported.


Further, a greater emphasis has been put on decreasing the pain level of patients on the ward. Accordingly, patients are often given an IV setup that enables the patient to increase the level of analgesia at will. In certain situations, however, the patient's input must be ignored so as to avoid over medication. Complications from over sedation may include hypotension, tachycardia, bradycardia, hypoventilation and apnea. A physiological parameter system that uses pulse oximetry monitoring of SpO2 and pulse rate in conjunction with patient controlled analgesia (PCA) can aid in patient safety. Utilization of conventional pulse oximetry in conjunction with PCA, however, can result in the patient being erroneously denied pain medication. Conventional monitors are susceptible to patient motion, which is likely to increase with rising pain. Further, conventional monitors do not provide an indication of output reliability.


Advanced pulse oximetry is motion tolerant and also provides one or more indications of signal quality or data confidence. These indicators can be used as arbitrators in decision algorithms for adjusting the PCA administration and sedation monitoring. Further, advanced pulse oximetry can provide parameters in addition to oxygen saturation and pulse rate, such as perfusion index (PI). For example, hypotension can be assessed by changes in PI, which may be associated with changes in pulse rate. Motion tolerant pulse oximetry is described in U.S. Pat. No. 6,206,830 titled Signal Processing Apparatus and Method; signal quality and data confidence indicators are described in U.S. Pat. No. 6,684,090 titled Pulse Oximetry Data Confidence Indicator, both of which are assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein.


One aspect of a physiological parameter system is a first parameter input responsive to a first physiological sensor and a second parameter input responsive to a second physiological sensor. A processor is adapted to combine the parameters and predetermined limits for the parameters so as to generate an indication of wellness.


Another aspect of a physiological parameter system is a parameter input responsive to a physiological sensor and a quality indicator input relating to confidence in the parameter input. A processor is adapted to combine the parameter input, the quality indicator input and predetermined limits for the parameter input and the quality indicator input so as to generate a control output.


A physiological parameter method comprises the steps of inputting a parameter responsive to a physiological sensor and inputting a quality indicator related to data confidence for the parameter. A control signal is output from the combination of the parameter and the quality indicator. The control signal is adapted to affect the operation of a medical-related device.


A method of improving the reporting of a physiological parameter in a physiological parameter system comprises obtaining measurements of a physiological parameter from a measurement site. At least some of the physiological parameter measurements are maintained. A change in the measurement site is detected. A measurement of the physiological parameter from a new measurement site is obtained. The measurement of the physiological parameter at the new measurement site is compared with the maintained physiological parameter measurements. The magnitude of the physiological parameter reported by the physiological parameter system at the new measurement site is adjusted to approximately match the magnitude of the maintained physiological parameter measurements.


A method of generating an indicator of patient wellness using a physiological parameter system includes receiving physiological parameter data from a sensor attached to the physiological parameter system. Physiological parameter preferences are provided to the physiological parameter system. The physiological parameter data is compared to the physiological parameter preferences. An indicator of patient wellness is generated by calculating a numerical wellness score based on the comparison.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of a physiological parameter measurement system.



FIG. 2A illustrates an embodiment of a sensor assembly.



FIGS. 2B-C illustrate alternative sensor embodiments.



FIG. 3A illustrates an example chart of the value of a physiological parameter as measured by a sensor during a time when the sensor is moved from one measurement site to another.



FIG. 3B illustrates a chart of a physiological parameter reported by a measurement system employing signal normalization techniques.



FIG. 3C illustrates a chart of a MetHb reading which is smoothed to account for abnormal variations in the readings.



FIG. 3D illustrates a MetHb smoothing flowchart.



FIG. 3E illustrates a system of multiple different MetHb calculators which determine MetHb using different methods in order to calculate the most accurate MetHb reading.



FIG. 4 is a block diagram of a physiological parameter system having signal normalization capability.



FIG. 5 illustrates an embodiment of a method for normalizing a signal acquired by a sensor.



FIG. 6 is a general block diagram of a physiological parameter system having alarm, diagnostic and control outputs.



FIG. 6A illustrates an embodiment of a physiological parameter system 600 similar to the system in FIG. 6



FIG. 7 is a block diagram of a physiological parameter system combining pulse oximetry and capnography and providing alarm outputs.



FIG. 8 is a block diagram of a saturation limit alarm enhanced by ETCO2 measurements.



FIG. 9 is a block diagram of a CO2 waveform alarm enhanced by SpO2 measurements.



FIG. 10 is a block diagram of a physiological parameter system combining pulse oximetry and capnography and providing a diagnostic output.



FIGS. 11A, 11B, 12 are block diagrams of a physiological parameter system utilizing pulse oximetry to control patient controlled analgesia (PCA).



FIGS. 13, 13A, 13B illustrates an embodiment of a system that displays an indicator of the wellness of a patient.



FIG. 14 is a flowchart showing an example method of displaying an indicator of the wellness of a patient.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Hereinafter, various example embodiments of the present disclosure will be described in detail with reference to the attached drawings such that the present disclosure can be put into practice by those skilled in the art. However, the present disclosure is not limited to the example embodiments, but may be embodied in various forms.


Some embodiments will be described in the context of computer-executable instructions, such as program modules, being executed by hardware devices, such as embedded processors, microcontrollers, and computer workstations. Program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular data types. Computer-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of executable instructions or arrangement of associated data structures represents examples of corresponding acts for implementing the functions described in such steps. A person of skill in the art would understand that other structures, arrangements, and executable instructions could be used with the present disclosure without departing from the spirit thereof.



