Oximeter probe off indicator defining probe off space

Information

  • Patent Grant
  • 11224381
  • Patent Number
    11,224,381
  • Date Filed
    Monday, March 4, 2019
    5 years ago
  • Date Issued
    Tuesday, January 18, 2022
    2 years ago
Abstract
An embodiment of the present disclosure seeks to select characteristics of incoming intensity data that cause comparisons of selected characteristics to produce defined probe off space having reduced crossover with defined probe on space. Once defined, the present disclosure compares characteristics of incoming intensity data with the now defined probe off space, and in some embodiments, defined probe on space, to determine whether a probe off condition exists. When a processor determines a probe off condition exists, the processor may output or trigger an output signal that audibly and/or visually indicates to a user that the optical sensor should be adjusted for a proper application to a measurement site.
Description
BACKGROUND OF THE DISCLOSURE
Field of the Disclosure

The present disclosure relates in general to patient monitoring and in particular to oximeter patient monitors capable of indicating probe off conditions.


Description of the Related Art

Oximeter systems providing measurements of a monitored patient have become the standard of care in many patient care settings, including surgical, post surgical, neonatal, general ward, home care, physical training, and the like. In general, oximeter systems accept one or more noninvasive signals from an optical sensor or probe capable of emitting light into a tissue site and capable of detecting light attenuated by the tissue site. Accurate determination of the measurements and audio/visual indications is often dependent upon proper application of the optical sensor to the tissue site. In the present disclosure, “probe on” conditions include their ordinary broad meaning known to one of skill in the art, including designating proper application of an optical probe to a measurement site. “Probe off” conditions include their ordinary broad meaning known to one of skill in the art, including designating improper application of an optical probe to a measurement site.


Many oximeters may fail to accurately detect probe off conditions. As stated, this condition occurs when the optical sensor becomes partially or completely dislodged from the patient (measurement site), but continues to detect signals. Probe off errors can be serious because the oximeter may output normal measurements, and audio/visual indications of the monitored parameters when, in fact, the probe is not properly attached to the patient, probe off errors may potentially lead to missed physiological events.


Several solutions to more accurately monitor and detect probe off conditions are disclosed in U.S. Pat. No. 6,654,624, assigned to Masimo Corporation (“Masimo”) of Irvine, Calif., and incorporated by reference herein. For example, the '624 patent discloses monitor-based detection of probe off conditions. In particular, an intelligent, rule-based processor uses signal quality measurements to limit the operating region of the oximeter without significant negative impact on low perfusion performance. These signal-quality operating limits are superimposed on a graph of signal strength versus emitter gain to improve probe off detection. In this manner, the oximeter can reject intensity signals that have sufficient signal strength to fall within an operating region, but that are unlikely to be a plethysmograph signal. One signal quality measurement that is used is pulse rate density, which is the percentage of time detected pulses satisfy a physiologically acceptable model. Another signal quality measurement is harmonic energy ratio, which is the percentage of signal energy that occurs at the pulse rate and its harmonics. The operating region of the oximeter is then defined in terms of signal strength versus gain, signal strength versus PR density and energy ratio versus predefined energy ratio limits. Thus, the '624 disclosure seeks to limit the scope of acceptable probe on space, as defined by signal strength versus gain, PR density, and energy ratios, and seeks to designate all non-probe on space as probe off space.


SUMMARY OF THE DISCLOSURE

An embodiment of the present disclosure seeks to select characteristics of incoming intensity data that cause comparisons of the selected characteristics to produce defined probe off space having reduced crossover with defined probe on space. Once defined, the present disclosure compares characteristics of incoming intensity data with the now defined probe off space, and in some embodiments, probe on space, to determine whether a probe off condition exists. When a processor determines a probe off condition exists, the processor may output or trigger an output signal that audibly and/or visually indicates to a user that the optical sensor should be adjusted for a proper application to a measurement site.


