ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Information

  • Patent Application
  • 20240199667
  • Publication Number
    20240199667
  • Date Filed
    October 11, 2023
    a year ago
  • Date Published
    June 20, 2024
    5 months ago
Abstract
A compound having a structure of Formula I,
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a compound having a formula M(LA)LB), having the structure of Formula I,




embedded image


In Formula I





    • each of moieties A, B, C, and D is independently a monocyclic ring or a polycyclic fused ring system, wherein each ring is independently a 5-membered or 6-membered carbocyclic or heterocyclic ring;

    • ligand LA comprises moiety A-L3-moiety B-L1, and ligand LB comprises moiety D-L2-moiety C;

    • one of Z1, Z2, and Z3 is N and the other two of Z1, Z2, and Z3 are C;

    • each of L1, L2, and L3 is independently selected from the group consisting of a direct bond, BR, BRR′, NR, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR′, C═CR′R″, S═O, SO2, CR, CRR′, SiRR′, GeRR′, alkylene, cycloalkyl, aryl, cycloalkylene, arylene, heteroarylene, and combinations thereof;

    • K1 is selected from the group consisting of a direct bond, O, S, N(Rα), P(Rα), B(Rα), C(Rα)(Rβ), and Si(Rα)(Rβ);

    • M is Pt or Pd;

    • each of X1, X2, X3, X4, X5, and X6 is independently chosen from C or N;

    • a structure of Formula II







embedded image


is fused directly or indirectly to one of moiety A, B, C, or D;

    • each of Q1, Q2, and Q3 is independently selected from the group consisting of CRQ and CRQRQ′;
    • n is an integer from 1 to 5;
    • each of RA, RB, RC, RD, and RF is independently mono- to the maximum allowable substitutions, or no substitutions;
    • each R, R′, Rα, Rβ, RA, RB, RC, RD, RF, RQ, and RQ′ is independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, boryl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, selenyl, and combinations thereof;
    • wherein moiety A coordinates to metal M through a metal-carbene bond;
    • wherein any two of R, R′, Rα, Rβ, RA, RB, RC, RD, RF, RQ, and RQ′ may be joined or fused to form a ring.


In another aspect, the present disclosure provides a formulation comprising a compound having a structure of Formula I as described herein.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising a compound having a structure of Formula I as described herein.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising a compound having a structure of Formula I as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 shows the emission spectral data for the Inventive compound 1 and Comparison compound measured at room temperature (RT) and at 77 K.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “selenyl” refers to a —SeRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)2 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “germyl” refers to a —Ge(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the General Substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some instances, the Preferred General Substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the More Preferred General Substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the Most Preferred General Substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 201110037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

Pendant aliphatic groups such as methyl or t-butyl are shown to impose limitations on device lifetime, while also displaying other desirable properties such as color and efficiency. Preliminary evidence shows that fusing these aliphatic group to form a saturated carbocycle has a positive impact on device lifetime. Fusing such a saturated carbocycle to the ligand carbocycle (e.g., aromatic carbocycle) can have an additional positive impact on device lifetime.


In one aspect, the present disclosure provides a compound having a formula M(LA)LB), having the structure of Formula I,




embedded image


In Formuula I





    • each of moieties A, B, C, and D is independently a monocyclic ring or a polycyclic fused ring system, wherein each ring is independently a 5-membered to 10-membered carbocyclic or heterocyclic ring;

    • ligand LA comprises moiety A-L3-moiety B-L1, and ligand LB comprises moiety D-L2-moiety C;

    • one of Z1, Z2, and Z3 is N and the other two of Z1, Z2, and Z3 are C;

    • each of L1, L2, and L3 is independently selected from the group consisting of a direct bond, BR, BRR′, NR, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR′, C═CR′R″, S═O, SO2, CR, CRR′, SiRR′, GeRR′, alkylene, cycloalkyl, aryl, cycloalkylene, arylene, heteroarylene, and combinations thereof;

    • K1 is selected from the group consisting of a direct bond, O, S, N(Rα), P(Rα), B(Rα), C(Rα)(Rβ), and Si(Rα)(Rβ);

    • M is Pt or Pd;

    • each of X1, X2, X3, X4, X5, and X6 is independently chosen from C or N;

    • a structure of Formula II,







embedded image


is fused directly to one of moiety A, B, C, or D;

    • each of Q1, Q2, and Q3 is independently selected from the group consisting of CRQ and CRQRQ′;
    • n is an integer from 1 to 5;
    • each of RA, RB, RC, RD, and RF is independently mono- to the maximum allowable substitutions, or no substitutions;
    • each R, R′, Rα, Rβ, RA, RB, RC, RD, RF, RQ, and RQ′ is independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein;
    • wherein moiety A coordinates to metal M through a metal-carbene bond; wherein any two of R, R′, Rα, Rβ, RA, RB, RC, RD, RF, RQ, and RQ′ may be joined or fused to form a ring;
    • with the proviso that if moiety A is fused to a structure of Formula II, and moiety A is a benzimidazolylidine-based carbene, then Q1, Q2, and Q3 are all CRQRQ′, and L2 is not a direct bond;
    • with the proviso that if the structure of Formula II is fused to moiety D, and moiety D is a pyridine, then each of Q1, Q2, and Q3 is CRQRQ′; and
    • with the proviso that the atom of L3 that bridges between moiety B and moiety C is not Q1, Q2, or Q3.


In some embodiments, each R, R′, Rα, Rβ, RA, RB, RC, RD, and RF is independently hydrogen or a substituent selected from the group consisting of the Preferred General Substituents defined herein. In some embodiments, each R, R′, Rα, Rβ, RA, RB, RC, RD, and RF is independently hydrogen or a substituent selected from the group consisting of the More Preferred General Substituents defined herein. In some embodiments, each R, R′, Rα, Rβ, RA, RB, RC, RD, and RF is independently hydrogen or a substituent selected from the group consisting of the Most Preferred General Substituents defined herein.


In some embodiments, Z1 is C, Z2 is C, and Z3 is N.


In some embodiments, each of X1 to X6 is C.


In some embodiments, M is Pt. In some embodiments, M is Pd.


In some embodiments, at least one of L1, L2, or L3 is a direct bond.


In some embodiments, at least one of L1, L2, or L3 is selected from the group consisting of O, S, and Se.


In some embodiments, at least one of L1, L2, or L3 is selected from the group consisting of BR, NR, and PR.


In some embodiments, one of L1, L2, or L3 is a direct bond, one of L1, L2, or L3 is selected from the group consisting of O, S, and Se, and one of L1, L2, or L3 is selected from the group consisting of BR, NR, and PR.


In some embodiments, at least one of L1, L2, or L3 is O.


In some embodiments, at least one of L1, L2, or L3 is selected from the group consisting of P(O)R, C═O, C═S, C═Se, C═NR′, C═CR′R″, S═O, and SO2.


In some embodiments, at least one of L1, L2, or L3 is selected from the group consisting of BRR′, CRR′, SiRR′, and GeRR′.


In some embodiments, at least one of L1, L2, or L3 is selected from the group consisting of alkylene, cycloalkylene, arylene, heteroarylene, and combinations thereof.


In some embodiments, L3 is selected from the group consisting of O, S, and Se. In some embodiments, L3 is O.


In some embodiments, L2 is selected from the group consisting of BR, NR, and PR. In some embodiments, L2 is NR.


In some embodiments, L3 is a direct bond.


In some embodiments, L3 is a direct bond, L1 is O, and L2 is NR.


In some embodiments, L1 is BR, NR, or PR and the R is joined with one RB or RC to forma ring fused to moiety B or moiety C, respectively.


In some embodiments, L2 is BR, NR, or PR and the R is joined with one RC or RD to form a ring fused to moiety C or moiety D, respectively.


In some embodiments, L3 is BR, NR, or PR and the R is joined with one RA or RB to forma ring fused to moiety A or moiety C, respectively.


In some embodiments, RE is joined to an RA to forma cyclo-substituted ring with at least 8-members. In some embodiments, RE is joined to an RA to form a cyclo-substituted ring with at least 9-members. In some embodiments with a cyclo-substituted ring, the cyclo-substituted ring has at least one 5-membered ring fused thereto, and the structure of Formula II is fused to the 5-membered ring. In some embodiments with a cyclo-substituted ring, the cyclo-substituted ring has at least one heteroaryl ring fused thereto, and the structure of Formula II is fused to the heteroaryl ring. In some such embodiments, the heteroaryl ring is a 5-membered heteroaryl ring.


In some embodiments with a cyclo-substituted ring, the cyclo-substituted ring has at least one 6-membered ring fused thereto, and the structure of Formula II is fused to the 6-membered ring. In some such embodiments, the 6-membered ring is phenyl.


In some embodiments with a cyclo-substituted ring, the cyclo-substituted ring has a total of at least two 5-membered or 6-membered rings fused thereto.


In some embodiments with a cyclo-substituted ring, the cyclo-substituted ring has a total of at least three 5-membered or 6-membered rings fused thereto. In some such embodiments, the cyclosubstituted ring comprises at least 3 discrete phenyl rings.


In some embodiments, at least one of Q1, Q2, or Q3 is CRQRQ′. In some such embodiments, each RQ and RQ′ is independently alkyl. In some such embodiments, each RQ and RQ′ is independently methyl or t-butyl.


In some embodiments, at least two Q1, Q2, or Q3 are CRQRQ′.


In some embodiments, all three of Q1, Q2, and Q3 are CRQRQ′.


In some embodiments, n is 1. In some embodiments, n is 2.


In some embodiments, Formula II is a mono carbocyclic partially saturated 5- or 6-membered ring. In some embodiments, Formula II is a poly carbocyclic partially saturated ring system comprising 5- and/or 6-membered rings. In some embodiments, RQ and RQ′ are joined together to form a ring having Q as a spiro center.


In some embodiments, Formula II has a general structure selected from the following:




embedded image




    • wherein each of X6-X13 is independently-selected from C or N;

    • wherein W is selected from direct bond, CRR′, SiRR′, O, S, Se, NR, BR, BRR′, PR, GeRR′, alkylene, cycloalkyl, aryl, cycloalkylene, arylene, heteroarylene, and combinations thereof;

    • wherein each R, R′, RQ1—RQ8, and RF is independently hydrogen or a substituent selected from the group consisting of the Preferred General Substituents defined herein.





In some embodiments, moiety A is imidazole- or benzimidazole-derived carbene.


In some embodiments, each of moiety B, moiety C, and moiety D is aromatic. In some embodiments, each of moiety B, moiety C, and moiety D is independently selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, naphthalene, quinazoline, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, aza-carbazole, dibenzofuran, aza-dibenzofuran, dibenzothiophene, aza-dibenzothiophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, and fluorene.