FIG. 1 illustrates an embodiment of a physiological measurement system 100 having a monitor 101 and a sensor assembly 101. The physiological measurement system 100 allows the monitoring of a person, including a patient. In particular, the multiple wavelength sensor assembly 101 allows the measurement of blood constituents and related parameters, including oxygen saturation, COHb, MetHb and pulse rate.


In an embodiment, the sensor assembly 101 is configured to plug into a monitor sensor port 103. Monitor keys 105 provide control over operating modes and alarms, to name a few. A display 107 provides readouts of measured parameters, such as oxygen saturation, pulse rate, COHb and MetHb to name a few.



FIG. 2A illustrates a multiple wavelength sensor assembly 201 having a sensor 203 adapted to attach to a tissue site, a sensor cable 205 and a monitor connector 201. In an embodiment, the sensor 203 is incorporated into a reusable finger clip adapted to removably attach to, and transmit light through, a fingertip. The sensor cable 205 and monitor connector 201 are integral to the sensor 203, as shown. In alternative embodiments, the sensor 203 can be configured separately from the cable 205 and connector 201, although such communication can advantageously be wireless, over public or private networks or computing systems or devices, through intermediate medical or other devices, combinations of the same, or the like.



FIGS. 2B-C illustrate alternative sensor embodiments, including a sensor 211 (FIG. 2B) partially disposable and partially reusable (resposable) and utilizing an adhesive attachment mechanism. Also shown is a sensor 213 being disposable and utilizing an adhesive attachment mechanism. In other embodiments, a sensor can be configured to attach to various tissue sites other than a finger, such as a foot or an ear. Also a sensor can be configured as a reflectance or transflectance device that attaches to a forehead or other tissue surface. The artisan will recognize from the disclosure herein that the sensor can include mechanical structures, adhesive or other tape structures, Velcro wraps or combination structures specialized for the type of patient, type of monitoring, type of monitor, or the like.


Certain physiological parameters and certain changes in physiological parameters may serve as indicators of an adverse condition affecting a patient. For example, an increase in blood methemoglobin (MetHb) concentration may be useful as a marker of the onset of sepsis or septic shock. As another example, measurements of high blood carboxyhemoglobin (COHb) concentration may indicate exposure to carbon monoxide (CO). Other physiological and related parameters to which techniques of the present disclosure may be applicable include respiration rate, respiration volume, oxygen saturation, pulse rate, ECG, blood glucose, blood pressure, temperature, perfusion index, exhaled carbon dioxide waveform, end tidal carbon dioxide, various signal quality indicators, data confidence indicators and trend data, among others.


A sensor measuring a physiological parameter (e.g., a physiological parameter measurement device) of a patient may, under certain circumstances, detect a change in the magnitude of a detected signal that does not correspond to a change in the value of the physiological parameter. Such changes in a detected signal may occur, for example, when the sensor is moved to a different measurement site. Sometimes, a sensor may be temporarily removed from a patient, and medical reasons may compel movement of the sensor to a different location. For example, a multiple wavelength sensor may need to be moved to a different finger of a patient about every 12 hours in order to maintain the sensor's measurement effectiveness and/or to avoid injury to the patient. When the measurement site of a multiple wavelength sensor is switched to a different location, the magnitudes of some of the signals detected by the sensor may change, even though no significant change in the patient's physiological parameters has occurred during the brief sensor relocation period. Signal normalization techniques described in the present disclosure may reduce changes in physiological parameters reported by a physiological parameter system that are unrelated to actual physiological parameter variation.


In some cases, the magnitude of a sensor measurement may be a less effective indicator of an adverse condition than a change in the magnitude of a sensor measurement. In such cases, a sensor may not need to be calibrated to report the absolute magnitude of a physiological parameter when changes in the magnitude of the parameter are more significant for purposes of condition detection. In other cases, the absolute magnitude of a physiological parameter is valuable, and a sensor signal must be analyzed and/or recalibrated to compensate for changes in the magnitude of the signal detected that do not correspond to changes in the value of the physiological parameter being measured. Signal normalization techniques may improve a physiological parameter system's reporting effectiveness for both types of parameters.



FIG. 3A illustrates an example chart 300 of the value of a physiological parameter, such as, for example, MetHb, as measured by a sensor during a time when the sensor is moved from one measurement site to another. Chart 300 shows the magnitude of a signal measured by a sensor as a function of time before any analysis or manipulation of the signal occurs. A first axis 302 of chart 300 represents time, and a second axis 304 represents the magnitude of a signal, corresponding to a physiological parameter, detected at a point in time. The physiological parameter corresponding to the signal shown by way of example in FIG. 3A is blood MetHb concentration.


Curve 306 represents the magnitude of the signal detected by a sensor during a period when the sensor was at a first measurement site. The signal represented by curve 306 roughly oscillates about a nearly constant mean value of the signal. However, the signal may also follow any continuous increasing or decreasing trend and may also be nonoscillatory or contain a complex pattern of variation.


At time T1 along axis 302, the sensor is removed from the first measurement site. Curve 308 represents the magnitude of the signal detected by the sensor while it is disconnected from the patient, for example, while a care provider switches the sensor to a new measurement site. In chart 300, the magnitude of the signal is about zero, but the sensor may continue to detect a signal of some nature (e.g., random noise, background interference, etc.) during a period when it is disconnected from a patient.


