The present disclosure generally relates to the field of display technology and, more particularly, relates to an organic light-emitting display panel and a driving method thereof, and an organic light-emitting display device comprising the organic light-emitting display panel.
An organic light-emitting display device displays images based on the self-luminous characteristics of organic semiconductor materials, which has the advantages of high contrast, and low power consumption, etc. The display area of the organic light-emitting display device is often disposed with a pixel array including a plurality of sub-pixels. Each sub-pixel contains an organic light-emitting element, such as an organic light-emitting diode (OLED), which is driven by a pixel driving circuit to emit light.
An existing pixel drive circuit may include a driving transistor which supplies a light-emitting current to the OLED under the control of the light-emitting control signal. The light-emitting current of the OLED depends on the threshold voltage Vth of the driving transistor. However, the threshold voltage Vth of the driving transistor shifts due to factors such as manufacturing process, and aging after prolonged use, etc. Thus, the brightness, of the OLED may be unstable. In addition, in the existing pixel driving circuits, the driving transistor is operated at biases in the same direction over long time, such that the carrier mobility of the driving transistor may decay, and the pixel driving circuit, may be unable to work properly.
The disclosed organic light-emitting display panel and driving method thereof and organic light-emitting display device are directed to solve one or more problems set forth above and other problems.
One aspect of the present disclosure provides an organic light-emitting display panel. The organic light-emitting display panel comprises a plurality of pixel driving circuits arranged in a matrix, wherein a pixel driving circuit includes a first scan signal terminal and a second scan signal terminal; a light-emitting signal terminal, a data signal terminal, an initialization signal terminal, a first voltage terminal, and a second voltage terminal; a driving module comprising a driving transistor and a first capacitor having two electrode plates electrically connected to a gate electrode and a first electrode of the driving transistor, respectively; an initialization module comprising a first transistor having a gate electrode electrically connected to the first signal terminal, a first electrode electrically connected to the initialization signal terminal, and a second electrode electrically connected to a second electrode of the driving transistor; a data writing module electrically connected to the gate electrode of the driving transistor; a light-emitting control module comprising a second transistor having a gate electrode electrically connected to the light-emitting signal terminal, a first electrode electrically connected to the first voltage terminal, and a second electrode electrically connected to the second electrode of the driving transistor; and an organic light-emitting element having a cathode electrically connected to the second voltage terminal.
Another aspect of the present disclosure provides a driving method for an organic light-emitting display panel. The organic light-emitting display panel comprises a plurality of pixel driving circuits arranged in a matrix, wherein a pixel driving circuit includes a first scan signal terminal and a second scan signal terminal; a light-emitting signal terminal, a data signal terminal and an initialization signal terminal; a first voltage terminal, and a second voltage terminal; a driving module comprising a driving transistor and a first capacitor having two electrode plates electrically connected to a gate electrode and a first electrode of the driving transistor, respectively; an Initialization module comprising a first transistor having a gate electrode electrically connected to the first signal terminal, a first electrode electrically connected to the initialization signal terminal, and a second electrode electrically connected, to a second electrode of the driving transistor; a data writing module electrically connected to the gate electrode of the driving transistor; a light-emitting control module comprising a second transistor having a gate electrode electrically connected to the light-emitting signal terminal, a first electrode electrically connected to the first voltage terminal, and a second electrode electrically connected to the second electrode of the driving transistor; and an organic light-emitting element having a cathode electrically connected to the second voltage terminal. The driving method comprises: in a first stage, providing a first level signal to the first scan signal terminal and the second scan signal terminal, providing a second level signal to the light-emitting signal terminal, providing a first initialization signal to the initialization signal terminal, providing a second initialization signal to the data signal terminal, the initialization signal module writing the first initialization signal to the second electrode of the driving transistor, and the data signal terminal writing the second initialization signal to the gate electrode of the driving transistor; in a second stage, providing the first level signal to the light-emitting signal terminal and the second scan signal terminal, providing the second level signal to the first scan signal terminal providing a first signal to the data signal terminal, the data writing module transmitting the first signal to the gate electrode of the driving transistor, the driving transistor being turned on, the first voltage terminal charging the first electrode of the driving transistor; in a third stage, providing the second level signal to the first scan signal terminal and the light-emitting signal terminal, providing a data signal to the data signal terminal, the data writing module transmitting the data signal or a signal inputted by the first voltage terminal to the gate electrode of the driving transistor; and in a fourth stage, providing the first level signal to the light-emitting signal terminal, providing the second level signal to the first scan signal terminal and the second scan signal terminal and the organic light-emitting element emitting light according to a voltage difference between the gate electrode and the first electrode of the driving transistor, wherein a voltage of the second initialization signal is greater than a sum of a voltage of the first initialization signal and a threshold voltage of the driving transistor.