In an embodiment, the characteristics include ratio data, such as, for example, data of signals responsive to the intensity signals normalized through division by one of the intensity signals. Such division generates ratio data channels, each indicative of one intensity signal other than the normalizing signal. The ratio data channels can be monitored during clinical or other trials where probe off conditions are known to exist. Moreover, oximeter manufacturers typically monitor ratio data channels during, for example, the clinical trials to relate acquired data to the accurate determination of physiological parameter measurements and/or the audio and visual indications of the same. Thus, probe off trial data can be usable to determine probe off space defined in the context of the acquired ratio data on two or more data channels. Moreover, the clinical trial data can also be usable to determine probe on space defined in the context of the acquired ratio data on one or more of the ratio data channels during valid patient monitoring.


Once the probe off space, and in some embodiments, the probe on space, is defined, ratio data acquired before, periodically during, randomly or pseudo-randomly during patient measurements, combinations of the same, or the like, can be compared against stored probe off and probe on spaces to determine whether a probe off condition exists.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the disclosure have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the disclosure will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit its scope.



FIG. 1 illustrates an exemplary oximeter patient monitoring system, according to an embodiment of the disclosure.



FIG. 2 illustrates an exemplary block diagram of the oximeter patient monitoring system of FIG. 1.



FIG. 3 illustrates exemplary tables of ratio channel data for probe on and probe off conditions, according to an embodiment of the disclosure.



FIGS. 4-7 illustrate exemplary comparative graphs of the ratio channel data of FIG. 3.



FIG. 8 illustrates a simplified exemplary block diagram of a probe off detector, according to an embodiment of the disclosure.



FIG. 9 illustrates an exemplary probe off determination method, according to an embodiment of the disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

To facilitate a further understanding of the disclosure, the remainder of the description describes the disclosure with reference to specific drawings. Moreover, in this application, reference is made to blood parameters. Some references have common shorthand designations. For example, as used herein, HbCO designates carboxyhemoglobin, HbMet designates methemoglobin, HbT designates total hemoglobin, SpO2 designates functional arterial saturation, and SpaO2 designates fractional arterial saturation. Other shorthand designations such as COHb, MetHb, and tHb are also common in the art for these same constituents. These constituents are generally reported in terms of a percentage, often referred to as saturation, relative concentration, concentration, or fractional saturation. Total hemoglobin is generally reported as a concentration in g/dL. The use of the particular shorthand designators presented in this application does not restrict the term to any particular manner in which the designated constituent is reported.



FIG. 1 illustrates a perspective view of a patient monitor system 100, according to an embodiment of the present disclosure. The system 100 includes a portable patient monitor 102 capable of noninvasively determining one or more physiological parameters. In an embodiment, the portable patient monitor 102 may mechanically and electrically mate with a docking station 104 to recharge batteries, upload and download information, upgrade software or firmware, communicate with other monitors or the like. The monitor 102 also comprises one or more displays 106 capable displaying of a wide variety of measured values in a manner that provides for quick and efficient conveyance of information to a caregiver. For example, the display 106 displays values for HbCO 108, HbMet 109, MbT 110, SpO2 112, SpaO2 114, beats-per-minute 116, scaled plethysmograph data 118, PI™120 and other information including information audibly and/or visually alerting a caregiver to any probe off conditions. The other information may include historical or trending data, combined parameter data, confidence or perfusion indicators, or the like.



FIG. 1 further illustrates the monitor 102 communicating with a reusable optical sensor 154 through a patient cable 156. In general, the monitor 102 drives the sensor 154 to emit light of differing wavelengths into the body tissue 158. The sensor 154 detects the light after attenuation by the body tissue 158 and outputs a signal indicative of the amount of light received by the sensor 154 through the cable 156. In addition, in some embodiments, the monitor 102 communicates with a temperature sensor and/or a memory device associated with one or more of the sensor 154 and the cable 156.


In an embodiment, the monitor 102 receives sensor output and determines continuous and non-invasive measurements of a wide variety of blood parameters. Although disclosed with reference to the portable monitors 102, an artisan will recognize from the disclosure herein that aspects of the present disclosure can be adopted into tabletop monitors, wireless sensors, or other patient-wearable personal monitors, or multi-parameter patient monitors.