At time T2 along axis 302, the sensor is attached to a second measurement site on the patient. The second measurement site may be different than the first measurement site; for example, the second measurement site may be a different finger or a different position on a finger. Curve 310 represents the magnitude of the signal detected by the sensor during a period when the sensor is at the second measurement site. The signal represented by curve 310 roughly oscillates about a nearly constant mean value of the signal that is higher than the mean value of the portion of the signal represented by curve 306. The difference between the magnitude of the signal shortly before time T1 and the magnitude of the signal shortly after time T2 is a shift in the magnitude of the signal that is related to the change in the measurement site. However, the shift in the signal may not correspond to an actual change in the value of a physiological parameter of the patient. In some cases, it may be safe to assume that the approximate value of a physiological parameter shortly before time T1 and shortly after time T2 is the same. In the absence of signal normalization, the signal shift may trigger a false alarm or cause a physiological parameter system to incorrectly report a change in a parameter. In the embodiment shown in FIG. 3A, reporting the non-normalized signal may trigger an alarm for sepsis or septic shock at time T2 due to an apparent increase in blood MetHb concentration.



FIG. 3B illustrates a chart 350 of a physiological parameter reported by a measurement system employing signal normalization techniques. In the situation corresponding to chart 350, it is assumed that the approximate value of the physiological parameter shortly before time T1 is the same as the approximate value of the physiological parameter shortly after time T2. A first axis 352 of chart 350 represents time, and a second axis 354 represents the value of a physiological parameter reported by a physiological parameter system at a point in time. The physiological parameter shown by way of example in FIG. 3B is blood MetHb concentration.


In chart 350, curve 356 represents the value of the physiological parameter reported while the sensor is at the first measurement site. Curve 358 represents the value of the physiological parameter reported while the sensor is not connected to the patient. In alternative embodiments, a physiological parameter system may not report a parameter or may shut off the sensor when the system detects that the sensor is not at a measurement site. Curve 360 represents the value of the physiological parameter reported while the sensor is at the second measurement site. The physiological parameter data in chart 350 is normalized because the value of the physiological parameter reported just before T1 is adjusted to match the value of the physiological parameter just after T2. Various methods of matching may exist, including adjusting the values before and after the measurement site change to be approximately equal, using data points before T1 to generate a trend line and fixing the data point at T2 to the trend line, or any other method known in the art of projecting or approximating the value of the physiological parameter at T2 based on data prior to T1.


In some embodiments, sensor measurements that are received after time T2, as shown in curve 310 of chart 300 (FIG. 3A), may be normalized by adding an offset to the magnitudes of the measurements. The offset may be calculated by subtracting the magnitude of the non-normalized sensor measurement at time T2 from the magnitude of the normalized sensor measurement at T2. The offset may be a negative number. Similar methods of normalizing data points involving, for example, subtraction of an offset and other known methods may also be used. One result of signal normalization is that, given a relatively constant physiological parameter over time, the mean value of curve 360 will more closely approximate the mean value of curve 356. Signal normalization may reduce the incidence of false alarms and reports of changes in physiological parameters that have not in fact changed.



FIG. 3C illustrates a further example of normalizing a signal with erratic noise, such as, for example, motion induced noise. As illustrated, a physiological parameter signal 370, such as a signal indicative of MetHb, is illustrated. The physiological parameter signal 370 includes various inconsistencies, such as, for example, erratic noises 371, probe off conditions 373, and cite change conditions 375. In order to deal with these inconsistencies, processing is used to determine a normalization 377 or trend of the signal. The normalization 377 uses various methods in order to determine a relatively stable physiological parameter reading 377.



FIG. 3D illustrates a flow chart of a normalization procedure 380. For ease in discussion, FIGS. 3D and 3E will be discussed with respect to a MetHb reading, however, it should be understood that any physiological parameter can be used with the present disclosure. The normalization procedure begins with the data signal 381. As show, the normalization feature 380 includes Met calculator 382; smoother 384, Met signal extractor 385; signal quality 387 and distortion 388. In an embodiment, a data signal 381 responsive to an intensity signal is input into the Met calculator 382, and a current value 383 of Met is calculated. The current value 383 of Met, which in an embodiment is subject to noise, distortion, and site movements in the data signal 381, is input into the smoother 384, which reduces an error between the current value 383 of Met and actual MetHb conditions. For example, the smoother 384 may advantageously determine a Met trend, and depending upon an indication of some or all of an amount of distortion, noise, signal quality, and/or waveform quality in the data signal 383, substitute or combine the MetHb trend for or with the current value 383 to generate an output MetHb measurement.


In an embodiment, the distortion signal 388 may comprise a Boolean value indicating whether the data signal 383 includes, for example, motion-induced noise. Although an artisan will recognize from the disclosure herein a number of methodologies for deriving the distortion signal 388, derivation of a Boolean distortion signal is disclosed in U.S. Pat. No. 6,606,511, incorporated herein by reference. Alternatively, or in addition to, the signal quality signal 387 may comprise a Boolean value indicating whether the data signal 383 meets various waveform criteria Although an artisan will recognize from the disclosure herein a number of methodologies for deriving the signal quality signal 387, derivation of a Boolean distortion signal is disclosed in the '511 patent. Alternatively, or in addition to, a feature extractor 385 may advantageously produce waveform quality outputs 386, indicative of waveform quality or waveform shape. Although an artisan will recognize from the disclosure herein a number of methodologies for deriving the waveform quality signal 386, derivation thereof is disclosed in U.S. Pat. No. 6,334,065, also incorporated herein by reference.