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure.
Reference will now be made in detail to exemplary embodiments of the invention, which are illustrated in the accompanying drawings. Hereinafter, embodiments consistent with the disclosure will be described with reference to drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. It is apparent that, the described embodiments are some but not all of the embodiments of the present invention. Based on the disclosed embodiments, persons of ordinary skill in the art may derive other embodiments consistent with the present disclosure, all of which are within the scope of the present invention. Further, in the present disclosure, the disclosed embodiments and the features of the disclosed embodiments may be combined under conditions without conflicts.
As shown in
If should be noted, although an OLED may be discussed in the present disclosure as one embodiment for the light-emitting element, the organic light-emitting element of the present disclosure is not limited to an OLED, and may be any suitable organic element that emits light. The OLED may be replaced with any suitable organic element that emits light, which is within the scope of the present disclosure.
The driving module 11 may include a driving transistor DT and a first capacitor C1. Two electrode plates (i.e., two terminals) of the first capacitor C1 may be electrically connected to the gate electrode of the driving transistor DT (node N1 as shown in
The initialization module 12 may be electrically connected to the initialization signal terminal VREF, the first scan signal terminal Scan1, and the second electrode (node N3) of the driving transistor DT, for initializing the electric potential at the second electrode (node N3) of the driving transistor DT under the control of the first scan signal terminal Scan1. The initialization module 12 may include a first transistor M1 in which the gate electrode of the first transistor M1 may be electrically connected to the first scan signal terminal Scan1, the first electrode of the first transistor M1 may be electrically connected to the-initialization signal terminal VREF, and the second electrode of the transistor M1 may be electrically connected to the second electrode (node N3) of the driving transistor DT.
The data writing module 13 may be electrically connected to the gate electrode (node N1) of the driving transistor DT. The data writing module 13 may be configured to transmit the signal at the data signal terminal VDATA to the driving transistor DT, under the control of the second scan signal terminal.
The light-emitting control module 14 may be electrically connected to the light-emitting signal terminal Emit, the first voltage terminal PVDD and the driving module 11. The light-emitting control module 14 may include a second transistor M2. The gate electrode of the second transistor M2 may be electrically connected to the light-emitting signal terminal Emit. The first electrode of the second transistor M2 may be electrically connected to the first voltage terminal PVDD.
The cathode of the OLED D1 may be electrically connected to the second voltage terminal PVEE. The OLED D1 may emit light according to the voltage difference between the gate electrode and the first electrode of the driving transistor DT.
When the driving transistor DT is driving the OLED D1 to emit light, the electric potential at the gate electrode (node N1) of the driving transistor DT maybe higher than the electric potential at the first electrode (node N2) of the driving transistor DT. Accordingly, the node N2 may be the source electrode of the driving transistor DT, and the node N3 may be the drain electrode of the driving transistor DT, and the driving transistor DT may be operated under the bias voltage between the N1 node and the node N2.
In tile disclosed pixel driving circuits, before the OLED D1 is turned on, a first initialization signal may be written to the second electrode (node N3) of the driving transistor DT through the initialization module 12, and a second initialization signal may be written to the gate (node N1) of the driving transistor DT. The voltage of the first initialization signal may be lower than the voltage value of the second initialization signal. In addition, the voltage difference between the gate electrode (node N1) and the second electrode (node N3) of the driving transistor DT may be larger than the threshold voltage of the driving transistor DT, thereby turning on the driving transistor DT. Accordingly, the node N3 may be the source electrode of the driving transistor DT, the node N1 may be the gate electrode of the driving transistor DT, and the driving transistor DT may be operated under the bias voltage between the node N1 and the node N3.