In some embodiments, each of moiety B, moiety C, and moiety D can independently be polycyclic fused ring structure. In some embodiments, each of moiety B, moiety C, and moiety D can independently be polycyclic fused ring structure comprising at least three fused rings. In some embodiments, the polycyclic fused ring structure has two 6-membered rings and one 5-membered ring. In some such embodiments, the 5-membered ring is fused to the ring coordinated to Pd/Pt and the second 6-membered ring is fused to the 5-membered ring. In some embodiments, each of moiety B, moiety C, and moiety D can independently be selected from the group consisting of dibenzofuran, dibenzothiophene, dibenzoselenophene, and aza-variants thereof. In some such embodiments, each of moiety B, moiety C, and moiety D can independently be further substituted at the ortho- or meta-position of the O, S, or Se atom by a substituent selected from the group consisting of deuterium, fluorine, nitrile, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof. In some such embodiments, the aza-variants contain exactly one N atom at the 6-position (ortho to the O, S, or Se) with a substituent at the 7-position (meta to the O, S, or Se).


In some embodiments, each of moiety B, moiety C, and moiety D can independently be a polycyclic fused ring structure comprising at least four fused rings. In some embodiments, the polycyclic fused ring structure comprises three 6-membered rings and one 5-membered ring. In some such embodiments, the 5-membered ring is fused to the ring coordinated to Pt/Pd, the second 6-membered ring is fused to the 5-membered ring, and the third 6-membered ring is fused to the second 6-membered ring. In some such embodiments, the third 6-membered ring is further substituted by a substituent selected from the group consisting of deuterium, fluorine, nitrile, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


In some embodiments, each of moiety B, moiety C, and moiety D can independently be a polycyclic fused ring structure comprising at least five fused rings. In some embodiments, the polycyclic fused ring structure comprises four 6-membered rings and one 5-membered ring or three 6-membered rings and two 5-membered rings. In some embodiments comprising two 5-membered rings, the 5-membered rings are fused together. In some embodiments comprising two 5-membered rings, the 5-membered rings are separated by at least one 6-membered ring. In some embodiments with one 5-membered ring, the 5-membered ring is fused to the ring coordinated to Pt/Pd, the second 6-membered ring is fused to the 5-membered ring, the third 6-membered ring is fused to the second 6-membered ring, and the fourth 6-membered ring is fused to the third 6-membered ring.


In some embodiments, each of moiety B, moiety C, and moiety D can independently be an aza version of the polycyclic fused rings described above. In some such embodiments, each of moiety B, moiety C, and moiety D can independently be contains exactly one aza N atom. In some such embodiments, each of moiety B, moiety C, and moiety D can contain exactly two aza N atoms, which can be in one ring, or in two different rings. In some such embodiments, the ring having aza N atom is separated by at least two other rings from the Pt/Pd atom. In some such embodiments, the ring having aza N atom is separated by at least three other rings from the Pt/Pd atom. In some such embodiments, each of the ortho position of the aza N atom is substituted.


In some embodiments, the structure of Formula II is fused directly to moiety A. In some embodiments, the structure of Formula II is fused directly to moiety B. In some embodiments, the structure of Formula II is fused directly to moiety C. In some embodiments, the structure of Formula II is fused directly to moiety D.


In some embodiments, the structure of Formula II is fused indirectly to the metalated ring in moiety A. In some embodiments, the structure of Formula II is fused indirectly to the metalated ring in moiety B. In some embodiments, the structure of Formula II is fused indirectly to the metalated ring in moiety C. As an example, in the following structure, the pyrrole ring is formed when L2 and RC are fused together, so Formula II is fused indirectly




embedded image


to the metalated ring in moiety C:


In some embodiments, the structure of Formula II is fused indirectly to the metalated ring in moiety D.


In some embodiments, the structure of Formula II is fused to an aryl or heteroaryl moiety. In some embodiments, the structure of Formula II is fused to phenyl.


In some embodiments, n=2, and Q2 and the adjacent Q1 are both CRQ, where the adjacent RQ are joined to form a ring.


In some embodiments, n=2, and Q2 and the adjacent Q1 are both CRQ, where the adjacent RQ are joined to form an aromatic ring. In some embodiments, n=2, and Q2 and the adjacent Q1 are both CRQ, where the adjacent RQ are joined to form a phenyl ring.


In some embodiments, n=2, and Q3 and the Q1 attached to the dashed line are both CRQRQ′. In some such embodiments, RQ and RQ′ are both independently alkyl or partially or fully deuterated alkyl. In some such embodiments, RQ and RQ′ are both independently selected from methyl, t-butyl, and partially or fully deuterated variations thereof.


In some embodiments, n=1, and Q3 and Q1 are both CRQRQ′. In some such embodiments, RQ and RQ′ are both independently alkyl or partially or fully deuterated alkyl. In some such embodiments, RQ and RQ′ are both independently selected from methyl, t-butyl, and partially or fully deuterated variations thereof.


In some embodiments, at least one pair or RQ or one pair of RQ′ are joined or fused to form a ring.


In some embodiments, RE comprises a cyclic group bonded to moiety A. In some embodiments, RE comprises an aryl or heteroaryl group bonded to moiety A.


In some embodiments where RE comprises aryl or heteroaryl bonded to moiety A, at least one position of the cyclic group adjacent to the bond with moiety A is not hydrogen or deuterium. In some embodiments where RE comprises aryl or heteroaryl bonded to moiety A, both positions of the cyclic group adjacent to the bond with moiety A are not hydrogen or deuterium.


In some embodiments where RE comprises aryl or heteroaryl bonded to moiety A, at least one position of the cyclic group adjacent to the bond with ring A is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, silyl, partially or fully deuterated variations thereof, and combinations thereof. In some embodiments where RE comprises aryl or heteroaryl bonded to moiety A, each of the positions of the cyclic group adjacent to the bond with ring A is independently selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, silyl, partially or fully deuterated variations thereof, and combinations thereof.


In some embodiments where RE comprises aryl or heteroaryl bonded to moiety A, at least one position of the cyclic group adjacent to the bond with moiety A is alkyl or partially or fully deuterated alkyl. In some embodiments where RE comprises aryl or heteroaryl bonded to moiety A, each of the positions of the cyclic group adjacent to the bond with moiety A is independently alkyl or partially or fully deuterated alkyl.


In some embodiments, RE has a structure of Formula MM:




embedded image


wherein REE3 each independently represent zero, mono, or up to maximum allowed substitutions; each of REE3, REE0, REE1 and REE2 is independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein.


In some embodiments, REE0 is selected from the group consisting of halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, selenyl, and combinations thereof. In some embodiments, REE1 is the same as the REE2. In some embodiments, REE1 is different from the REE2. In some embodiments, at least one of REE1 and REE2 comprises a chemical group containing at least three 6-membered aromatic rings that are not fused next to each other. In some embodiments, at least one of REE1 and REE2 comprises a chemical group containing at least four 6-membered aromatic rings that are not fused next to each other. In some embodiments, at least one of REE1 and REE2 comprises a chemical group containing at least five 6-membered aromatic rings that are not fused next to each other. In some embodiments, at least one of REE1 and REE2 comprises a chemical group containing at least six 6-membered aromatic rings that are not fused next to each other. In some embodiments, both REE1 and REE2 comprises a chemical group containing at least three to six 6-membered aromatic rings that are not fused next to each other. In some embodiments, at least one of REE1 and REE2 comprises a group RW having a structure selected from the group consisting of:


Formula IIIA, ---QA(R1aXR2a)a(R3a)b, Formula IIIB,




embedded image


and Formula IIIC,



embedded image


wherein


each of RSS, RTT, and RUU independently represents mono to the maximum allowable number of substitutions, or no substitution;

    • each of X130 to X138 is independently C or N;
    • each of YS, YT, and YU is independently CRR′, SiRR′ or GeRR′;
    • n is an integer between 1 and 8, when n is more than 1, each YQ can be same or different;
    • QA is selected from C, Si, Ge, N, P, O, S, Se, and B;
    • a and b are each independently 0 or 1;
    • a+b=2 when QA is C, Si, or Ge;
    • a+b=1 when QA is N or P;
    • a+b can be 1 or 2 when QA is B;
    • a+b=0 when QA is O, S, or Se;


      each R, R′, R1a, R2a, R3a, RSS, RTT, and RUU is independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein;


      and any two substituents may be optionally fused or joined to form a ring.


In some embodiments, at least one of REE1 and REE2 comprises a group RW. In some embodiments, both REE1 and REE2 comprises a group RW. In some embodiments, both REE1 and REE2 comprises Formula IIIA. In some embodiments, both REE1 and REE2 comprises Formula IIIB. In some embodiments, both REE1 and REE2 comprises Formula IIIC. In some embodiments, one of REE1 and REE2 comprises Formula IIIA, and the other one of REE1 and REE2 comprises Formula IIIB. In some embodiments, one of REE1 and REE2 comprises Formula IIIA, and the other one of REE1 and REE2 comprises Formula IIIC. In some embodiments, one of REE1 and REE2 comprises Formula IIIB, and the other one of REE1 and REE2 comprises Formula IIIC.


In some embodiments, REE1 has a molecular weight (MW) greater than 15 g/mol and REE2 has a molecular weight greater than that of REE1. In some embodiments, REE1 has a molecular weight (MW) greater than 56 g/mol and REE2 has a molecular weight greater than that of REE1. In some embodiments, REE1 has a molecular weight (MW) greater than 76 g/mol and REE2 has a molecular weight greater than that of REE1. In some embodiments, REE1 has a molecular weight (MW) greater than 81 g/mol and REE2 has a molecular weight greater than that of REE1. In some embodiments, REE1 or REE2 has a molecular weight (MW) greater than 165 g/mol. In some embodiments, REE1 or REE2 has a molecular weight (MW) greater than 166 g/mol. In some embodiments, REE1 or REE2 has a molecular weight (MW) greater than 182 g/mol. In some embodiments, REE1 has one more 6-membered aromatic ring than REE2. In some embodiments, REE1 has two more 6-membered aromatic ring than REE2. In some embodiments, REE1 has three more 6-membered aromatic ring than REE2. In some embodiments, REE1 has four more 6-membered aromatic ring than REE2. In some embodiments, REE1 has five more 6-membered aromatic ring than REE2. In some embodiments, REE1 comprises at least one heteroatom and REE2 consists of hydrocarbon and deuterated variant thereof. In some embodiments, REE1 comprises at least two heteroatoms and REE2 consists of hydrocarbon and deuterated variant thereof. In some embodiments, REE1 comprises at least three heteroatoms and REE2 consists of hydrocarbon and deuterated variant thereof. In some embodiments, REE1 comprises exactly one heteroatom and REE2 consists of hydrocarbon and deuterated variant thereof. In some embodiments, REE1 comprises exactly two heteroatoms and REE2 consists of hydrocarbon and deuterated variant thereof. In some embodiments, REE1 comprises exactly three heteroatoms and REE2 consists of hydrocarbon and deuterated variant thereof. In some embodiments, REE1 comprises exactly one heteroatom and REE2 comprises exactly one heteroatom that is different from the heteroatom in REE1. In some embodiments, REE1 comprises exactly one heteroatom and REE2 comprises exactly one heteratom that is same as the heteroatom in REE1.