Thus, the smoother 384 accepts one or more or different indicators of the quality of the data signal 381, and determines how to smooth or normalize the output to reduce errors between data trends and actual MetHb conditions. In an embodiment, the smoothing may advantageously comprise statistical weighting, other statistical combinations, or simply passing the MetHb measurement 383 through to the output, depending upon one or more of the quality signals 386, 387, 388, or logical combinations thereof.


Upon the output of the normalized MetHb measurement, a monitor may advantageously audibly and/or visually presents the measurement to a caregiver, and when the measurement meets certain defined thresholds or behaviors, the monitor may advantageously audibly and/or visually alert the caregiver. In other embodiments, the monitor may communicate with other computing devices to alert the caregiver, may compare longer term trend data before alarming, or the like.



FIG. 3E illustrates a simplified block diagram of an embodiment of a MetHb determination system 390 using multiple Met calculation techniques. As shown, data 391 is input into the system. The data 391 is then routed to at least two different Met calculators 392, 393. In an embodiment, more than two different types of calculation techniques can be used. The at least two Met calculators 392, 393 output Met indications for input into the Met selector 395. The Met selector 395 determines a Met value to output. The Met selector chooses the output based on which Met calculator works best for a given condition of the signal or based on which Met calculation fits the trend of Met readings. Other methods of selecting the best Met value can also be made as would be understood by a person of skill in the art from the present disclosure.



FIG. 4 is a block diagram of a physiological parameter system having signal normalization capability. A physiological parameter system may include a sensor signal analysis subsystem 400 that implements signal normalization techniques. Signal analysis subsystem 400 receives a signal 402 from a physiological parameter measurement device output. Signal 402 may be, for example, an electrical signal produced by an optical transducer within a pulse oximeter or a capnometer.


In the embodiment shown in FIG. 4, signal 402 is communicated to a sensor event module 404. Sensor event module 404 includes program code for detecting events that occur based on a pattern recognized in signal 402. Detected events may include a change in measurement site, movement of the sensor, interference in the signal, etc. For example, sensor event module 404 may determine that a measurement site of the sensor has been exchanged if a normal physiological parameter pattern ceases for a short period of time and then resumes. Alternatively, sensor event module 404 may detect a measurement site switch when signal 402 is interrupted by an interval of random noise and/or a relatively large discontinuity in the signal. Alternatively, an operator can indicate an event, such as a location change, by, for example, pressing a predetermined function button. As another example, sensor event module 404 may determine that signal normalization may not be appropriate when a sensor has been disconnected from a measurement site for a sufficiently long period of time (e.g., when an assumption that a signal trend will continue is no longer sound). Sensor event module 404 may communicate signal 402 and/or event information to a sensor memory 406 to store sensor signal pattern data for later use. Sensor event module 404 may also communicate signal 402 and event information to signal normalization module 408.


Sensor memory 406 may retain a certain number of signal 402 samples or may retain signal 402 samples for a certain period. Retained samples may be used by program code in signal normalization module 408 and/or sensor event module 404. Samples from signal 402 may be stored in a queue data structure, for example. In some embodiments, sensor event module 404 may instruct sensory memory 406 to cease storing new samples when it determines that the sensor is not connected to a measurement site so that signal data for potential future signal normalization may be retained. Signal memory 406 may also retain signal offset or calibration data.


Signal normalization module 408 comprises program code for converting a signal 402 from a sensor output into a normalized measure of a physiological parameter. Program code in module 408 may, for example, add or subtract a value from signal 402 in order to eliminate shifts in the magnitude of signal 402 that are not related to variation in a patient's physiological parameters. Signal normalization module 408 may determine an offset that counterbalances a shift in signal 402 that results from a change in sensor measurement site. Module 408 may include program code for calculating a trend line from data stored in sensor memory 406. A trend line may be used to determine an appropriate value for a patient parameter when measurement resumes after an interruption in signal 402. Module 408 may also employ pattern recognition or signal transforms to help it determine how signal 402 should be normalized. Sensor event module 404 may trigger signal normalization module 408 to reset its signal normalization when a certain signal events are detected. In some embodiments, sensor event module 404 may communicate to signal normalization module 408 the retained signal data from sensor memory 406 it should use to calculate a new offset. Signal normalization module 408 passes a normalized signal 450 out of signal normalization subsystem 400.


Normalized signal 450 may then be passed to other components of a physiological parameter system for further analysis and/or display. For example, normalized signal 450 may be communicated to a comparator 454 that compares signal 450 to one or more parameter limits 452. In some embodiments, comparator 454 may generate an alarm signal 456 if normalized signal 450 falls outside of parameter limits 452.



FIG. 5 illustrates an embodiment of a method for normalizing a signal acquired by a sensor when the measurement site of the sensor is changed. At step 502, sensor memory 406 (FIG. 4) maintains recent physiological parameter measurements received from sensor output 402. Sensor signal data may be passed directly to sensor memory 406 for storage, or sensor event module 404, for example, may select which signal samples will be retained and pass them to sensor memory 406. Retained signal sample data may include the magnitude of the signal as well as an indicator of the time that the sample was taken and/or the order in which the sample was received. Alternatively, sensor memory 406 may simply maintain signal data in chronological order in a queue, purging old sample data as new sample data is received. Data may be retained only for a certain time interval, such several seconds, a fraction of a minute, a minute, two minutes, or longer. The interval of retention may vary depending on the physiological parameter associated with signal 402. This step may continue until sensor event module 404 detects a sensor measurement site change.