Thus, before the OLED D1 is turned on, the bias voltage between the node N1 and the node N3 may have an opposite direction compared to the bias voltage at which the driving transistor DT turns on the OLED. That is, before the OLED D1 is turned on, the pixel driving circuit 100 may change the direction of the bias voltage of the driving transistor DT, such that the driving transistor DT may release the captured carries, and the decay rate of carrier mobility may be substantially reduced.
In addition, in the pixel driving circuit 100, two electrode plates of the first capacitor C1 may be connected to the gate electrode and the first electrode of the driving transistor DT. The electric potential at the gate electrode of the driving transistor may be controlled at a fixed electric potential through the data writing module 13.
Further, by charging the node N2 through the first voltage terminal PVDD, the electric potential of the node N2 may be increased until the electric potential difference between the node N1 and the node N2 is equal to the threshold voltage Vth of the driving transistor. Thus, the first capacitor C1 may maintain the electric potential difference between the two electrode plates of the first capacitor C1, i.e., maintain the threshold voltage Vth of the driving transistor DT. Thus, the electric potential at the node N2 may be a value including (−Vth).
Given the light-emitting current of the OLED is positively correlated with (Vgs−Vth), where Vgs is the electric potential difference between the node N1 and the node N2. When the electric potential of the node N1 is A (A is independent of Vth) after the data signal is written to the node N1, the light-emitting current may be A−(−Vth)−Vth=A. Thus, the light-emitting current may be independent of the threshold voltage Vth of the driving transistor DT. That is, the pixel driving circuit 100 may be able to compensate the threshold voltage drift of the driving transistor, thereby preventing the threshold voltage drift from influencing the luminance of the OLED D1.
As shown in
The data writing module 23 may write the signal of the data signal terminal VDATA to the gate electrode of the driving transistor DT, under the control of the second scan signal terminal Scan2. When writing the data signal, a data signal corresponding to the luminance of OLED D1 may be transmitted to the gate electrode of the driving transistor through the data signal terminal VDATA.
In one embodiment, when the OLED D1 is turned on to display a next frame, the electric potential of the gate electrode of the driving transistor DT may be initialized through the data signal terminal VDATA. For example, a signal having a substantially low electric potential may be provided through the data signal terminal VDATA. When the second scan signal terminal Scan2 turns on the third transistor M3, the gate electrode of the driving transistor DT may be initialized to the low potential.
The first electrode (N2 node) of the driving transistor DT may be electrically connected to the anode of the OLED D1. When the electric potential difference between the node N2 and the second voltage terminal PVEE is higher than the turn-on voltage of the OLED D1, the OLED D1 may emit light.
The light-emitting control module of the pixel driving circuit 200 may further include a second capacitor C2, both electrode plates of which may be electrically connected to the first voltage terminal PVDD and the first electrode (node N2) of the driving transistor DT, respectively. When the node N1 is written with the data signal and the node N2 is in a floating state, the electric potential of the node N2 may be increased due to the coupling effect of the first capacitor C1. Meanwhile, the first capacitor C1 and the second capacitor C2 may divide the voltage difference generated by the charges produced due to the coupling effect of the first capacitor C1, thereby preventing the voltage difference Vgs between the gate electrode and the source electrode (i.e. the first electrode) of the driving transistor DT from becoming substantially small and, accordingly, avoiding the insufficient luminance of the OLED D1.
As shown in
The data writing module 13 may transmit the signal of the data signal terminal VDATA and the signal of the first voltage terminal PVDD to the gate electrode (node N1) of the driving transistor DT. In one embodiment, the third transistor M3 may be turned on under the control of the second scan signal terminal Scan2, such that the signal of the data signal terminal VDATA may be written to the node N1. The fourth transistor M4 may be turned on under the control of the third scan signal terminal Scan3, such that the signal of the first voltage terminal PVDD maybe written to the node N1, and the electric potential of the N1 node may change. Accordingly, the electric potential of the N2 may also change due to the coupling effect of the first capacitor C1, thereby driving the OLED D1 to emit light. In the process (i.e., driving the OLED D1 to emit light), the data signal terminal VDATA may only provide the data signal needed for displaying images to the gate electrode of the driving transistor DT, without providing an initialization signal to the gate electrode of the driving transistor DT. Thus, the signal stability of the data signal terminal VDATA may be improved, the display performance may be enhanced, while the power-consumption may be reduced.