In some embodiments, REE1 comprises exactly two heteroatoms and REE2 comprises exactly one heteroatom. In some embodiments, REE1 comprises exactly two heteroatoms and REE2 comprises exactly two heteroatoms. In some embodiments, REE1 comprises exactly three heteroatoms and REE2 comprises exactly one heteroatom. In some embodiments, REE1 comprises exactly three heteroatoms and REE2 comprises exactly two heteroatoms. In some embodiments, REE1 comprises exactly three heteroatoms and REE2 comprises exactly three heteroatoms.


In some embodiments, at least one of REE1 and REE2 comprises an aromatic ring fused by a non-aromatic ring. In some embodiments, both of REE1 and REE2 comprises an aromatic ring fused by a non-aromatic ring. In some embodiments, the aromatic ring is a phenyl ring and the non-aromatic ring is a cycloalkyl ring. In some embodiments, at least one of REE1 and REE2 is partially or fully deuterated. In some embodiments, both of REE1 and REE2 is partially or fully deuterated.


In some such embodiments, the cyclic group is a 6-membered ring and is further substituted by a second cyclic group. In some such embodiments, the second cyclic group is selected from the group consisting of cycloalkyl, aryl, cycloheteroalkyl, and heteroaryl. In some embodiments, the second cyclic group is benzene or cyclohexane. In some such embodiments, the second cyclic group is bonded para to the bond between the cyclic group and moiety A.


In some embodiments, at least one RA is not hydrogen or deuterium.


In some embodiments, at least one RB is not hydrogen or deuterium.


In some embodiments, at least one RC is not hydrogen or deuterium.


In some embodiments, at least one RD is not hydrogen or deuterium.


In some embodiments, at least two structures of Formula II each independently bonded directly or indirectly to one of moiety A, moiety B, moiety C, and moiety D.


In some embodiments, at least two structures of Formula II each independently bonded directly to one of moiety A, moiety B, moiety C, and moiety D.


In some embodiments, at least two structures of Formula II are present, wherein one structure of Formula II is bonded directly to one of moiety A, moiety B, moiety C, and moiety D, and a different structure of Formula II is bonded indirectly to one of moiety A, moiety B, moiety C, and moiety D.


In some embodiments, the compound comprises an electron-withdrawing group. In some embodiments of the compound, the electron-withdrawing group has a Hammett constant larger than 0. In some embodiments, the electron-withdrawing group has a Hammett constant equal or larger than 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, or 1.1.


In some embodiments, the electron-withdrawn group is selected from the group consisting of the structures of the following EWG1 LIST: F, CF3, CN, COCH3, CHO, COCF3, COOMe, COOCF3, NO2, SF3, SiF3, PF4, SF5, OCF3, SCF3, SeCF3, SOCF3, SeOCF3, SO2F, SO2CF3, SeO2CF3, OSeO2CF3, OCN, SCN, SeCN, NC, +N(R)3, (R)2CCN, (R)2CCF3, CNC(CF3)2, BRR′, substituted or unsubstituted dibenzoborole, 1-substituted carbazole, 1,9-substituted carbazole, substituted or unsubstituted carbazole, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted pyrazine, substituted or unsubstituted pyridoxine, substituted or unsubstituted triazine, substituted or unsubstituted oxazole, substituted or unsubstituted benzoxazole, substituted or unsubstituted thiazole, substituted or unsubstituted benzothiazole, substituted or unsubstituted imidazole, substituted or unsubstituted benzimidazole, ketone, carboxylic acid, ester, nitrile, isonitrile, sulfinyl, sulfonyl, partially and fully fluorinated alkyl, partially and fully fluorinated aryl, partially and fully fluorinated heteroaryl, cyano-containing alkyl, cyano-containing aryl, cyano-containing heteroaryl, isocyanate,




embedded image


embedded image




    • wherein each R is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein;

    • wherein YG is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; and

    • wherein each R, Re, and Rf is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein.





In some embodiments, the electron-withdrawing group is selected from the group consisting of the structures in the following EWG2 LIST:




embedded image


embedded image


embedded image


embedded image


In some embodiments, the electron-withdrawing group is selected from the group consisting of the structures in the following EWG3 LIST:




embedded image


embedded image


embedded image


In some embodiments, the electron-withdrawing group is selected from the group consisting of the structures in the following EWG4 LIST:




embedded image


embedded image


embedded image


In some embodiments, the electron-withdrawing group is a π-electron deficient electron-withdrawing group. In some embodiments, the π-electron deficient electron-withdrawing group is selected from the group consisting of the following structures Pi-EWG LIST: CN, COCH3, CHO, COCF3, COOMe, COOCF3, NO2, SF3, SiF3, PF4, SF3, OCF3, SCF3, SeCF3, SOCF3, SeOCF3, SO2F, SO2CF3, SeO2CF3, OSeO2CF3, OCN, SCN, SeCN, NC, +N(R)3, BRR′, substituted or unsubstituted dibenzoborole, 1-substituted carbazole, 1,9-substituted carbazole, substituted or unsubstituted carbazole, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted pyrazine, substituted or unsubstituted pyridazine, substituted or unsubstituted triazine, substituted or unsubstituted oxazole, substituted or unsubstituted benzoxazole, substituted or unsubstituted thiazole, substituted or unsubstituted benzothiazole, substituted or unsubstituted imidazole, substituted or unsubstituted benzimidazole, ketone, carboxylic acid, ester, nitrile, isonitrile, sulfnyl, sulfonyl, parlially and fully fluorinated aryl, partially and fully fluorinated heteroaryl, cyano-containing aryl, cyano-containing heteroaryl, isocyanate,




embedded image


embedded image


wherein each R, Re, and Rf is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; wherein YG is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf.


In some embodiments, at least one of RA, RB, RC, RD, and RE is partially or fully deuterated. In some embodiments, at least one RA is partially or fully deuterated. In some embodiments, at least one RB is partially or fully deuterated. In some embodiments, at least one RC is partially or fully deuterated. In some embodiments, at least one RD is partially or fully deuterated. In some embodiments, at least one RE is partially or fully deuterated.


In some embodiments of the compound of Formula I, at least one of RA, RB, RC, RD, and RE is or comprises an electron-withdrawing group from EWG1 LIST as defined herein. In some embodiments of the compound, at least one of RA, RB, RC, RD, and RE is or comprises an electron-withdrawing group from EWG2 LIST as defined herein. In some embodiments of the compound, at least one of RA, RB, RC, RD, and RE is or comprises an electron-withdrawing group from EWG3 LIST as defined herein. In some embodiments of the compound, at least one of RA, RB, RC, RD, and RE is or comprises an electron-withdrawing group from EWG4 LIST as defined herein. In some embodiments of the compound, at least one of RA, RB, RC, RD, and RE is or comprises an electron-withdrawing group from Pi-EWG LIST as defined herein.


In some embodiments of the compound, one of RA is or comprises an electron-withdrawing group from EWG1 LIST as defined herein. In some embodiments of the compound, one of RA is or comprises an electron-withdrawing group from EWG2 LIST as defined herein. In some embodiments of the compound, one of RA is or comprises an electron-withdrawing group from EWG3 LIST as defined herein. In some embodiments of the compound, one of RA is or comprises an electron-withdrawing group from EWG4 LIST as defined herein. In some embodiments of the compound, one of RA is or comprises an electron-withdrawing group from Pi-EWG LIST as defined herein.


In some embodiments of the compound, one RB is or comprises an electron-withdrawing group from EWG1 LIST as defined herein. In some embodiments of the compound, one of RB is or comprises an electron-withdrawing group from EWG2 LIST as defined herein. In some embodiments of the compound, one of RB is or comprises an electron-withdrawing group from EWG3 LIST as defined herein. In some embodiments of the compound, one of RB is or comprises an electron-withdrawing group from EWG4 LIST as defined herein. In some embodiments of the compound, one of RB is or comprises an electron-withdrawing group from Pi-EWG LIST as defined herein.


In some embodiments of the compound, one of RC is or comprises an electron-withdrawing group from EWG1 LIST as defined herein. In some embodiments of the compound, one of RC is or comprises an electron-withdrawing group from EWG2 LIST as defined herein. In some embodiments of the compound, one of RC is or comprises an electron-withdrawing group from EWG3 LIST as defined herein. In some embodiments of the compound, one of RC is or comprises an electron-withdrawing group from EWG4 LIST as defined herein. In some embodiments of the compound, one of RC is or comprises an electron-withdrawing group from Pi-EWG LIST as defined herein.


In some embodiments of the compound, one RD is or comprises an electron-withdrawing group from EWG1 LIST as defined herein. In some embodiments of the compound, one of RD is or comprises an electron-withdrawing group from EWG2 LIST as defined herein. In some embodiments of the compound, one of RD is or comprises an electron-withdrawing group from EWG3 LIST as defined herein. In some embodiments of the compound, one of RD is or comprises an electron-withdrawing group from EWG4 LIST as defined herein. In some embodiments of the compound, one of RD is or comprises an electron-withdrawing group from Pi-EWG LIST as defined herein.


In some embodiments of the compound, one of RE is or comprises an electron-withdrawing group from EWG1 LIST as defined herein. In some embodiments of the compound, one of RE is or comprises an electron-withdrawing group from EWG2 LIST as defined herein. In some embodiments of the compound, one of RE is or comprises an electron-withdrawing group from EWG3 LIST as defined herein. In some embodiments of the compound, one of RE is an electron-withdrawing group from EWG4 LIST as defined herein. In some embodiments of the compound, one of RE is or comprises an electron-withdrawing group from Pi-EWG LIST as defined herein.


In some embodiments, the ligand LA is selected from the group consisting of the structures of the following LIST 1:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • each of X1 to X20 is independently selected from C and N;
    • ZA is selected from C and Si:
    • each of RAA, RBB, and RCC is independently mono- to the maximum allowable substitutions, or no substitutions;
    • each RDD, REE, RFF, RGG, RHH, RII, and RJJ is independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and
    • any two of RAA, RBB, RCC, RDD, REE, RFF, RGG, RHH, RII, and RJJ may be joined or fused to form a ring.