In step 504 of FIG. 5, sensor event module 404 detects a change in the sensor measurement site. In some embodiments, sensor event module 404 may detect the change in measurement site by one of the methods described with respect to the description of program code within sensor event module 404 above. Alternatively, a user of a physiological parameter system may indicate that a change in sensor measurement site has occurred by means of a hardware or software interface. For example, the sensor may include a hardware switch that activates when the measurement site is changed. The system may also include a manual switch or button that a user can activate to cause sensor event module 404 to register a change in the sensor measurement site. When sensor event module 404 determines that sampling at the new measurement site has begun, the method proceeds to step 506.


At step 506, signal normalization module 408 compares the magnitude of the signal sampled at the new measurement site with the magnitude of the retained signal that was obtained at the old measurement site. Signal normalization module 408 may use pattern recognition or signal transform techniques to attempt to compare an oscillatory signal at similar points in its cycle to obtain a more accurate comparison. In some embodiments, module 408 uses the comparison to calculate an offset that adjusts the signal at the time that measurement at the new measurement site begins to conform to a trend line fitted to signal data acquired from the old measurement site. Retained signal data from the old measurement site may be retrieved from sensor memory 406 and analyzed for the purpose of calibrating the sensor signal at the new measurement site. After the initial physiological parameter value is projected when the sensor begins sampling at the new measurement site, the method proceeds to step 508.


In step 508, signal normalization module 408 adjusts the magnitude of the signal measured at the new measurement site in order to output a normalized signal 450. In some embodiments, adjusting the magnitude of the signal measured comprises modifying the magnitude of a signal measure measurement by adding or subtracting an offset. For example, the offset may be calculated by subtracting the magnitude of the signal sampled just after the sensor begins measurements at the new measurement site from the magnitude of the signal sampled just before the sensor was removed from the old measurement site. Alternatively, the offset may be defined as the difference between (1) a projected value of the magnitude of the signal just after the sensor begins measurements at the new measurement site, the projection based on measurements at the old measurement site, and (2) the actual measured value of the magnitude of the signal just after the sensor begins measurements at the new measurement site. Any other known means for calculating an offset may also be used. Signal normalization module 408 continues to add or subtract the calculated offset until another normalization step is required. At the conclusion of the method shown in FIG. 5, the steps shown may be repeated as many times as changes in the measurement site of the sensor may require.


Various embodiments of signal normalization techniques have been shown and described. Some alternative embodiments and combinations of embodiments disclosed herein have already been mentioned. Additional embodiments comprise various other combinations or alterations of the embodiments described.



FIG. 6 illustrates a physiological parameter system 600, which may comprise an expert system, a neural-network or a logic circuit, for example. The physiological parameter system 600 has as inputs 601 from one or more parameters from one or more physiological measurement devices, such as a pulse oximeter 610 and/or a capnometer 620. Pulse oximeter parameters may include oxygen saturation (SpO2), perfusion index (PI), pulse rate (PR), various signal quality and/or data confidence indicators (Qn) and trend data, to name a few. Capnography parameter inputs may include, for example, an exhaled carbon dioxide waveform, end tidal carbon dioxide (ETCO2) and respiration rate (RR). Signal quality and data confidence indicators are described in U.S. Pat. No. 6,108,090 cited above. The physiological parameter system 600 may also have parameter limits 606, which may be user inputs, default conditions or otherwise predetermined thresholds within the system 600.


The inputs 601 are processed in combination to generate one or more outputs 602 comprising alarms, diagnostics and controls. Alarms may be used to alert medical personnel to a deteriorating condition in a patient under their care. Diagnostics may be used to assist medical personnel in determining a patient condition. Controls may be used to affect the operation of a medical-related device. Other measurement parameters 630 that can be input to the monitor may include or relate to one or more of ECG, blood glucose, blood pressure (BP), temperature (T), HbCO, MetHb, respiration rate and respiration volume, to name a few.



FIG. 6A illustrates an embodiment of a physiological parameter system 600 similar to the system in FIG. 6. The physiological parameter system 600 has as inputs 601 from one or more parameters from one or more physiological measurement devices, such as, for example a pulse oximeter 610, an acoustic respiratory monitor 640, an ECG monitor 650, an invasive or non-invasive blood pressure monitor 650, a thermometer, or any other invasive or noninvasive physiological monitoring devices or the like.



FIG. 7 illustrates one embodiment of a physiological parameter system 700 combining pulse oximetry parameter inputs 710 and capnography parameter inputs 720 so as to generate alarm outputs 702. Parameter limits 705 may be user inputs, default conditions or otherwise predetermined alarm thresholds for these parameters 710, 720. The alarms 702 are grouped as pulse oximetry related 730, capnography related 740 and a combination 750. For example, a pulse oximetry alarm 730 may be related to percent oxygen saturation and trigger when oxygen saturation falls below a predetermined percentage limit. A capnography alarm 740 may be related to ETCO2 and trigger when ETCO2 falls below or rises above a predetermined mm Hg pressure limit. A combination alarm 750 may indicate a particular medical condition related to both pulse oximetry and capnography or may indicate a malfunction in either instrument.