A data writing module 43 in the pixel driving circuit 400 shown in
The light-emitting control module 44 may further include a fifth transistor M5 in addition to a second transistor M2. The gate electrode of the fifth transistor M5 maybe electrically connected to the emitter signal terminal Emit. The first electrode of the fifth transistor M5 may be electrically connected to the first electrode of the driving transistor DT, and the second electrode of the fifth transistor M5 may be electrically connected to the anode of the OLED D1.
Different from the pixel driving circuit 200 show in
After the data is written and the threshold voltage Vth of the driving transistor DT is compensated, the fifth transistor M5 may be turned on to enable the OLED D1 to emit light. Thus, the OLED D1 may not emit light before the data signal is written and, meanwhile, the luminance of the OLED D1 may not be influenced by the threshold voltage of the driving transistor DT.
The present disclosure also provides an organic light-emitting display panel. The organic light-emitting display panel may include the disclosed pixel driving circuits arranged in a matrix.
The organic light-emitting display panel 500 may further include a plurality of first scan signal lines S11, S12, S13, . . . , S1 (m-1), S1m, a plurality of second scan signal lines S21, S22, S23, . . . , S2 (m-1), S2m, a plurality of light-emitting lines E1, E2, E3, . . . , E (m-1), Em, a plurality of data signal lines DATA11, DATA21, DATA12, DATA22, DATA13, DATA23, . . . , DATA1(n-2), DATA2(n-2), DATA1(n-1), DATA2(n-1), DATA1n, DATA2n, at least one initialization signal line REF1, REF2, REF3, . . . , REF (n-2), REF(n-1), REFn, a first voltage signal line VDD, and a second voltage signal line VEE, where m and n are positive integers.
The first scan signal terminal Scan1 of each pixel driving circuit 51 may be electrically connected to a first scan signal line S11, S12, S13, . . . , S1(m-1) or S1m, and the second scan signal terminal Scan2 of each pixel driving circuit 51 may be electrically connected to a second scanning signal line S21, S22, S23, . . . , S2(m-1) or S2m. The light-emitting signal terminal limit of each pixel driving circuit 51 may be electrically connected Us a light-emitting signal line E1, E2, E3, . . . E(m-1) or Em. The data signal terminal VDATA of each pixel driving circuit 51 may be electrically connected to a data signal line DATA11, DATA21, DATA12, DATA22, DATA13, DATA23, . . . , DATA1(n-2), DATA2(n-2), DATA1(n-1), DATA2(n-1), DATA1n or DATA2n.
The initialization signal terminal VREF of each pixel driving circuit 51 may be electrically connected to an initialization signal line REF1, REF2, REF3, . . . , REF (n-2), REF (n-1) or REFn. The first voltage terminal PVDD of each pixel driving circuit 51 may be electrically connected to the first voltage signal line VDD. The second voltage terminal PVEE of each pixel driving circuit 51 may be electrically connected to the voltage signal line VEE.
As shown in
That is, within the time period for displaying a frame of image, the driving IC (integrated circuit) may have to control the signal transmitted by each data signal line to change several times. When the number of the data signal lines is increased, the number of the pixel driving circuits to be driven per data signal line may be reduced, and the changing rate of the signal transmitted by each data signal line may be reduced. Accordingly, the changing rate of the signal transmitted from the driving IC to each data signal line may be reduced, and the load of the driving IC may be reduced.
Further, as shown in
Each second scan signal hue S21, S22, S23, . . . S2(m-1) or S2m may be electrically connected to-the second scan signal terminals Scan2 of the one row of pixel driving circuits 51, respectively. That is, each second scan signal line S21, S22, S23, S2(m-1) or S2m maybe electrically connected to the second scan signal terminals Scan2 of the pixel driving circuits 51 arranged in one pixel driving row. Each light-emitting signal line E1, E2, E3, . . . , E(m-1) or Em may be electrically connected to the light-emitting signal terminals Emit of one row of pixel driving circuits 51, respectively. That is, each light-emitting signal line E1, E2, E3, . . . , E(m-1) or Em may be electrically connected to the light-emitting signal terminals limit of the pixel driving circuits 51 arranged in one pixel driving row. Each initialization signal line REF1, REF2, REF3, . . . , REF(n-2), REF(n-1) or REFn may be electrically connected to the initialization signal terminals VREF of one column of pixel driving circuits, respectively. That is, each initialization signal line REF1, REF2, REF3, . . . , REF(n-2), REF(n-1) or REFn may be electrically connected to the initialization signal terminals VREF of the pixel driving circuits 51 arranged in one pixel driving column.