In some embodiments, the ligand LA is selected from the group consisting of the structutes of the following LIST 2:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein each RAA, RBB, RCC, RDD, REE, RFF, RGG, RHH, RII, and RJJ is independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, boryl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, selenyl, and combinations thereof. In some embodiments, RAA, RBB, RCC, RDD, REE, RFF, RGG, RHH, RII, and RJJ is independently selected from the group consisting of the structures of the following LIST 3:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the ligand LA is selected from the group consisting of LA1-(R1)(R1)(R1)(R1) to LA97-(R135)(R135)(R135)(R135)(R135)(R135) as defined by the structures of the following LIST 4:













LA
Structure of LA







LA1-(Ri)(Rj)(Rk)(Rm), wheren LA1- (R1)(R1)(R1)(R1) to LA1- (R135)(R135)(R135)(R135) have the structure


embedded image







LA2-(Ri)(Rj)(Rk)(Rm), wherein LA2- (R1)(R1)(R1)(R1) to LA2- (R135)(R135)(R135)(R135) have the structure


embedded image







LA3-(Ri)(Rj)(Rk)(Rm), wherein LA3- (R1)(R1)(R1)(R1) to LA3- (R135)(R135)(R135)(R135) have the structure


embedded image







LA4-(Ri)(Rj)(Rk)(Rm), wherein LA4- (R1)(R1)(R1)(R1) to LA4- R(135)(R135)(R135)(R135) have the structure


embedded image







LA5- (Ri)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA5- (R1)(R1)(R1)(R1) (R1)(R1)(R1) to LA5- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA6- (Ri)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr), wherein LA6-(R1)(R1)(R1)(R1) (R1)(R1)(R1)(R1) to LA6- (R135)(R135)(R135)(R135) (R135)(R135(R135) (R135) have the structure


embedded image







LA7- (Ri)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA7- (R1)(R1)(R1)(R1) (R1)(R1)(R1) to LA7- (R135)(R135)(R135)(R1350 (R135(R135)(R135) have the structure


embedded image







LA8- (Ri)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA8- (R1)(R1)(R1)(R1) (R1)(R1)(R1) to LA8- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA9- (Ri)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr), wherein LA9-(R1)(R1)(R1)(R1) (R1)(R1)(R1)(R1) to LA9- (R135)(R135)(R135)(R135) (R135(R135(R135) (R135) have the structure


embedded image







LA10- (Ri)(Rk)(Rm)(Rn)(Ro)(Rp), wherein LA10- (R1)(R1)(R1)(R1)(R1)(R1) to LA10- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA11- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein LA11- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA11- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA12- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp)(Rq), wherein LA12- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to LA12- (R135)(R135)(R135)(R135) (R135)(R135(R135) (R135) have the structure


embedded image







LA13- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp)(Rq), wherein LA13- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to LA13- (R135)(R135)(R135)(R135) (R135)(R135(R135) (R135) have the structure


embedded image







LA14- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA14- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA14- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA15- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA15- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA15- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA16- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA16- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA16- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA17- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA17- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA17- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA17- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA18- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), (Rp), wherein LA18- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA18- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA19- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA19- (R1)(R1)(R1)(R1)(R1) to LA19- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA20-(Rj)(Rk)(Rl)(Rm), wherein LA20- (R1)(R1)(R1)(R1) to LA20- (R135)(R135)(R135)(R135) have the structure


embedded image







LA21- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA21- (R1)(R1)(R1)(R1)(R1) to LA21- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA22- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA22- (R1)(R1)(R1)(R1)(R1) to LA22- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA23-(Rj)(Rk)(Rl)(Rm), wherein LA23- (R1)(R1)(R1)(R1) to LA23- (R135)(R135)(R135)(R135) have the structure


embedded image







LA24-(Rj)(Rk)(Rl)(Rm), wherein LA24- (R1)(R1)(R1)(R1) to LA24- (R135)(R135)(R135)(R135) have the structure


embedded image







LA25- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA25- (R1)(R1)(R1)(R1)(R1) to LA25- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA26-(Rj)(Rk)(Rl)(Rm), wherein LA26- (R1)(R1)(R1)(R1) to LA26- (R135)(R135)(R135)(R135) have the structure


embedded image







LA27-(Rj)(Rk)(Rl)(Rm), wherein LA27- (R1)(R1)(R1)(R1) to LA27- (R135)(R135)(R135)(R135) have the structure


embedded image







LA28-(Rj)(Rk)(Rl)(Rm), wherein LA28- (R1)(R1)(R1)(R1) to LA28- R(135)(R135)(R1350(R135) have the structure


embedded image







LA29- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA29- (R1)(R1)(R1)(R1)(R1) to LA29- (R135)(R135)(R135)(135) (R135) have the structure


embedded image







LA30-(Rj)(Rk)(Rl)(Rm), wherein LA30- (R1)(R1)(R1)(R1) to LA30- (R135)(R135)(R135)(R135) have the structure


embedded image







LA30-(Rj)(Rk)(Rl)(Rm), wherein LA31- (R1)(R1)(R1)(R1) to LA31- (R135)(R135)(R135)(R135) have the structure


embedded image







LA32-(Rj)(Rk)(Rl)(Rm), wherein LA32- (R1)(R1)(R1)(R1) to LA32- (R135)(R135)(R135)(R135) have the structure


embedded image







LA33-(Rj)(Rk)(Rl)(Rm), wherein LA33- (R1)(R1)(R1)(R1) to LA33- (R135)(R135)(R135)(R135) have the structure


embedded image







LA33-(Rj)(Rk)(Rl)(Rm), wherein LA34- (R1)(R1)(R1)(R1) to LA34- (R135)(R135)(R135)(R135) have the structure


embedded image







LA35- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA35- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA35- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA36- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein LA36- (R1)(R1)(R1)(R1)(R1)(R1) to LA36- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA37- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA37- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA37- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA38- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA38- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA37- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA39- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA39- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA39- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA40- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA40- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA40- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA41-(Rj)(Rk)(Rl)(Rm), wherein LA41- (R1)(R1)(R1)(R1) to LA41- (R135)(R135)(R135)(R135) have the structure


embedded image







LA42-(Rj)(Rk)(Rl)(Rm), wherein LA42- (R1)(R1)(R1)(R1) to LA42- (R135)(R135)(R135)(R135) have the structure


embedded image







LA43- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA43- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA43- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA44- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA44- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA43- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA45- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA45- (R1)(R1)(R1)(R1)(R1) to LA45- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA46- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein LA46- (R1)(R1)(R1)(R1)(R1)(R1) to LA46- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA47- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein LA47- (R1)(R1)(R1)(R1)(R1)(R1) to LA47- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA48-(Rj)(Rk)(Rl)(Rm), wherein LA48- (R1)(R1)(R1)(R1) to LA48- (R135)(R135)(R135)(R135) have the structure


embedded image







LA49- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp)(Rq), wherein LA49- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to LA49- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







LA50- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn) (Ro), wherein LA50- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA50- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA51- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn) (Ro)(Rp), wherein LA51- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to LA51- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) have the structure


embedded image







LA52- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn), wherein LA52- (R1)(R1)(R1)(R1)(R1)(R1) to LA52- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA53- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn), wherein LA53- (R1)(R1)(R1)(R1)(R1)(R1) to LA53- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA54- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn) (Ro)(Rp)(Rq), wherein LA54- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1)(R1) to LA54- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA55- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein LA55- (R1)(R1)(R1)(R1)(R1)(R1) to LA55- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA56-(Ri)(Rj)(Rm)(Rn), wherein LA56- (R1)(R1)(R1)(R1) to LA56- (R135)(R135)(R135)(R135) have the structure


embedded image







LA57- (Ri)(Rj)(Rm)(Rn)(Ro), wherein LA57- (R1)(R1)(R1)(R1)(R1) to LA57- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA58-(Ri)(Rj)(Rm), wherein LA58- (R1)(R1)(R1) to LA58- (R135)(R135)(R135) have the structure


embedded image







LA59-(Ri)(Rj)(Rm), wherein LA59- (R1)(R1)(R1) to LA59- (R135)(R135)(R135) have the structure


embedded image







LA60- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr), wherein LA60- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to LA60- (R135)(R135)(R135)(R135) (R135(R135)(R135)(R135) have the structure


embedded image







LA61- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein LA61- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA61- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA62- (Ri)(Rj)(Rk)(Rm)(Rn), wherein LA62- (R1)(R1)(R1)(R1)(R1) to LA62- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA63- (Ri))Rj)(Rk)(Rm)(Rn)(Ro), wherein LA63- (R1)(R1)(R1)(R1)(R1)(R1) to LA63- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA64- (Ri))Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein LA64- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA64- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA65- (Ri))Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein LA65- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA65- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA66-(Ri)(Rj)(Rk)(Rm), wherein LA66- (R1)(R1)(R1)(R1) to LA66- (R135)(R135)(R135)(R135) have the structure


embedded image







LA67-(Ri)(Rj)(Rk)(Rm), wherein LA67- (R1)(R1)(R1)(R1) to LA67- (R135)(R135)(R135)(R135) have the structure


embedded image







LA68- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA68- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA68- (R135)(R135)(R135)(R135) (R135(R135)(R135) have the structure


embedded image







LA69- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp)(Rq)(Rr), wherein LA69- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1)(R1) to LA69- (R135)(R135)(R135)(R135) (R135(R135)(R135)(R135) (R135) have the structure


embedded image







LA70- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro), wherein LA70- (R1)(R1)(R1)(R1)(R1)(R1) to LA70- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA71-(Ri)(Rj)(Rk)(Rm), wherein LA71- (R1)(R1)(R1)(R1) to LA71- (R135)(R135)(R135)(R135) have the structure


embedded image







LA72- (Rj)(Rk)(Rl)(Rm)(Rn), wherein LA72- (R1)(R1)(R1)(R1)(R1) to LA72- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA73- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA73- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA73- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA74- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein LA74- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA74- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA75-(Rj)(Rk)(Rl)(Rm), wherein LA75- (R1)(R1)(R1)(R1) to LA75- (R135)(R135)(R135)(R135) have the structure


embedded image







LA76-(Rj)(Rk)(Rl)(Rm), wherein LA76- (R1)(R1)(R1)(R1) to LA76- (R135)(R135)(R135)(R135) have tthe structure


embedded image







LA77-(Rj)(Rk)(Rl)(Rm), wherein LA77- (R1)(R1)(R1)(R1) to LA77- (R135)(R135)(R135)(R135) have the structure


embedded image







LA78- (Ri)(Rm)(Rn)(Ro)(Rp)(Rq), wherein LA78- (R1)(R1)(R1)(R1)(R1)(R1) to LA78- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA79-(Ri)(Rm)(Rn), wherein LA79- (R1)(R1)(R1) to LA79- (R135)(R135)(R135) have the structure


embedded image







LA80- (Rk)(Rl)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr)(Rs), wherein LA80- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1)(R1) to LA80- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA81- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein LA81- (R1)(R1)(R1)(R1)(R1)(R1) to LA81- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA82- (Ri)(Rj)(Rk)(Rm)(Rn), wherein LA82- (R1)(R1)(R1)(R1)(R1) to LA82- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA83- (Ri)(Rj)(Rk)(Rm)(Rn), wherein LA83- (R1)(R1)(R1)(R1)(R1) to LA83- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA84- (Ri)(Rj)(Rk)(Rm)(Rn), wherein LA84- (R1)(R1)(R1)(R1)(R1) to LA84- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA85- (Ri)(Rj)(Rm)(Rn)(Ro), wherein LA85- (R1)(R1)(R1)(R1)(R1) to LA85- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA86- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein LA86- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA86- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA87- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA87- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA87- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA88- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA88- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA88- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA89- Ri)(Rj)(Rm)(Rn)(Ro), wherein LA89- (R1)(R1)(R1)(R1)(R1) to LA89- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA90- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA90- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA90- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA91-(Ri)(Rj)(Rm)(Rn), wherein LA91- (R1)(R1)(R1)(R1) to LA91- (R135)(R135)(R135)(R135) have the structure


embedded image







LA92- (Ri)(Rm)(Rn)(Ro)(Rp)(Rq) (Rr), wherein LA92- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA92- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA93- (Ri)(Rm)(Rn)(Ro)(Rp)(Rq), wherein LA93- (R1)(R1)(R1)(R1)(R1)(R1) to LA93- (R1350(R135)(R135)(R135) (R135) have the structure


embedded image







LA94- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA94- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA94- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA95- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA95- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA95- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