FIG. 8 illustrates a SpO2 alarm embodiment 800 that is responsive to ETCO2. In particular, a SpO2 alarm 805 may be triggered sooner and may indicate a high priority if ETCO2 803 is falling. That is, if ETCO2 803 is trending down above a certain rate, the SpO2 alarm 805 is triggered at a higher percentage oxygen saturation threshold and alerts a caregiver to the possibility of a serious condition, e.g. a pulmonary embolism.


As shown in FIG. 8, a slope detector 810 determines the slope 812 of the ETCO2 input 803. A slope comparator 820 compares this slope 812 to a predetermined slope limit 804. If the downward trend of ETCO2 803 is great enough, a delta value 803 is added 840 to the SpO2 lower limit 802 to generate a variable threshold 842. A threshold comparator 850 compares this variable threshold 842 to the SpO2 input 801 to generate a trigger 852 for the SpO2 alarm 805. The alarm volume, modulation or tone may be altered to indicate priority, based upon the slope comparator output 822.



FIG. 9 illustrates a CO2 alarm embodiment 900 that is responsive to SpO2. In particular, morphology of the input CO2 waveform 901 is utilized to trigger an alarm 905, and that alarm is also responsive to a falling SpO2 902. That is, if a pattern in the CO2 waveform is detected and SpO2 is trending down above a certain rate, then an alarm is triggered. For example, an increasing slope of the CO2 plateau in combination with a downward trend of SpO2 may trigger an alarm and alert a caregiver to the possibility of an airway obstruction.


As shown in FIG. 9, a pattern extractor 910 identifies salient features in the CO2 waveform and generates a corresponding feature output 912. A pattern memory 920 stores one or more sets of predetermined waveform features to detect in the CO2 input 901. The pattern memory 920 is accessed to provide a feature template 922. A feature comparator 930 compares the feature output 912 with the feature template 922 and generates a match output 932 indicating that a specific shape or pattern has been detected in the CO2 waveform 901. In addition, a slope detector 940 determines the slope 942 of the SpO2 input 902. A slope comparator 950 compares this slope 942 to a predetermined slope limit 904. If the downward trend of SpO2 902 is great enough, a slope exceeded output 952 is generated. If both the match output 932 and the slope exceeded output 952 are each asserted or “true,” then a logical AND 960 generates a trigger output 96 to the alarm 970, which generates an alarm output 905.



FIG. 10 illustrates a combination embodiment 1000 having a diagnostic output 1005 responsive to both SpO2 1001 and CO2 1003 inputs. A SpO2 slope detector 100 determines the slope 102 of the SpO2 input 1001 and can be made responsive to a negative slope, a positive slope or a slope absolute value. A first comparator 1020 compares this slope 102 to a predetermined SpO2 slope limit 1002. If the trend of SpO2 1001 is great enough, a SpO2 slope exceeded output 1022 is asserted. Likewise, an CO2 slope detector 1030 determines the slope 1032 of the CO2 input 1003. A second comparator 1040 compares this slope 1032 to a predetermined CO2 slope limit 1004. If the downward trend of CO2 1001 is great enough, an CO2 slope exceeded output 1042 is asserted. If both slope exceeded outputs 1022, 1042 are asserted or “true,” a diagnostic output 1005 is asserted.


In one embodiment, the slope detectors 610, 1030 are responsive to a negative trend in the SpO2 1001 and CO2 1003 inputs, respectively. Accordingly, the diagnostic output 1005 indicates a potential embolism or cardiac arrest. In another embodiment, the SpO2 slope detector 610 is responsive to negative trends in the SpO2 1001 input, and the CO2 slope detector 1030 is responsive to a positive trend in the CO2 1003 input. Accordingly, the diagnostic output 1005 indicates a potential airway obstruction. The diagnostic output 1005 can trigger an alarm, initiate a display, or signal a nursing station, to name a few.



FIGS. 11A-B illustrate a physiological parameter system 1100 utilizing pulse oximetry to control patient controlled analgesia (PCA). In particular embodiments, a control output 1108 is responsive to pulse oximetry parameters 1101 only if signal quality 1103 is above a predetermined threshold 1104. In FIG. 11A, the control output 1108 can be used to lock-out patient controlled analgesia (PCA) if pulse oximetry parameter limits have been exceeded. If signal quality is so low that those parameters are unreliable, however, PCA is advantageously allowed. That is, the pulse oximeter parameters are not allowed to lock-out PCA if those parameters are unreliable. By contrast, in FIG. 11B, the control output 1108 can be used to advantageously lock-out or disable patient controlled analgesia (PCA) if pulse oximetry parameter limits have been exceeded or if signal quality is so low that those parameters are unreliable.


As shown in FIG. 11A, pulse oximetry parameters 1101 and corresponding limits 1102 for those parameters are one set of inputs and a signal quality measure 1103 and a corresponding lower limit 1104 for signal quality are another set of inputs. The parameters 1101 and corresponding limits 1102 generate a combined output 1202 that is asserted if any of the pulse oximetry parameter limits are exceeded. A comparator 1110 compares the signal quality 1103 input with a lower limit 1104 generating a quality output 1112 that is asserted if the signal quality 1103 drops below that limit 1104. An AND logic 1120 generates a reset 1122 if the combined output 1202 is asserted and the quality output 1112 is not asserted. The reset 1122 resets the timer 1130 to zero. A comparator 1140 compares the timer output 1132 to a predetermined time limit 1106 and generates a trigger 1142 if the time limit is exceeded. The trigger 1142 causes the control 1150 to generate the control output 1108, enabling a patient controlled analgesia (PCA), for example. In this manner, the PCA is enabled if all monitored parameters are within set limits and signal quality is above its lower limit for a predetermined period of time.