The sensor 154 may advantageously comprise a reusable sensor in the form a clip including a spring biased pivot point capable of removably attaching the reusable sensor to a patient's finger 158. Although disclosed with reference to a reusable sensor having a spring, an artisan will recognize from the disclosure herein that the sensor 154 can advantageously comprise a disposable adhesive type sensor, a combination sensor including reusable and disposable components, components incorporated into other medical devices such as catheters, or the like, or other reusable sensor designs. Moreover, the artisan will recognize from the disclosure herein that the sensor 154 can comprise mechanical structures, adhesive or other tape structures, Velcro wraps or combination structures specialized for the type of patient, type of monitoring, type of monitor, or the like. In an embodiment, the sensor 154 provides data to the monitor 102, and vice versa through the cable 156, although such communication can advantageously be wireless, over public or private networks or computing systems or devices, through intermediate medical or other devices, combinations of the same, or the like. In an embodiment, the monitor 102 may include one or more audio, visual or messaging (pagers, emails, instant and phone messages, vocally presented numbers, messages and alarms, voice-over-IP (“VOIP”) interfaces and functionality, or the like) alarms, user input keypad 160, or the like.


Although described in terms of certain embodiments, other embodiments or combination of embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. For example, the monitor 102 may combine other information with intensity-derived information to influence diagnoses or device operation. For example, patterns or changes in the continuous noninvasive monitoring of intensity-derived information may cause the activation of other vital sign measurement devices, such as, for example, blood pressure cuffs. Moreover, the monitor 102 may comprise a personal or wearable noninvasive multi-parameter patient monitor that wirelessly communicates with a monitoring station to provide the monitoring station with measurements for some or all of the physiological parameters measurable by the monitor. For example, the monitor may travel with a patient as the patient, for example, moves through a care site such as a hospital. Wireless networks incorporating such personal pulse technologies are commercially available from Masimo marketed under the brand RadNet™ and RadLink™. Other monitors 102 may include a wireless patient monitor where a traditional sensor communicates with a wireless transmission device wearable, for example, on the wrist. In other embodiments, the wireless transmission device may advantageously be incorporated into a sensor housing adapted for wireless communication. In an embodiment, a wireless receiver communicates with a sensor port in the same manner as a wired sensor. Thus, a traditional sensor and a traditional sensor port may be unaware that a patient cable has been replaced with wireless transmissions.



FIG. 2 illustrates an exemplary block diagram of an embodiment of a patient monitoring system 200. As shown in FIG. 2, the system 200 includes a patient monitor 202 comprising a processing board 204 and a host instrument 208. The processing board 204 communicates with a sensor 206 to receive one or more intensity signal(s) indicative of one or more parameters of tissue of a patient. The processing board 204 also communicates with a host instrument 208 to display determined parameter values calculated using the one or more intensity signals. According to an embodiment, the board 204 comprises processing circuitry arranged on one or more printed circuit boards capable of installation into the monitor 202, or capable of being distributed as some or all of one or more OEM components for a wide variety of host instruments monitoring a wide variety of patient information. In an embodiment, the processing board 204 comprises a sensor interface 210, a digital signal processor and signal extractor (“DSP” or “processor”) 212, and an instrument manager 214. In general, the sensor interface 210 converts digital control signals into analog drive signals capable of driving sensor emitters, and converts composite analog intensity signal(s) from light sensitive detectors into digital data.


In an embodiment, the sensor interface 210 manages communication with external computing devices. For example, in an embodiment, a multipurpose sensor port (or input/output port) is capable of connecting to the sensor 206 or alternatively connecting to a computing device, such as a personal computer, a PDA, additional monitoring equipment or networks, or the like. When connected to the computing device, the processing board 204 may upload various stored data for, for example, off-line analysis and diagnosis. The stored data may comprise trend data for any one or more of the measured parameter data, plethysmograph waveform data acoustic sound waveform, or the like. Moreover, the processing board 204 may advantageously download from the computing device various upgrades or executable programs, may perform diagnosis on the hardware or software of the monitor 202. In addition, the processing board 204 may advantageously be used to view and examine patient data, including raw data, at or away from a monitoring site, through data uploads/downloads, or network connections, combinations, or the like, such as for customer support purposes including software maintenance, customer technical support, and the like.