LA96- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr), wherein LA96- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to LA96- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA97- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein LA97- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to LA97- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







LA98- (Ri)(Rj)(Rk)(Rm)(Rn), wherein LA98- (R1)(R1)(R1)(R1)(R1) to LA98- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image












wherein
    • each of Ri, Rj, Rk, Rl, Rm, Rn, Ro, Rp, Rq, and Rr is independently selected from the group consisting of R1 to R135; and
    • R1 to R135 have the structures defined in the following LIST 5:














Structure







R1


embedded image







R2


embedded image







R3


embedded image







R4


embedded image







R5


embedded image







R6


embedded image







R7


embedded image







R8


embedded image







R9


embedded image







R10


embedded image







R11


embedded image







R12


embedded image







R13


embedded image







R14


embedded image







R15


embedded image







R16


embedded image







R17


embedded image







R18


embedded image







R19


embedded image







R20


embedded image







R21


embedded image







R22


embedded image







R23


embedded image







R24


embedded image







R25


embedded image







R26


embedded image







R27


embedded image







R28


embedded image







R29


embedded image







R30


embedded image







R31


embedded image







R32


embedded image







R33


embedded image







R34


embedded image







R35


embedded image







R36


embedded image







R37


embedded image







R38


embedded image







R39


embedded image







R40


embedded image







R41


embedded image







R42


embedded image







R43


embedded image







R44


embedded image







R45


embedded image







R46


embedded image







R47


embedded image







R48


embedded image







R49


embedded image







R50


embedded image







R51


embedded image







R52


embedded image







R53


embedded image







R54


embedded image







R55


embedded image







R56


embedded image







R57


embedded image







R58


embedded image







R59


embedded image







R60


embedded image







R61


embedded image







R62


embedded image







R63


embedded image







R64


embedded image







R65


embedded image







R66


embedded image







R67


embedded image







R68


embedded image







R69


embedded image







R70


embedded image







R71


embedded image







R72


embedded image







R73


embedded image







R74


embedded image







R75


embedded image







R76


embedded image







R77


embedded image







R78


embedded image







R79


embedded image







R80


embedded image







R81


embedded image







R82


embedded image







R83


embedded image







R84


embedded image







R85


embedded image







R86


embedded image







R87


embedded image







R88


embedded image







R89


embedded image







R90


embedded image







R91


embedded image







R92


embedded image







R93


embedded image







R94


embedded image







R95


embedded image







R96


embedded image







R97


embedded image







R98


embedded image







R99


embedded image







R100


embedded image







R101


embedded image







R102


embedded image







R103


embedded image







R104


embedded image







R105


embedded image







R106


embedded image







R107


embedded image







R108


embedded image







R109


embedded image







R110


embedded image







R111


embedded image







R112


embedded image







R113


embedded image







R114


embedded image







R115


embedded image







R116


embedded image







R117


embedded image







R118


embedded image







R119


embedded image







R120


embedded image







R121


embedded image







R122


embedded image







R123


embedded image







R124


embedded image







R125


embedded image







R126


embedded image







R127


embedded image







R128


embedded image







R129


embedded image







R130


embedded image







R131


embedded image







R132


embedded image







R133


embedded image







R134


embedded image







R135


embedded image











In some embodiments, the ligand LA is Selected from the group consisting of LA1-(R1)(R1)(R1)(R1) to LA97-(R135)(R135)(R135)(R135)(R135)(R135) as defined by the structures of the following LIST 6:













LA
Structure of LA







LA1-(Ri)(Rj)(Rk)(Rm), wherein LA1- (R1)(R1)(R1)(R1) to LA1- (R135)(R135)(R135)(R135) have the structure


embedded image







LA2-(Ri)(Rj)(Rk)(Rl), wherein LA2- (R1)(R1)(R1)(R1) to LA2- (R135)(R135)(R135)(R135) have the structure


embedded image







LA3-(Ri)(Rj)(Rk)(Rl), wherein LA3- (R1)(R1)(R1)(R1) to LA3- (R135)(R135)(R135)(R135) have the structure


embedded image







LA4-(Ri)(Rj)(Rk)(Rl), wherein LA4- (R1)(R1)(R1)(R1) to LA4- (R135)(R135)(R135)(R135) have the structure


embedded image







LA5-(Ri)(Rj)(Rk)(Rl), wherein LA5- (R1)(R1)(R1)(R1) to LA5- (R135)(R135)(R135)(R135) have the structure


embedded image







LA6-(Ri)(Rj)(Rk)(Rl), wherein LA6- (R1)(R1)(R1)(R1) to LA6- (R135)(R135)(R135)(R135) have the structure


embedded image







LA7-(Ri)(Rj)(Rk)(Rl), wherein LA7- (R1)(R1)(R1)(R1) to LA7- (R135)(R135)(R135)(R135) have the structure


embedded image







LA8-(Ri)(Rj)(Rk)(Rl), wherein LA8- (R1)(R1)(R1)(R1) to LA8- (R135)(R135)(R135)(R135) have the structure


embedded image







LA9-(Ri)(Rj)(Rk)(Rm), wherein LA9- (R1)(R1)(R1)(R1) to LA9- (R135)(R135)(R135)(R135) have the structure


embedded image







LA10-(Ri)(Rj)(Rk)(Rq), wherein LA10- (R1)(R1)(R1)(R1) to LA10- (R135)(R135)(R135)(R135) have the structure


embedded image







LA11- (Ri)(Rj)(Rk)(Rm)(Rn), wherein LA11- (R1)(R1)(R1)(R1)(R1) to LA11- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







LA12-(Ri)(Rj)(Rm), wherein LA12- (R1)(R1)(R1) to LA12- (R135)(R135)(R135) have the structure


embedded image












wherein:


each of Ri, Rj, Rk, Rl, Rm, and Rq is independently selected from the group consisting of R1 to R135; and


R1 to R135 have the structures defined in LIST 5.


In some embodiments, LB is selected from the group consisting of the structures of the following LIST 7:




embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein:
      • T is selected from the group consisting of B, Al, Ga, and In;
      • K1′ is a direct bond or is selected from the group consisting of NR, PR, O, S, and Se;
      • each of Y1 to Y13 is independently selected from the group consisting of C and N;
      • Y′ is selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C═O, C═S, C═Se, C═NRe, C═CReRf, S═O, SO2, CReRf, SiReRf, and GeReRf;
      • Re and Rf can be fused or joined to form a ring;
      • each Ra, Rb, Rc, and Rd independently represents from mono to the maximum allowed number of substitutions, or no substitution;
      • each of Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, Rd, Re, and Rf is independently a hydrogen or a subsituent selected from the group consisting of the General Substituents defined herein; and
      • any two substituents of Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, and Rd can be fused or joined to form a ring or form a multidentate ligand.





In some embodiments, LB is selected from the group consisting of the structures of the following LIST 8:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein

    • Ra′, Rb′, Rc′, Rd′, and Re′ each independently represents zero, mono, or up to a maximum allowed number of substitution to its associated ring;

    • Ra′, Rb′, Rc′, Rd′, and Re′ each independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and

    • two substituents of Ra′, Rb′, Rc′, Rd′, and Re′ can be fused or joined to form a ring or form a multidentate ligand.





In some embodiments, LB comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, LB comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, LB comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, LB comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, LB comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, the compound is selected from the group consisting of compounds having the formula of Pt(LA′)(Ly):

    • wherein L1 is O:




embedded image




    • wherein L1 and L3 are each independently absent or selected from the group consisting of a direct bond, BR, BRR′, NR, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR, C═CRR′, S═O, SO2, CR, CRR′, SiRR′, GeRR′, alkylene, cycloalkyl, aryl, cycloalkylene, arylene, heteroarylene, and combinations thereof;

    • where each R and R′ is independently a hydrogen or a substituent selected from the group consisting of the General Substituents;

    • wherein Ly is selected from the group consisting of the structures of the following LIST 9:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein RDD, REE, RFF, RGG, RHH, RII, RJJ, RSS, RTT, and RUU is independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, boryl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, selenyl, and combinations thereof. In some embodiments, RDD, REE, RFF, RGG, RHH, RII, RJJ, RSS, RTT, and RUU selected from the group consisting of the structures of LIST 3 defined herein.





In some embodiments, R and R′ is independently a hydrogen or a substituent selected from the group consisting of the Preferred General Substituents


In some embodiments of the compounds having the formula of Pt(LA′)(Ly): LA′ is selected from the group consisting of structures LA-(R1)(R1)(R1)(R1) to LA97-(R135)(R135)(R135)(R135)(R135)(R135), where L1 is O;

    • wherein Ly is selected from the group consisting of Ly1-(Rq)(Rr)(Rs) to LA143-(R135)(R135)(R135)(R135)(R135)(R135) as defined in the following LIST 10:













Ly
Structure of Ly







Ly1-(Rq)(Rr)(Rs), wherein Ly1- (R1)(R1)(R1) to Ly1- (R135)(R135)(R135) have the structure


embedded image







Ly2-(Rq)(Rr)(Rs), wherein Ly2- (R1)(R1)(R1) to Ly2- (R135)(R135)(R135) have the structure


embedded image







Ly3-(Rq)(Rr)(Rt′), wherein Ly3- (R1)(R1)(R1) to Ly3- (R135)(R135)(R135) have the structure


embedded image







Ly4-(Rq)(Rr)(Rs), wherein Ly4- (R1)(R1)(R1) to Ly4- (R135)(R135)(R135) have the structure


embedded image







Ly5-(Rr)(Rs)(Rt′), wherein Ly5- (R1)(R1)(R1) to Ly5- (R135)(R135)(R135) have the structure


embedded image







Ly6-(Rr)(Rs)(Rt′), wherein Ly6- (R1)(R1)(R1) to Ly6- (R135)(R135)(R135) have the structure


embedded image







Ly7-(Rr)(Rq)(Rt′), wherein Ly7- (R1)(R1)(R1) to Ly7- (R135)(R135)(R135) have the structure


embedded image







Ly8-(Rr)(Rq)(Rt′), wherein Ly8- (R1)(R1)(R1) to Ly8- (R135)(R135)(R135) have the structure


embedded image







Ly9-(Rr)(Rs)(Rt′), wherein Ly9- (R1)(R1)(R1) to Ly9- (R135)(R135)(R135) have the structure


embedded image







Ly10-(Rr)(Rs)(Rt′), wherein Ly10- (R1)(R1)(R1) to Ly10- (R135)(R135)(R135) have the structure


embedded image







Ly11-(Rr)(Rs)(Rt′), wherein Ly11- (R1)(R1)(R1) to Ly11- (R135)(R135)(R135) have the structure


embedded image







Ly12-(Rr)(Rs)(Rt′), wherein Ly12- (R1)(R1)(R1) to Ly12- (R135)(R135)(R135) have the structure


embedded image







Ly13-(Rr)(Rs)(Rt′), wherein Ly13-(R1)(R1) (R1) to Ly13- (R135)(R135)(R135) have the structure


embedded image







Ly14-(Rr)(Rs)(Rt′), wherein Ly14- (R1)(R1)(R1) to Ly14- (R135)(R135)(R135) have the structure


embedded image







Ly15-(Rq)(Rt)(Rw′), wherein Ly15- (R1)(R1)(R1) to Ly15- (R135)(R135)(R135) have the structure


embedded image







Ly16-(Rq)(Rt′)(Rw′), wherein Ly16- (R1)(R1)(R1) to Ly16- (R135)(R135)(R135) have the structure


embedded image







Ly17-(Rs)(Rt′)(Rw′), wherein Ly17- (R1)(R1)(R1) to Ly17- (R135)(R135)(R135) have the structure


embedded image







Ly18- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly18- (R1)(R1)(R1)(R1)(R1)(R1) to Ly18- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly 19- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly19- (R1)(R1)(R1)(R1)(R1) to Ly19- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly20- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly2- (R1)(R1)(R1)(R1)(R1)(R1) to Ly20- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly21- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly21- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly21- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly22- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly22- (R1)(R1)(R1)(R1)(R1)(R1) to Ly22- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly23- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly23- (R1)(R1)(R1)(R1)(R1) to Ly23- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly 24- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly24- (R1)(R1)(R1)(R1)(R1) to Ly24- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly25- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly25- (R1)(R1)(R1)(R1)(R1)(R1) to Ly25- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly26- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly26- (R1)(R1)(R1)(R1)(R1)(R1) to Ly26- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly27- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly27- (R1)(R1)(R1)(R1)(R1) to Ly27- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly28- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly28- (R1)(R1)(R1)(R1)(R1)(R1) to Ly28- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly29- (Rj)(Rk)(Rm)(Rn), wherein Ly29- (R1)(R1)(R1)(R1) to Ly 29- (R135)(R135)(R135)(R135) have the structure


embedded image







Ly30- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr), wherein Ly30- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly30- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







Ly31-(Rj)(Rk)(Rm), wherein Ly31- (R1)(R1)(R1) to Ly31- (R135)(R135)(R135) have the structure


embedded image







Ly32- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly32- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly32- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly33- (Ri)(Rj)(Rk)(Rm)(Rn), wherein Ly33- (R1)(R1)(R1)(R1)(R1) to Ly33- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly34-(Ri)(Rj)(Rk)(Rm), wherein Ly34- (R1)(R1)(R1)(R1) to Ly34- (R135)(R135)(R135)(R135) have the structure


embedded image







Ly35- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly35- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly35- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly36- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly36- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly36- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly37- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly37- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly37- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly38- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn) (Ro)(Rp), wherein Ly38- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly38- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







Ly39- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly39- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly39- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly40- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly40- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly40- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly41- (Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly41- (R1)(R1)(R1)(R1)(R1) to Ly41- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly42- (Rj)(Rm)(Rn)(Ro), wherein Ly42- (R1)(R1)(R1)(R1) to Ly42- (R135)(R135)(R135)(R135) have the structure


embedded image







Ly43- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly43- (R1)(R1)(R1)(R1)(R1)(R1) to Ly43- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly44- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly44- (R1)(R1)(R1)(R1)(R1) to Ly44- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly45- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly45- (R1)(R1)(R1)(R1)(R1)(R1) to Ly45- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly46- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly46- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly46- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly47- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly47- (R1)(R1)(R1)(R1)(R1)(R1) to Ly47- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly48- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly48 - (R1)(R1)(R1)(R1)(R1) to Ly48- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly49- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly49- (R1)(R1)(R1)(R1)(R1) to Ly49- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly50- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly50- (R1)(R1)(R1)(R1)(R1)(R1) to Ly50- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly51- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly51- (R1)(R1)(R1)(R1)(R1)(R1) to Ly51- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly52- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly52- (R1)(R1)(R1)(R1)(R1)(R1) to Ly52- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly53- (Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly53- (R1)(R1)(R1)(R1)(R1) to Ly53- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly54- (Ri)(Rj)(Rm)(Rn)(Ro), wherein Ly54- (R1)(R1)(R1)(R1)(R1) to Ly54- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly55- (Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly55- (R1)(R1)(R1)(R1)(R1) to Ly55- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly56- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly56- (R1)(R1)(R1)(R1)(R1)(R1) to Ly56- (R135)(R1350(R135)(R135) (R135)(R135) have the structure


embedded image







Ly57- (Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly57- (R1)(R1)(R1)(R1)(R1) to Ly57- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly58- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly58- (R1)(R1)(R1)(R1)(R1)(R1) to Ly58- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly59- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly59- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly59- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly60- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly60- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly60- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly61- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq)(Rr), wherein Ly61- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly61- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







Ly62- (Rj)(Rm)(Rn)(Ro)(Rp)(Rq), wherein Ly62- (R1)(R1)(R1)(R1)(R1)(R1) to Ly62- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly63- (Rj)(Rm)(Rn)(Ro)(Rp)(Rq), wherein Ly63- (R1)(R1)(R1)(R1)(R1)(R1) to L763- R(135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly64- (Rj)(Rm)(Rn)(Ro)(Rp)(Rq) (Rr), wherein Ly64- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly64- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly65- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly65- (R1)(R1)(R1)(R1)(R1)(R1) to Ly65- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly66- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly66- (R1)(R1)(R1)(R1)(R1) to Ly66- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly67- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly67- (R1)(R1)(R1)(R1)(R1)(R1) to Ly67- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly68- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly68- (R1)(R1)(R1)(R1)(R1)(R1) to Ly68- (R1350(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly69- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp)(Rq), wherein Ly69- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly69- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







Ly70- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp)(Rq)(Rr), wherein Ly70- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1)(R1) to Ly70- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly71- (Ri)(Rm)(Rn)(Ro)(Rp), wherein Ly71- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly71- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







Ly72- (Ri)(Rm)(Rn)(Ro)(Rp), wherein Ly72- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly72- (R135)(R135)(R135)(R135) (R135)(R135)(R135) (R135) have the structure


embedded image







Ly73-(Rq)(Rr)(Rt′), wherein Ly73- (R1)(R1)(R1) to Ly73- (R135)(R135)(R135) have the structure


embedded image







Ly74-(Rq)(Rr)(Rt′), wherein Ly74- (R1)(R1)(R1) to Ly74- (R135)(R135)(R135) have the structure


embedded image







Ly75-(Rr)(Rs)(Rt′), wherein Ly75- (R1)(R1)(R1) to Ly75- (R135)(R135)(R135) have the structure


embedded image







Ly76-(Rq)(Rr)(Rt′), wherein Ly76- (R1)(R1)(R1) to Ly76- (R135)(R135)(R135) have the structure


embedded image







Ly77-(Rq)(Rt′)(Rw′), wherein Ly77- (R1)(R1)(R1) to Ly77- (R135)(R135)(R135) have the structure


embedded image







Ly78-(Rq)(Rt′)(Rw′), wherein Ly78- (R1)(R1)(R1) to Ly78- (R135)(R135)(R135) have the structure


embedded image







Ly79-(Re′)(Rq)(Rs), wherein Ly79- (R1)(R1)(R1) to Ly79- (R135)(R135)(R135) have the structure


embedded image







L780-(Rr)(Rs)(Rt′), wherein Ly80- (R1)(R1)(R1) to Ly80- (R135)(R135)(R135) have the structure


embedded image







Ly81-(Rr)(Rs)(Rt′), wherein Ly81- (R1)(R1)(R1) to Ly81- (R135)(R135)(R135) have the structure


embedded image







Ly82-(Rr)(Rs)(Rt′), wherein Ly82- (R1)(R1)(R1) to Ly82- (R135)(R135)(R135) have the structure


embedded image







Ly83-(Rr)(Rs)(Rt′), wherein Ly83- (R1)(R1)(R1) to Ly83- (R135)(R135)(R135) have the structure


embedded image







Ly84-(Rs)(Rt′)(Rw′), wherein Ly84- (R1)(R1)(R1) to Ly84- (R135)(R135)(R135) have the structure


embedded image







Ly85-(Rr)(Rs)(Rt′), wherein Ly85- (R1)(R1)(R1) to Ly85- (R135)(R135)(R135) have the structure


embedded image







Ly86-(Rq)(Rr)(Rs), wherein Ly86- (R1)(R1)(R1) to Ly86- (R135)(R135)(R135) have the structure


embedded image







Ly87-(Rq)(Rr)(Re′), wherein Ly87- (R1)(R1)(R1) to Ly87- (R135)(R135)(R135) have the structure


embedded image







Ly88-(Rq)(Rr)(Re′), wherein Ly88- (R1)(R1)(R1) to Ly88- (R135)(R135)(R135) have the structure


embedded image







Ly89- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly89- (R1)(R1)(R1)(R1)(R1)(R1) to Ly89- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly90- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly90- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly90- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly91- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly91- (R1)(R1)(R1)(R1)(R1) to Ly91- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly92- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly92- (R1)(R1)(R1)(R1)(R1) to Ly92- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly93- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly93- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly93- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly94- (Rj)(Rm)(Rn)(Ro)(Rp)(Rq) (Rr), wherein Ly94- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly94- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) have the structure


embedded image







Ly95- (Ri)(Rm)(Rn)(Ro)(Rp), wherein Ly95- (R1)(R1)(R1)(R1)(R1) to Ly95- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly96- (Rl)(Rm)(Rn)(Ro)(Rp), wherein Ly96- (R1)(R1)(R1)(R1)(R1) to Ly96- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly97- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly97- (R1)(R1)(R1)(R1)(R1)(R1) to Ly97- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly98- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly98- (R1)(R1)(R1)(R1)(R1)(R1) to Ly98- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly99- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly99- (R1)(R1)(R1)(R1)(R1)(R1) to Ly99- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly100- (Ri)(Rl)(Rm)(Rn)(Ro)(Rp), wherein Ly100- (R1)(R1)(R1)(R1)(R1)(R1) to Ly100- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly101- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly101- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly101- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly102- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly102- (R1)(R1)(R1)(R1)(R1)(R1) to Ly102- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly103- (Ri)(Rj)(Rk)(Rl)(Rm)(Rn) (Ro)(Rp), wherein Ly103- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly103- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) have the structure