As shown in FIG. 11B, the combined output 1202, quality output 1112, reset 1122, timer 1130, comparator 1140 and control 1150 are generated as described with respect to FIG. 11A, above. An OR logic 1121 generates a reset 1122 if either the combined output 1202 or the quality output 1112 is asserted. In this manner, the PCA is disabled for a predetermined period of time if any of the monitored parameters are outside of set limits or the signal quality is below its lower limit.



FIG. 12 illustrates combined limits 1200 having SpO2 parameters 1101 and corresponding thresholds 1102 as inputs and providing a combination output 1202. In particular, if any parameter 1101 exceeds its corresponding limit 1102, the output of the corresponding comparator 1210, 1220, 1240 is asserted. An OR logic 1250 is responsive to any asserted output 1212, 1222, 1242 to asserted the combined output 1202. For example, the combined output 1202 may be asserted if SpO2 1201 falls below a lower limit 1209, pulse rate (PR) 1203 rises above an upper limit 1204 or PR 1203 falls below a lower limit 120.


A physiological parameter system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications. For example, the control output 1108 (FIG. 11B) can be used to control (titrate) delivered, inspired oxygen levels to patients based upon pulse oximetry parameters, unless signal quality is so low that those parameters are unreliable. One of ordinary skill in the art will also recognize that the control output 1108 (FIG. 11B) can be used to control patient delivery of any of various pharmacological agents and/or medical gases.



FIG. 13 illustrates an embodiment of a system 1300 that displays an indicator of the wellness of a patient. Various sensors 1302a-1302n communicate with a parameter analysis module 1306. Sensors 1302a-1302n may include pulse oximeters and capnometers, among other physiological parameter measurement devices. Sensor 1302n outputs a signal that may be sampled, normalized, and/or analyzed by modules that are not shown in system 1300 before being passed to parameter analysis module 1306. As described above, normalization of sensor signals before comparison of the signals to parameter limits 452 (FIG. 4) and/or parameter preferences 1304 may have certain benefits, such as decreased incidence of false alarms and/or more effective determination of the wellness of the patient.


In the embodiment shown, a user may provide parameter preferences 1304 to parameter analysis module 1306 through a user interface. Parameter preferences 1304 may include preferred ranges, less preferred ranges, least preferred ranges, upper limits, lower limits, preferred rates of increase or decrease, preferred patterns or trends, preferred states, or any combination of such preferences or other standards for evaluating the desirability of various physiological parameter values and signals. In some cases, a user of system 1300 may provide custom preferences to override a default set of physiological parameter preferences 1304 preprogrammed into system 1300. In some embodiments, parameter analysis module 1306 may include program code for dynamically changing or suggesting changes to various parameter preferences as a function of certain physiological parameters or related sensor performance data.


Parameter analysis module 1306 compares at least some of the signal data received from sensors 1302a-1302n to parameter preferences 1304 in order to calculate an indicator of the wellness of a patient. In some embodiments, the indicator calculated is a numerical indicator; for example, a number between one and ten, where a ten corresponds to a patient with a high level of wellness, and a one corresponds to a patient with a very low level of wellness as depicted in FIG. 13B. Other ranges, such as one to 100, −100 to 100, etc., and scales, such as an alphabetic A-F scale or a color scale, may also be used including the scale depicted in FIG. 13A. Other indicators that may be generated by parameter analysis module 1306 include graphical indicators of potential trouble areas, gauges, charts, level meters, and the like may also be used. Parameter analysis module 1306 communicates the indicator to a display 1308, which may display the indicator in any suitable graphical or textual form that is known in the art. For example, display 1308 may show a number of bars or a level meter, the number of which may correspond to one of the numerical indicator scales discussed above.



FIG. 14 is a flowchart showing an example method of displaying an indicator of the wellness of a patient. At step 1402, parameter analysis module 1306 (FIG. 13) receives signal data from one or more sensors 1302a-1302n. As discussed previously, such signal data may be normalized or otherwise modified from its raw form before being passed to parameter analysis module 1306. Parameter analysis module 1306 may continuously update an indicator as new data is received and may calculate averages, variances, and/or other analytical measures of various physiological parameters over time. In some embodiments, parameter analysis module 1306 may update the indicator of patient wellness only periodically, sporadically, or by request rather than continuously, thus requiring only occasional reception of data from sensors 1302a-1302n.


In step 1404, parameter analysis module 1306 receives parameter preferences 1304. Preferences 1304 may by received only once or sporadically as a user supplies custom preferences. Preferences 1304 may also be received and/or updated continuously when, for example, parameter preferences 1304 are functions of various physiological or sampling parameters.


At step 1406, parameter analysis module 1306 compares the data received from sensors 1302a-1302n to parameter preferences 1304. Individual sensor measurements may be compared to parameter preferences 1304, or parameter analysis module may compare parameter preferences 1304 to a moving average of sensor measurements, for example. Comparison of various other known analytical measures of sensor data is also possible and within the scope of the present disclosure. The comparison performed by parameter analysis module 1306 may include magnitude comparisons, pattern analysis, and/or trend analysis. Historical sensor data may also be used in the comparison.