According to an embodiment, the DSP 212 comprises a processing device based on the Super Harvard ARChitecture (“SHARC”), such as those commercially available from Analog Devices. However, a skilled artisan will recognize from the disclosure herein that the DSP 212 can comprise a wide variety of data and/or signal processors capable of executing programs for determining physiological parameters from input data. In particular, the DSP 212 includes program instructions capable of receiving multiple channels of data related to one or more intensity signals representative of the absorption (from transmissive or reflective sensor systems) of a plurality of wavelengths of emitted light by body tissue. In an embodiment, the DSP 212 accepts data related to the absorption of two (2) to eight (8) wavelengths of light, although an artisan will recognize from the disclosure herein that the data can be related to the absorption of two (2) to sixteen (16) or more wavelengths.


The processing board 204 also includes the instrument manager 214. According to an embodiment, the instrument manager 214 may comprise one or more microcontrollers controlling system management, including, for example, communications of calculated parameter data and the like to the host instrument 208. The instrument manager 214 may also act as a watchdog circuit by, for example, monitoring the activity of the DSP 212 and resetting it when appropriate.


The sensor 206 may comprise a reusable clip-type sensor, a disposable adhesive-type sensor, a combination sensor having reusable and disposable components, or the like. Moreover, an artisan will recognize from the disclosure herein that the sensor 206 can also comprise mechanical structures, adhesive or other tape structures, Velcro wraps or combination structures specialized for the type of patient, type of monitoring, type of monitor, or the like. In an embodiment, the sensor 206 provides data to the board 204 and vice versa through, for example, a patient cable. An artisan will also recognize from the disclosure herein that such communication can be wireless, over public or private networks or computing systems or devices, or the like.


The sensor 206 includes a plurality of emitters 216 irradiating the body tissue 218 with differing wavelengths of light, and one or more detectors 220 capable of detecting the light after attenuation by the tissue 218. The sensor 206 may also include other electrical components such as, for example, a memory device 222 comprising an EPROM, EEPROM, ROM, RAM, microcontroller, combinations of the same, or the like. In an embodiment, other sensor components may include a temperature determination device 223.


The memory 222 may advantageous store some or all of a wide variety data and information, including, for example, information on the type or operation of the sensor 206; type or identification of sensor buyer or distributor or groups of buyer or distributors, sensor manufacturer information, sensor characteristics including the number of emitting devices, the number of emission wavelengths, data relating to emission centroids, data relating to a change in emission characteristics based on varying temperature, history of the sensor temperature, current, or voltage, emitter specifications, emitter drive requirements, demodulation data, calculation mode data, the parameters for which the sensor is capable of supplying sufficient measurement data (e.g., HbCO, HbMet, HbT, or the like), calibration or parameter coefficient data, software such as scripts, executable code, or the like, sensor electronic elements, whether the sensor is a disposable, reusable, multi-site, partially reusable, partially disposable sensor, whether it is an adhesive or non-adhesive sensor, whether the sensor is a reflectance, transmittance, or transreflectance sensor, whether the sensor is a finger, hand, foot, forehead, or ear sensor, whether the sensor is a stereo sensor or a two-headed sensor, sensor life data indicating whether some or all sensor components have expired and should be replaced, encryption information, keys, indexes to keys or hash functions, or the like, monitor or algorithm upgrade instructions or data, some or all of parameter equations, information about the patient, age, sex, medications, and other information that may be useful for the accuracy or alarm settings and sensitivities, trend history, alarm history, or the like. In an embodiment, the monitor may advantageously store data on the memory device, including, for example, measured trending data for any number of parameters for any number of patients, or the like, sensor use or expiration calculations, sensor history, or the like.