The first voltage terminal PVDD of each pixel driving circuit 51 may be electrically connected, to the same voltage signal line VDD. The second voltage terminal PVEE of each pixel driving circuit 51 may be electrically connected to the same second voltage signal line VEE. In the display process, the pixel driving circuits disposed in the same pixel driving circuit row may be operated at a same time, and the OLEDs in the same pixel driving circuit row may be turned on at the same time. Thus, the OLEDs in the pixel driving circuit matrix may be turned on row by row to complete the display of the entire picture.
As shown in
As shown in
The connection relations between each signal line and the pixel driving circuits in the organic light-emitting display panel of the present disclosure, shown in
It should be noted that, when the pixel driving circuit in the organic light-emitting display panel is the pixel driving circuit 300 shown, in
It should be noted that, in the disclosed embodiments; the first transistor M1, the second transistor M2, the third transistor M3, the fourth transistor M4, the fifth transistor M5, and the driving transistor DT may each be an N-type transistor or a P-type transistor. When the driving transistor DT is an N-type transistor, the threshold voltage Vth>0. When the driving transistor is a P-type transistor, the threshold voltage Vth<0.
The present disclosure may also provide a driving method for the organic light-emitting display panel. In the disclosed driving method, the operation of each pixel driving circuit may include at least four stages.
In particular, in the first stage, a first level signal may be provided to the first scan signal terminal Scan1 and the second scan signal terminal Scan2, and a second level signal may be provided to the light-emitting signal terminal Emit. A first initialization signal may be provided to the initialization signal terminal VREF, and a second initialization signal may be provided to the data signal terminal VDATA. The initialization signal module may write the first initialization signal to the second electrode (node N3) of the driving transistor DT, and the data writing module may write the second initialization signal to the gate electrode (node N1) of the driving transistor DT.
In the second stage, a first level signal may be provided to the light-emitting signal terminal Emit and the second scan signal terminal Scan2. A second level signal may be provided to the first scan signal terminal Scan1. A first signal may be provided to the data signal terminal VDATA. The data writing module may transmit the first signal to the gate electrode (node N1) of the driving transistor DT, such that the driving transistor DT may be turned on. The first voltage terminal PVDD may charge the first electrode of the driving transistor DT.
In the third stage, a second level signal may be provided to the first scan signal terminal Scan 1, the light-emitting signal terminal Emit. A data signal may be provided to the data signal terminal VDATA. The data writing module may transmit the data signal or a signal inputted from the first voltage terminal PVDD to the gate electrode (node N1) of the driving transistor DT.
In the fourth stage, a first level signal may be provided to the light-emitting signal terminal Emit, and a second level signal may be provided to the first scan signal terminal Scan1 and the second scan signal terminal Scan2. The OLED D1 may emit light based on the voltage difference between the gate electrode (node N1) and the first electrode (node N2) of the driving transistor DT.
In the first stage of the disclosed driving method, the voltage of the second initialization signal may be configured to be greater than the stun of the voltage of the first initialization signal and the threshold voltage of the driving transistor.
The operating principle of each pixel driving circuit driven by the driving method will now be further illustrated with reference to
As shown in
For the pixel driving circuit 200 shown in
Further, the voltage of the second initialization signal Vin may be greater than the sum of the voltage of the first initialization signal Vref and the threshold voltage Vth of the driving transistor, i.e., VN1−VN3=Vin−Vref>Vth. Accordingly, the driving transistor DT may be turned on at the bias voltage between the node N1 and the node N3 and, meanwhile, the node N2 may be the drain electrode of the driving transistor DT, and the node N3 may be the source electrode of the driving transistor DT.