embedded image







Ly104- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly104- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly104- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly105- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly105- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly105- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly106- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp) (Rq), wherein Ly106- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly106- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly107- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly107- (R1)(R1)(R1)(R1)(R1) to Ly107- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly108- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly108- (R1)(R1)(R1)(R1)(R1)(R1) to Ly108- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly109- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly109- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly109- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly110- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly110- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly110- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly111- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly111- (R1)(R1)(R1)(R1)(R1)(1 to Ly111- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly112- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly112- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly112- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly113- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly113- (R1)(R1)(R1)(R1)(R1)(R1) to Ly113- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly114- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly114- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly114- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly115- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly115- (R1)(R1)(R1)(R1)(R1)(R1) to Ly115- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly116- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly116- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly116- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly117- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly117- (R1)(R1)(R1)(R1)(R1)(R1) to Ly117- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly118- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly118- (R1)(R1)(R1)(R1)(R1)(R1) to Ly118- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly119- (Rj)(Rm)(Rn)(Ro)(Rp)(Rq) (Rr)(Rs)(Rt), wherein Ly119- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1)(R1) to Ly119- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly120- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp)(Rq), wherein Ly120- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly120- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) have the structure


embedded image







Ly121- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp)(Rq), wherein Ly121- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1) to Ly121- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) have the structure


embedded image







Ly122- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp(Rq)(Rr), wherein Ly122- (R1)(R1)(R1)(R1)(R1)(R1) (R1)(R1)(R1) to Ly122- (R135)(R135)(R135)(R135) (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly123- (Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly123- (R1)(R1)(R1)(R1)(R1) to Ly123- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly124- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly124- (R1)(R1)(R1)(R1)(R1)(R1) to Ly124- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly125- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly125- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly125- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly126- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly126- (R1)(R1)(R1)(R1)(R1) to Ly126- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly127- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly127- (R1)(R1)(R1)(R1)(R1) to Ly127- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly128- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro), wherein Ly128- (R1)(R1)(R1)(R1)(R1)(R1) to Ly128- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly129- (Rj)(Rk)(Rl)(Rm)(Rn)(Ro) (Rp), wherein Ly129- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly129- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly130- (Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly130- (R1)(R1)(R1)(R1)(R1) to Ly130- (R135)(R135)(R135)(R135) (R135) have the structure


embedded image







Ly131- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly131- (R1)(R1)(R1)(R1)(R1)(R1) to Ly131- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly132- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly132- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly132- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly133- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly133- (R1)(R1)(R1)(R1)(R1)(R1) to Ly133- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly134- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly134- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly134- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly135- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly135- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly135- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly136- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly136- (R1)(R1)(R1)(R1)(R1)(R1) to Ly136- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly137- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly137- (R1)(R1)(R1)(R1)(R1)(R1) to Ly137- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly138- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly138- (R1)(R1)(R1)(R1)(R1)(R1) to Ly138- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly139- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro) (Rp), wherein Ly139- (R1)(R1)(R1)(R1)(R1)(R1) (R1) to Ly139- (R135)(R135)(R135)(R135) (R135)(R135)(R135) have the structure


embedded image







Ly140- (Ri)(Rj)(Rk)(Rm)(Rn)(Ro), wherein Ly140- (R1)(R1)(R1)(R1)(R1)(R1) to Ly140- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly141-(Ri)(Rj)(Rk)(Rm), wherein Ly141- (R1)(R1)(R1)(R1) to Ly141- (R135)(R135)(R135)(R135) have the structure


embedded image







Ly142- (Ri)(Rj)(Rm)(Rn)(Ro)(Rp), wherein Ly142- (R1)(R1)(R1)(R1)(R1)(R1) to Ly142- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image







Ly143- (Rj)(Rk)(Rm)(Rn)(Ro)(Rp), wherein Ly143- (R1)(R1)(R1)(R1)(R1)(R1) to Ly143- (R135)(R135)(R135)(R135) (R135)(R135) have the structure


embedded image













    • wherein each of Re′, Ri, Rj, Rk, Rl, Rm, Rn, Ro, Rp, Rq, Rr, Rs, Rt, Rt′, and Rw′ is independently selected from the group consisting of R1 to R135 as defined in LIST 5; and

    • wherein Ph is phenyl.





In some embodiments, the compound is selected from the group consisting of the structures of the following LIST 11:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound having a structure of Formula I described herein can be at least 30% deuterated, at least 40% deuterated, at least 50% deuterated, at least 60% deuterated, at least 70% deuterated, at least 80% deuterated, at least 90% deuterated, at least 95% deuterated, at least 99% deuterated, or 100% deuterated. As used herein, percent deuteration has its ordinary meaning and includes the percent of possible hydrogen atoms (e.g., positions that are hydrogen or deuterium) that are replaced by deuterium atoms.


In some embodiments of heteroleptic compound having the formula of M(LA)p(LB)q(LC)r as defined above, the ligand LA has a first substituent RI, where the first substituent RI has a first atom a-I that is the farthest away from the metal M among all atoms in the ligand LA. Additionally, the ligand LB, if present, has a second substituent RII, where the second substituent RII has a first atom a-II that is the farthest away from the metal M among all atoms in the ligand LB. Furthermore, the ligand LC, if present, has a third substituent RIII, where the third substituent RIII has a first atom a-III that is the farthest away from the metal M among all atoms in the ligand LC.


In such heteroleptic compounds, vectors VD1, VD2, and VD3 can be defined that are defined as follows. VD1 represents the direction from the metal M to the first atom a-I and the vector VD1 has a value D1 that represents the straight line distance between the metal M and the first atom a-I in the first substituent RI. VD2 represents the direction from the metal M to the first atom a-II and the vector VD2 has a value D2 that represents the straight line distance between the metal M and the first atom a-II in the second substituent RII. VD3 represents the direction from the metal M to the first atom a-III and the vector VD3 has a value D3 that represents the straight line distance between the metal M and the first atom a-III in the third substituent RIII.


In such heteroleptic compounds, a sphere having a radius r is defined whose center is the metal M and the radius r is the smallest radius that will allow the sphere to enclose all atoms in the compound that are not part of the substituents RI, RII and RIII; and where at least one of D1, D2, and D3 is greater than the radius r by at least 1.5 Å. In some embodiments, at least one of D1, D2, and D3 is greater than the radius r by at least 2.9, 3.0, 4.3, 4.4, 5.2, 5.9, 7.3, 8.8, 10.3, 13.1, 17.6, or 19.1 Å.


In some embodiments of such heteroleptic compound, the compound has a transition dipole moment axis and angles are defined between the transition dipole moment axis and the vectors VD1, VD2, and VD3, where at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 40°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 30°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 20°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 15°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 10°. In some embodiments, at least two of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 200. In some embodiments, at least two of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 15°. In some embodiments, at least two of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 10°.


In some embodiments, all three angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 20°. In some embodiments, all three angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 15°. In some embodiments, all three angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 10°.


In some embodiments of such heteroleptic compounds, the compound has a vertical dipole ratio (VDR) of 0.33 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.30 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.25 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.20 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.15 or less.


One of ordinarly skill in the art would readily understand the meaning of the terms transition dipole moment axis of a compound and vertical dipole ratio of a compound. Nevertheless, the meaning of these terms can be found in U.S. Pat. No. 10,672,997 whose disclosure is incorporated herein by reference in its entirety. In U.S. Pat. No. 10,672,997, horizontal dipole ratio (HDR) of a compound, rather than VDR, is discussed. However, one skilled in the art readily understands that VDR=1−HDR.


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the OLED comprises: an anode; a cathode; and an organic layer disposed between the anode and the cathode, where the organic layer comprises a compound having a structure of Formula I as described herein.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the emissive layer comprises one or more quantum dots.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is an integer from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, triazine, boryl, silyl, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, aza-5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).


In some embodiments, the host may be selected from the HOST Group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the emissive layer can comprise two hosts, a first host and a second host. In some embodiments, the first host is a hole transporting host, and the second host is an electron transporting host. In some embodiments, the first host and the second host can form an exciplex.


In some embodiments, the compound as described herein may be a sensitizer, wherein the device may further comprise an acceptor, and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region can comprise a compound having a structure of Formula I as described herein.


In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for interventing layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.


The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.


The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors (“DBRs”) in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.


In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.


In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a pluraility of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer, and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound having a structure of Formula I as described herein.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP, also referred to as organic vapor jet deposition (OVJD)), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


wherein k is an integer from 1 to 20; X101 to X106 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image


wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


wherein Met is a metal; (Y103-Y11) is a bidentate ligand, Y103 and Y10 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y11) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


Experimental Data




embedded image


5-Methoxy-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)aniline (2): A solution of 2-chloro-5-methoxyaniline (1) (5.0 g, 31.7 mmol, 1.0 equiv), (5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)boronic acid (A) (11.1 g, 47.6 mmol, 1.5 equiv), potassium phosphate tribasic (13.5 g, 63.5 mmol, 2.0 equiv) and SPhos Pd Gen2 (2.3 g, 3.2 mmol, 0.1 equiv) in 1,4-dioxane (60 mL) and water (6 mL) was sparged with nitrogen for 15 minutes. The reaction mixture was heated at 100° C. (external) for 16 hours to form a dark solution at which point TLC and LC/MS analyses indicated complete conversion to the desired product. The reaction mixture was cooled to room temperature and filtered through a Celite (diatomaceous earth) plug. The filtrate was concentrated under reduced pressure. The residue was dissolved in dichloromethane (150 mL) and washed with water (150 mL) and saturated aqueous brine (200 mL). The organic layer was dried over sodium sulfate and adsorbed onto Celite (80 g). The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with a gradient of 20 to 70% dichloromethane in hexanes to give compound 2 (8.8 g, 88% yield) as white solid.


Palladium(II) acetate complex of 5-methoxy-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)aniline (3): A solution of compound 2 (8.7 g, 28.1 mmol, 1.0 equiv) and palladium acetate (6.3 g, 28.1 mmol, 1.0 equiv) in anhydrous THF (100 mL) was sparged with nitrogen for 5 minutes. The reaction mixture was heated at 50° C. (external) for 30 minutes at which point the reaction mixture turned dark brown. The reaction mixture was cooled to room temperature and the solvent was evaporated under reduced pressure to give compound 3 (13.3 g, 99% yield) as a brown foam which was used subsequently.