The patient monitor 202 also includes the host instrument 208. In an embodiment, the host instrument 208 communicates with the board 204 to receive signals indicative of the physiological parameter information calculated by the DSP 212. The host instrument 208 preferably includes one or more display devices 224 capable of displaying indicia representative of the calculated physiological parameters of the tissue 218 at the measurement site. In an embodiment, the host instrument 208 may advantageously comprise a handheld housing capable of displaying parameter data, including but not limited to pulse rate, plethysmograph data, perfusion quality such as a perfusion quality index (“PI™”) signal or measurement quality (“SIQ”), values of blood constituents in body tissue, including for example, SpO2, HbCO, HbMet, Hbt, or the like. In other embodiments, the host instrument 208 is capable of displaying values for one or more of Hbt, Hb, blood glucose, bilirubin, or the like. The host instrument 208 may be capable of storing or displaying historical or trending data related to one or more of the measured values, combinations of the measured values, plethysmograph data, or the like. The host instrument 208 also includes an audio indicator 226 and user input device 228, such as, for example, a keypad, touch screen, pointing device, voice recognition device, or the like.


In still additional embodiments, the host instrument 208 includes audio or visual alarms that alert caregivers that one or more physiological parameters are falling below predetermined safe thresholds. The host instrument 208 may include indications of the confidence a caregiver should have in the displayed data. In a further embodiment, the host instrument 208 may advantageously include circuitry capable of determining the expiration or overuse of components of the sensor 206, including, for example, reusable elements, disposable elements, or combinations of the same.


Although described in terms of certain embodiments, other embodiments or combination of embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. For example, the monitor 202 may comprise one or more monitoring systems monitoring parameters, such as, for example, vital signs, blood pressure, ECG or EKG, respiration, glucose, bilirubin, or the like. Such systems may combine other information with intensity-derived information to influence diagnosis or device operation. Moreover, the monitor 202 may advantageously include an audio system, preferably comprising a high quality audio processor and high quality speakers to provide for voiced alarms, messaging, or the like. In an embodiment, the monitor 202 may advantageously include an audio out jack, conventional audio jacks, headphone jacks, or the like, such that any of the display information disclosed herein may be audiblized for a listener. For example, the monitor 202 may include an audible transducer input (such as a microphone, piezoelectric sensor, or the like) for collecting one or more of heart sounds, lung sounds, trachea sounds, or other body sounds and such sounds may be reproduced through the audio system and output from the monitor 202. Also, wired or wireless communications (such as Bluetooth or WiFi, including IEEE 801.11a, b, or g), mobile communications, combinations of the same, or the like, may be used to transmit the audio output to other audio transducers separate from the monitor 202. In addition, patterns or changes in the continuous noninvasive monitoring of intensity-derived information may cause the activation of other vital sign measurement devices, such as, for example, blood pressure cuffs.



FIG. 2 also illustrates the DSP 112 including memory capable of storing data indicative of a defined probe off space 260 and a defined probe on space 262. In a further embodiment, the spaces 260, 262 include ratio data 264, 266. For example, the probe off space 260 or probe on space 262 may include data acquired through clinical or other trials where data was gathered during known probe off conditions. Examples of such trials may include a myriad of possible common occurrences in hospital or caregiver settings, such as, for example, attaching a reusable clip to a standard hospital bed sheet, instrument pole, clothing, or leaving the clip hanging in the air in one or a variety of lighting conditions. In addition, in an embodiment, the probe off data 260 may include clinical experiments where a sensor hangs approximately eighteen (18) inches off the edge of a desk with a fan set on low placed about three (3) feet from the sensor. Data was collected in five-minute intervals in various lighting conditions, including, for example: (1) ambient light, such as when lights are on in a room; (2) dim or dark light, such as when many of the lights are off in the room; (3) shadow light, such as when lights are off and a separate light is positioned to create shadows from the desk edge that the sensor will swing in to and out of during data collection; (4) reflective light, such as when a box is placed approximately six (6) inches from the sensor with the sensor light emitters facing the box, and (i) all lights are on in the room, and (ii) all other lights are off in the room.