When displaying the previous frame (i.e., the frame before and adjacent to the current frame), the driving transistor DT may turn on the OLED D1 to emit light, and the electric potential of the node N1 may be higher than the sum of the electric potential of the node N2 and the threshold voltage. Accordingly, the source electrode of the driving transistor DT may be the node N2, and the drain electrode of the driving transistor DT may the node N3. Thus, in the first stage T11, the driving transistor DT may be at a bias voltage opposite to the bias voltage for displaying the previous frame, such that the driving transistor DT may release the carriers captured during displaying the previous frame by non-charge traps in the channel and the insulating layer. Accordingly, the decay rate of carrier mobility in the pixel driving circuit may be substantially reduced, and the stability of the driving transistor may be improved.
For the pixel driving circuit 200 shown in
The second stage T12 may be a stage in which the threshold voltage is acquired. In the second stage T12, the first level signal may be provided to the light-emitting signal terminal Emit and the second scan signal terminal Scan2, and the second level signal may be provided to the first scan signal terminal Scan1. The first signal Vin may be provided to the data signal terminal VDATA. The first signal Vin may be the same as the second initialization signal Vin.
Accordingly, the third transistor M3 may be turned on, and the electric potential VN1 of the node N1 may be equal to Vin (VN1−Vin). The second transistor M2 may be turned on, and the first voltage terminal PVDD may charge the first electrode of the driving transistor DT, thereby increasing the electric potential of the node N2. When the electric potential VN2 of the node N2 increases to Vin−Vth, the driving transistor DT may be turned off and the first voltage terminal PVDD may stop charging the node N2. The electric potential of the node N3 may be Vin (i.e. VN1=Vin), and the electric potential VN2 of the node N2 is Vin−Vth (i.e. VN2=Vin−Vth). The voltage difference between the node N1 and the node N2 may be maintained by the first capacitor C1.
In addition, to ensure that the OLED D1 does not emit light in the second stage T12, the-potential difference between the electric potential of the node N2 and the second voltage terminal PVEE may have to be smaller than the turn-on voltage Voled of the OLED D1. That is, the difference between the volt age of the second initialization signal Vin and the sum of the threshold voltage Vth of the driving transistor DT and the signal voltage VPVEE of the second voltage terminal PVEE may be smaller than the turn-on voltage Voled of the OLED, satisfying Vin−Vth−VPVEE<Voled, i.e. Vin−(Vth+VPVEE)<Voled.
The third stage T13 may be a stage for data writing. In the third stage T13, the second level signal may be provided to the first scan signal terminal Scan1 and the light-emitting signal terminal Emit, and the first level signal may be provided to the second scan signal terminal Scan2. The data signal Vdata may be provided to the data signal terminal VDATA. The data signal Vdata may be different from the first signal Vin. Accordingly, the third transistor M3 maybe turned on to transmit the data signal Vdata to the first node N1, meanwhile the electric potential VN1 of the node N1 may be Vdata. From the second stage T12 to the third stage T13, the change of the electric potential of the node N1 may be Vdata−Vin and the node N2 may be in the floating state. Under the coupling effect of the first capacitor C1, the electric potential change of the node N2 may be (Vdata−Vin)·C01/(C01+C02). Thus, the electric potential of the N2 node may be VN2−Vin−Vth+(Vdata−Vin)·C01/(C01+C02), where C01 and C02 are the capacitances of the first capacitor C1 and the second capacitor C2, respectively.