3-Methoxy-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazole (4): A solution of compound 3 (13.3 g, 28.1 mmol, 1.0 equiv), triphenylphosphine (14.8 g, 56.2 mmol, 2.0 equiv) and sodium tert-butoxide (5.4 g, 56.2 mmol, 2.0 equiv) in toluene (200 mL) was sparged with nitrogen for 15 minutes. The reaction mixture was heated at 100° C. (external) for 16 hours at which point TLC and LC/MS indicated the reaction was complete. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was diluted with dichloromethane (150 mL) and filtered through a Celite plug. The filtrate was concentrated under reduced pressure. The residue was diluted with hexanes (200 mL) and the resulting solid was filtered, dissolved in dichloromethane (100 mL) and absorbed onto celite (100 g) under reduced pressure. The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with a gradient of 30 to 50% dichloromethane in hexanes. The product was washed with hexanes, filtered and air dried to give (4) (3.4 g, 40% yield) as white flakes.


5-(4-(tert-Butyl)pyridin-2-yl)-3-methoxy-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazole (5): A solution of (4) (3.60 g, 11.7 mmol, 1.0 equiv), 2-bromo-4-(tert-butyl)pyridine (5.01 g, 23.4 mmol, 2.0 equiv), copper(I) iodide (334 mg, 1.8 mmol, 0.15 equiv), 2-picolinic acid (432 mg, 3.5 mmol, 0.3 equiv) and anhydrous potassium phosphate tribasic (4.97 mg, 23.4 mmol, 2.0 equiv) in anhydrous DMSO (50 mL) was sparged with nitrogen for 10 minutes. The reaction mixture was heated at 140° C. (external) for 16 hours at which point TLC analysis indicated the reaction was complete. The reaction mixture was cooled to room temperature, diluted with water (200 mL) and extracted ethyl acetate (2×100 mL). The combined organic layers were dried over sodium sulfate and absorbed onto celite (80 g) under reduced pressure. The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with a gradient of 10 to 20% ethyl acetate in hexanes to give impure (5) (5.0 g, 95% yield) as white semi-solid, which was used subsequently.


5-(4-(tert-Butyl)pyridin-2-yl)-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazol-3-ol (6): A solution of (5) (5.0 g, 11.7 mmol, 1.0 equiv), dodecanethiol (7.1 g, 35.1 mmol, 3.0 equiv) and sodium tert-butoxide (3.4 g, 35.1 mmol, 3.0 equiv) in N-methyl-2-pyrrolidone (50 mL) was sparged with nitrogen for 10 minutes. The reaction mixture was heated at 110° C. (external) for 16 hours at which point TLC analysis indicated the reaction was complete. The reaction mixture was cooled to room temperature, diluted with saturated ammonium chloride (100 mL) and extracted with ethyl acetate (2×100 mL). The combined organic layers were washed with saturated brine, dried over sodium sulfate and absorbed onto celite (80 g) under reduced pressure. The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with a gradient of 0 to 15% ethyl acetate in hexanes to give (6) (2.9 g, 58% yield) as white solid.


3-(3-Bromophenoxy)-5-(4-(tert-butyl)pyridin-2-yl)-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazole (7): A solution of (6) (2.90 g, 6.8 mmol, 1.0 equiv), 1,3-dibromobenzene (6.42 g, 27.2 mmol, 4.0 equiv), copper(I) iodide (194 mg, 1.0 mmol, 0.15 equiv), 2-picolinic acid (251 mg, 2.0 mmol, 0.3 equiv) and anhydrous potassium phosphate tribasic (4.3 g, 20.3 mmol, 3.0 equiv) in anhydrous DMSO (50 mL) was sparged with nitrogen for 10 minutes. The reaction mixture was heated at 140° C. (external) for 4 hours at which point TLC analysis indicated the reaction was complete. The reaction mixture was cooled to room temperature, diluted with water (200 mL) and extracted ethyl acetate (2×100 mL). The combined organic layers were dried over sodium sulfate and absorbed onto celite (80 g) under reduced pressure. The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with 50% dichloromethane in hexanes to give (7) (3.0 g, 75% yield) as a clear glass.


N1-([1,1′:3′,1″-Terphenyl]-2′-yl-2,2″,3,3″,4,4″,5,5″,6,6″-d10)-N2-(3-((5-(4-(tert-butyl)pyridin-2-yl)-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazol-3-yl)oxy)phenyl)benzene-1,2-diamine (9): A solution of (7) (2.74 g, 4.7 mmol, 1.0 equiv), (8) (2.12 g, 6.1 mmol, 1.3 equiv) and BINAP Pd Gen3 (467 mg, 0.5 mmol, 0.1 equiv) in anhydrous toluene (40 mL) was sparged with nitrogen for 5 minutes. Sodium tert-butoxide (905 mg, 9.4 mmol, 2.0 equiv) was added in one portion and the sparging was continued for 10 additional minutes. The reaction mixture was heated at 110° C. (external) for 16 hours to form a dark solution at which point TLC and LC/MS analyses indicated complete conversion to the desired product. The reaction mixture was cooled to room temperature and filtered through a celite plug. The filtrate was concentrated under reduced pressure. The residue was dissolved in dichloromethane (150 mL) and absorbed onto celite (50 g) under reduced pressure. The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with a gradient of 30 to 80% dichloromethane in hexanes. The product was triturated with diethyl ether (30 mL) to give (9) (2.5 g, 62% yield) as an off-white foam.


3-(3-(3-([1,1′:3′,1″-Terphenyl]-2′-yl-2,2″,3,3″,4,4″,5,5″,6,6″-d10)-1H-1λ4,3λ4-benzo[d]imidazol-1-yl)phenoxy)-5-(4-(tert-butyl)pyridin-2-yl)-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazole chloride (10): A solution of (9) (2.5 g, 2.9 mmol, 1.0 equiv), triethyl orthoformate (25 mL, 21.9 mmol, 50 equiv) and concentrated DCl in D2O (0.77 mL, 8.9 mmol, 3.0 equiv) was heated at 90° C. (external) for 16 hours. The reaction mixture was cooled to room temperature, diluted with diethyl ether (150 mL), sonicated for 15 minutes and stirred vigorously for 15 minutes. The resulting solids were filtered and washed with diethyl ether (3×15 mL) to give (10) (2.4 g, 91% yield) as a beige solid.


Pt(II) complex 3-(3-(3-([1,1′:3′,1″-terphenyl]-2′-yl-2,2″,3,3″,4,4″,5,5″,6,6″-d10)-1H-3λ4-benzo[d]imidazol-1-yl)phenoxy)-5-(4-(tert-butyl)pyridin-2-yl)-7,7,10,10-tetramethyl-7,8,9,10-tetrahydro-5H-benzo[b]carbazole Inventive Compound 1: A solution of (10) (2.45 g, 2.7 mmol, 1.0 equiv), potassium tetrachloroplatinate (1.14 g, 2.7 mmol, 1.0 equiv) and 2,6-lutidine (1.1 mL, 9.0 mmol, 3.3 equiv) in glacial acetic acid (10 mL) was sparged with nitrogen for 10 minutes and heated at 115° C. (external) for 72 hours, at which point the TLC analysis indicated the reaction was complete. The reaction mixture was cooled to room temperature and diluted with water (100 mL). The suspension was vigorously stirred for 1 hour and the resulting solids were filtered and washed with water (3×50 mL) and methanol (3×50 mL). The solids were dissolved in dichloromethane (100 mL), dried over sodium sulfate and absorbed onto celite (50 g) under reduced pressure. The crude material was purified on a CombiFlash automated chromatography system (330 g Sorbtech silica gel column), eluting with a gradient of 30 to 50% dichloromethane in hexanes. The product was dissolved in dichloromethane (10 mL), precipitated with methanol (60 mL) and filtered to give Inventive compound 1 (1.3 g, 45% yield) as a yellow solid.




embedded image


The emission spectral data for the Inventive compound 1 and Comparison compound measured at room temperature (RT) and at 77 K is shown in FIG. 3. The λmax data for the two compounds at RT and 77 K are provided in the table below.














λmax (nm)
RT
77K







Inventive Compound 1
457
448


Comparison Compound
463
451









Referring to the spectral data shown in FIG. 3, at room temperature, a solution sample in 2-MeTHF of Inventive compound 1 with a fused alkyl group shows an emission spectrum that is 6 nm blue-shifted relative to that of a solution sample of comparison compound 1. At 77K, the emission spectrum of a frozen glassy sample of Inventive compound 1 is also 3 nm blue-shifted relative to a similar glassy sample of comparison compound 1. The increased rigidity of the fused alkyl group in inventive compound 1 likely induces increased structural rigidity, which results in blue-shifted emission. This makes inventive compound 1 more suited for deep blue OLED application. The emission spectra were collected on a Horiba Fluorolog-3 spectrofluorometer equipped with a Synapse Plus CCD detector. All samples were excited at 340 nm

Claims
  • 1. A compound having a formula M(LA)LB), having the structure of Formula I,
  • 2. The compound of claim 1, wherein each R, R′, Rα, Rβ, RA, RB, RC, RD, and RF is independently hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, and combinations thereof.
  • 3. The compound of claim 1, wherein Formula II has a structure selected from the group consisting of:
  • 4. The compound of claim 1, wherein Z1 is C, Z2 is C, and Z3 is N; and/or each of X1 to X6 is C.
  • 5. The compound of claim 1, wherein at least one of L1, L2, or L3 is a direct bond, at least one of L1, L2, or L3 is selected from the group consisting of O, S, and Se, and at least one of L1, L2, or L3 is selected from the group consisting of BR, NR, and PR.
  • 6. The compound of claim 1, wherein at least one Q1, Q2, or Q3 is CRQRQ′; and/or n is 2.
  • 7. The compound of claim 1, wherein each of moiety B, moiety C, and moiety D is independently selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, naphthalene, quinazoline, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, aza-carbazole, dibenzofuran, aza-dibenzofuran, dibenzothiophene, aza-dibenzothiophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, and fluorene.
  • 8. The compound of claim 1, wherein the structure of Formula II is fused directly to moiety C.
  • 9. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 10. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 11. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LA1-(R1)(R1)(R1)(R1) to LA97-(R135)(R135)(R135)(R135)(R135)(R135) that are defined as follows:
  • 12. The compound of claim 1, wherein LB is selected from the group consisting of:
  • 13. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LA1-(R1)(R1)(R1)(R1) to LA97-(R135)(R135)(R135)(R135)(R135)(R135) defined as follows:
  • 14. The compound of claim 10, wherein the compound is selected from the group consisting of compounds having the formula of Pt(LA′)(Ly): wherein L1 is O:
  • 15. The compound of claim 11, wherein the compound is selected from the group consisting of the compounds having the formula of Pt(LA′)(Ly):
  • 16. The compound of claim 1, wherein the compound is selected from the group consisting of:
  • 17. An organic light emitting device (OLD) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound having a formula M(LA)(LB), having the structure of Formula I,
  • 18. The OLED of claim 17, wherein the organic layer further comprises a host, wherein host comprises at least one chemical moiety selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, triazine, boryl, silyl, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, aza-5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).
  • 19. The OLED of claim 18, wherein the host is selected from the group consisting of
  • 20. A consumer product comprising an organic light-emitting device comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound having a formula M(LA)(LB), having the structure of Formula I,
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/381,468, filed on Oct. 28, 2022, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63381468 Oct 2022 US