In step 1408 of FIG. 14, parameter analysis module 1306 generates an indicator of the wellness of the patient based on the comparison performed in step 1406. The indicator may be in any of the forms discussed previously. For example, module 1306 may increase a wellness score (e.g., a numerical indicator of wellness) when physiological parameters fall within preferred ranges or when sensor signals follow preferred patterns and/or trends. The indicator may comprise a simple or a more detailed textual and/or graphical summary of the patient's wellness as interpreted from parameters measured by sensors 1302a-1302n. In some embodiments, the indicator may be a scaled number in combination with a textual description of the patient's wellness score and/or conditions that may be affecting the score. In addition, particular a particular condition affecting the patient can also be generated for communication to a healthcare provider, such as, for example, sepsis, septic shock, apnea, heart failure, airway obstruction, carbon monoxide poisoning, low oxygen content, etc.


After parameter analysis module 1306 generates the wellness indicator, it sends the indicator to display 1308 at step 1410. Display 1308 may be integrated with physiological parameter system 1300 or may be a separate display device. The display may also include auditory sounds, such as for example, beeps, voices, words, etc., to indicate a particular event or condition occurring.


Although the foregoing invention has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. It is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Furthermore, the systems described above need not include all of the modules and functions described in the preferred embodiments. Accordingly, the present invention is not intended to be limited by the recitation of the preferred embodiments, but is to be defined by reference to the appended claims.

Claims
  • 1. A method of determining a physiological parameter data through a change in measurement site, the method comprising: obtaining first signal data from a sensor at a first measurement site of a patient during a first time period;determining a physiological parameter during the first time period based on the first signal data;detecting a change in measurement site of the sensor from the first measurement site to a second measurement site of the patient based on additional signal data obtained from the sensor;obtaining second signal data from the second measurement site of the patient during a second time period after the first time period and after detecting the change in measurement site of the sensor;determining an offset based on a first magnitude of a first portion of the first signal data obtained at the first measurement site and a second magnitude of a second portion of the second signal data obtained at the second measurement site;correcting the second signal data based on the determined offset, wherein the correcting comprises shifting the second signal data based on the determined offset; anddetermining the physiological parameter during the second time period based on the corrected second signal data.
  • 2. The method of claim 1, wherein the physiological parameter comprises a met-hemoglobin measurement.
  • 3. The method of claim 1, wherein the physiological parameter comprises a hemoglobin measurement.
  • 4. The method of claim 1, wherein the physiological parameter comprises an oxygen saturation level.
  • 5. The method of claim 1, wherein the determination of the offset further comprises comparing the first magnitude and the second magnitude.
  • 6. The method of claim 1, wherein the offset is a negative value.
  • 7. The method of claim 1, wherein the offset is determined by subtracting the second magnitude from the first magnitude.
  • 8. The method of claim 1, wherein the offset is further determined based on a projected value of the second signal data.
  • 9. A system for determining a physiological parameter data through a change in measurement site, the system comprising one or more hardware processors configured to: obtain first signal data from a sensor at a first measurement site of a patient during a first time period;determine a physiological parameter during the first time period based on the first signal data;detect a change in measurement site of the sensor from the first measurement site to a second measurement site of the patient based on additional signal data obtained from the sensor;obtain second signal data from the second measurement site of the patient during a second time period after the first time period and after detecting the change in measurement site of the sensor;determine an offset based on a first magnitude of a first portion of the first signal data obtained at the first measurement site and a second magnitude of a second portion of the second signal data obtained at the second measurement site;correct the second signal data based on the determined offset, wherein the correcting comprises shifting the second signal data based on the determined offset; anddetermine the physiological parameter during the second time period based on the corrected second signal data.
  • 10. The system of claim 9, wherein the physiological parameter comprises a met-hemoglobin measurement.
  • 11. The system of claim 9, wherein the physiological parameter comprises a hemoglobin measurement.
  • 12. The system of claim 9, wherein the physiological parameter comprises an oxygen saturation level.
  • 13. The system of claim 9, wherein the determination of the offset further comprises comparing the first magnitude and the second magnitude.
  • 14. The system of claim 9, wherein the offset is a negative value.
  • 15. The system of claim 9, wherein the offset is determined by subtracting the second magnitude from the first magnitude.
  • 16. The system of claim 9, wherein the offset is further determined based on a projected value of the second signal data.
US Referenced Citations (988)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5685299 Diab et al. Nov 1997 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254425 Lowery Aug 2007 B2
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
20030216627 Lorenz Nov 2003 A1
20060161054 Reuss et al. Jul 2006 A1
20070282478 Al-Ali et al. Dec 2007 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20110082711 Poeze et al. Apr 2011 A1
20110125060 Telfort et al. May 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150208962 Baker, Jr. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366507 Blank Dec 2015 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150800 Poeze et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320959 Al-Ali Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190325722 Kiani et al. Oct 2019 A1
Related Publications (1)
Number Date Country
20200060628 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
60876749 Dec 2006 US
Continuations (4)
Number Date Country
Parent 15885444 Jan 2018 US
Child 16459400 US
Parent 15862283 Jan 2018 US
Child 15885444 US
Parent 14507415 Oct 2014 US
Child 15862283 US
Parent 11963640 Dec 2007 US
Child 14507415 US