The fourth stage T14 may be a light-emitting stage. In the fourth stage T14, the first level signal may be provided to the light-emitting signal terminal Emit, and the second level signal may be provided to the first scan signal terminal Scan1 and the second scan signal terminal Scan2. The OLED D1 may emit light according to the voltage difference Vgs between the gate electrode (node N1) and the first electrode (node N2) of the driving transistor DT. Then the source electrode of the driving transistor DT may be the node N2, and the gate-source electric potential difference may be Vgs−VN1−VN2=Vdata−Vin+Vth−(Vdata−Vin)·C01/(C01+C02). The light-emitting current Ids of the OLED D1 may be calculated by the following equation (1):
where K is the coefficient associated with the channel width to length ratio of the driving transistor DT. According to the Equation (1), the light-emitting current Ids of the OLED D1 may be independent of the threshold voltage Vth of the driving transistor DT. Thus, the pixel driving circuit 200 shown in
The second stage T12, the third stage T13, and the fourth stage T14 of the driving method for the pixel driving circuit 400 shown in
The difference of the driving method between the pixel driving circuit 400 and the pixel driving circuit 200 may be in she first stage T11. In the first stage T11, the electric potential VN2 of the node N2 may be equal to Vref (i.e. VN2=Vref). In
In one embodiment, as shown in
Thus, the state of each transistor in the pixel driving circuit may be reset in the fifth stage T15 before displaying the current frame or after displaying the current frame, such that the state of the transistor in the pixel driving circuit for displaying the current frame may not be affected by the slate of the transistor in the pixel driving circuit for displaying the previous adjacent frame, or the state of the transistor in the pixel driving circuit for displaying the next frame may not be affected by the state of the transistor in the pixel driving circuit for displaying the current adjacent frame. Accordingly, two consecutive frames may be displayed without interfering with each other.
As shown in
Accordingly, the first transistor M1 and the third transistor M3 may be turned on, such that the first initialization signal Vref and the second initialization signal Vdata may be written into the node N3 and the node N1, respectively. Then the electric potential VN1 of the node N1 may be equal to Vdata (VN1=Vdata), and the electric potential VN3 of the node N3 may be equal to Vref (VN3−Vref). The voltage of the second initialization signal Vdata may be greater than the sum of the voltages of the first initialization signal Vref and the threshold voltage Vth of the driving transistor, i.e. VN1−VN3=Vdata−Vref>Vth. Accordingly, the driving transistor DT may be turned on under the bias voltage between the node N1 and the node N3. The nodes N2 and N1 may be the drain electrode and gate electrode of the driving transistor DT, respectively.
When displaying the previous adjacent frame, the driving transistor DT may turn on the OLED D1 to emit light, and the electric potential of the node N1 may be higher than the sum of the electric potential of the node N2 and the threshold voltage. The source electrode of the driving transistor DT may be the node N2 and the drain electrode may be the node N3.
Accordingly, in she first stage T21, the driving transistor DT may be at a bias voltage opposite to the bias voltage in image displaying of the prior frame, such that the driving transistor DT may release the carriers captured during the image display of the prior frame by non-charge traps in the channel and the insulating layer. Accordingly, the decay rate of carrier mobility in the pixel driving circuit may be substantially reduced, and the stability of the driving transistor may be improved.
As shown in
The second stage T22 may be a stage in which the threshold voltage is acquired. In the second stage T22, the first level signal maybe provided to the light-emitting signal terminal Emit and the second scan signal terminal Scan2, and the second level signal may be provided to the first scan signal terminal Scan1 and the third scan signal terminal Scan3. The data signal terminal VDATA may be provided with a first signal Vdata, which is the same as the first initialization signal Vdata provided to the data signal terminal VDATA in the first stage.
Accordingly, the third transistor M3 may be turned on, and the electric potential VN1 of the node N1 may be equal to Vdata (VN1=Vdata). The second transistor M2 may be turned on, and the first voltage terminal PVDD may charge the first electrode of the driving transistor DT, and may increase the electric potential of the node N2. When the electric potential VN2 of the node N2 increases to Vdata−Vth, the driving transistor DT may be turned off and the first voltage terminal PVDD may stop charging the node N2.
Accordingly, the electric potential VN1 of the node N1 may be equal to Vdata (i.e. VN1=Vdata), and the electric potential VN2 of the node N2 maybe equal to Vdata−Vth (VN2=Vdata−Vth), and the voltage difference between the node N1 and the node N2 may be held by the first capacitor C1. In addition, to ensure that the OLED D1 does not emit light in the second stage T22, the electric potential difference between t the node N2 and the second voltage terminal PVEE may have to be smaller than the turn-on voltage Voled of the OLED D1, i.e., Vdata−Vth−VPVEE<Voled. That is, the difference between the voltage of the second initialization signal Vdata and the sum of the threshold voltage Vth of the driving transistor DT and the signal voltage VPVEE of the second voltage terminal may be smaller than the turn-on voltage Voled of the OLED.
The third stage T23 may be a data writing stage. In the third stage T23, the second level signal may be provided to the first scan signal terminal Scan1, the second scan signal terminal Scan2, and the light-emitting signal terminal Emit, and the first level signal may be provided to the third scan signal terminal Scan3. The data signal terminal VDATA may be provided with a data signal Vdata which is the same as the first initialization signal Vdata provided to the data signal terminal VDATA in the first stage.
Accordingly, the fourth transistor M4 may be turned on to transmit the signal VPVDD inputted from the first voltage terminal PVDD to the first node N1, then the potential VN1 of the node N1 may be equal to VPVDD (i.e. VN1−VPVDD). From the second stage T22 to the third stage T23, the change in the electric potential of the node N1 may be VPVDD−Vdata. The signal VPVDD of the first voltage terminal PVDD may be different from the first signal Vdata. That is, the amount of potential change of the node N1 may not be zero. Under the coupling effect of the first capacitor C1, the electric potential change of the node N2 may be (VPVDD−Vdata)·C01/(C01+C02). Accordingly, the electric potential of the node N2 may be VN2=Vdata−Vth+(VPVDD−Vdata)·C01/(C01+C02), where C01 and C02 are the capacitances of the first capacitor C1 and the second capacitor C2, respectively.
The fourth stage T24 may be a fight-emitting stage. In the fourth stage T24, the first level signal may be provided to the light emitting signal terminal Emit, and the second level signal may be provided to the first scan signal terminal Scan1, the second scan signal terminal Scan2, and the third scan signal terminal Scan3. The OLED D1 may emit light according to the voltage difference Vgs between the gate electrode (node N1) and the first electrode (node N2) of the driving transistor DT. Then the source electrode of the driving transistor DT may be the node N2 and the electric potential difference between the gate electrode and the first electrode of the driving transistor DT may be Vgs=VN1−VN2=VPVDD−Vdata+Vth−(VPVDD−Vdata)·C01/(C01+C02). The light-emitting current Ids of the OLED D1 may be calculated by the following equation (2):
where K is the coefficient associated with the channel width to length ratio of the driving transistor DT. According to the equation (2), the light-emitting current Ids of the OLED D1 may be independent of the threshold voltage Vth of the driving transistor DT. Thus, the pixel driving circuit 300 shown in
In one embodiment, for the pixel driving circuit 300 shown in
The disclosed pixel driving method may further include: in the first stage, second stage, third stage and fourth stage, providing a first voltage signal to the voltage terminal PVDD and a second voltage signal to the second voltage terminal PVEE; providing the first voltage signal and second voltage signal each having a constant voltage value, in which the voltage of the first signal is higher than the voltage of the second voltage signal.
In
In the disclosed embodiments, based on the driving method described in conjunction with
The present disclosure also provides an organic light-emitting display device.
An organic light-emitting display panel, a driving method, and an organic light-emitting display device are provided in the present disclosure. The organic light-emitting display panel may include a plurality of pixel driving circuits arranged in a matrix. Each pixel driving circuit may include a driving module, an initialization module, a data writing module, a light-emitting control module and an OLED. The driving module may include a driving transistor and a first capacitor.
The initialization module may include a first transistor. The gate electrode of the first transistor, and the first and second electrodes of the first transistor may be electrically connected to the first scan signal terminal, the initialization signal terminal and the second electrode of the driving transistor, respectively. The data writing module may be used for transmitting a signal of the data signal terminal to the driving transistor under control of the second scan signal terminal. The light-emitting control module may include a second transistor. The gate electrode and the first and second electrodes of the second transistor may be electrically connected to the light-emitting signal terminal, the first voltage terminal, and the second electrode of the dosing transistor, respectively
The disclosed organic light-emitting display panel and driving method thereof may reduce the decay rate of carrier mobility of the driving transistors, increase the operation lifetime of the driving transistors, and ensure the display performance of the organic light-emitting display panel.
The description of the disclosed embodiments is provided to illustrate the present invention to those skilled in the art. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
201611173823.X | Dec 2016 | CN | national |
This application claims priority of Chinese Patent Application No. 201611173823.X, filed on Dec. 16, 2016, the entire contents of which are hereby incorporated by reference.