While disclosed with reference to some or all of the foregoing clinical data collections, an artisan will recognize from the disclosure herein that many common probe off environmental conditions could be simulated to create large data sets of ratio channel data during such probe off conditions, including, for example, collection of data when emitters and detector are separated only by air, or the like.


The probe on space 262 may include data acquired through clinical or other trials where data was gathered to, for example, determine correlations between monitor acquired measurement data and clinically or model acquired measurement data. Such experiments carefully monitor the condition of probe placement, and therefore, generally define probe on space. Such probe on space may be further limited using techniques disclosed, for example, in the '624 patent referenced in the foregoing or other techniques recognizable to an artisan from the disclosure herein.



FIG. 3 illustrates exemplary tables 302, 304 of ratio data for probe on 304 and probe off 302 conditions, according to an embodiment of the disclosure. As shown in FIG. 3, the probe off table 302 comprises ratio data ranges for data channels associated with particular wavelengths in at least an eight (8) wavelength oximeter system, the ratio data ranges acquired, for example, during one or more of the foregoing probe off clinical trials. For example, in an embodiment, the monitor drives eight (8) light-emitting diodes (LEDs) with nominal centroids at about 610, about 620, about 630, about 660, about 700, about 730, about 800 and about 905 nm. Although disclosed in reference to certain preferred wavelengths, an embodiment of the eight (8) emission centroids may range from about 605 nm to about 614 nm, from about 615 nm to about 624 nm, from about 625 nm to about 635 nm, from about 655 nm to about 665 nm, from about 690 nm to about 710 nm, from about 720 nm to about 740 nm, from about 785 nm to about 825 nm, and from 875 nm to about 935 nm. An artisan will recognize from the disclosure herein that other wavelengths may be of particular value based on, for example, the absorption spectra of desired physiological parameters, their responsiveness to probe off conditions, or the like. For example, experimental data may determine that wavelengths different from those particularly useful in determining measurement and other displayed data may advantageously be used to determine probe off and/or probe on conditions, as discussed herein. A particular patient monitor may use a certain number of wavelengths for measurement channels and some subgroup or an entirely different additional group of wavelengths for the probe off determinations. For example a monitor may use two (2) to eight (8) or more wavelengths selected for their responsiveness to physiological parameters, and may use one (1) to eight (8) or more overlapping, entirely different, or the like, of wavelengths for probe off and/or probe on determinations. In such embodiments, the wavelengths may be determined based on their ability to clearly distinguish probe off space from probe on space.


The data channel 306 corresponds to detection of light at approximately 700 nm and is used to normalize the other data channels, although other channels could also be used. From the tables 302, 304, selection of the data channels 308, 310 correspond to light detected from emission of the 610 nm and 630 nm LED's, respectively, increase the likelihood that probe off space can accurately be determined. For example, in the data channels corresponding to the 610 nm and 630 nm LED's the probe off space 302 and the probe on space 304 do not overlap with or otherwise conflict with one another. This distinction can be graphically represented as shown in FIGS. 4-7. For example, FIG. 4 illustrates the distance between valid probe on data or probe on space 402 versus valid probe off data or probe off space 404 for data channels corresponding to the detection of light at 610 and 620 nm. FIG. 5 similarly illustrates the space separation for data channels corresponding to the detection of light at 610 and 630 nm, and FIG. 6 illustrates the space separation for data channels corresponding to the detection of light at 620 and 630 nm. Reviewing FIGS. 4-6 collectively, FIG. 5 shows the clearest or largest distinction between potentially valid probe on space 502 and probe off space 504. Thus, were an oximeter system to made a two (2) dimensional comparison using the foregoing data channels, it would be best served to use the data channels corresponding to the detection of light at 610 and 630 nm.



FIG. 7 illustrates a three (3) dimensional graph that combines the data channels corresponding to the detection of light at 610, 620 and 630 nm. Although FIGS. 4 and 6 indicate that the data channel corresponding to 620 nm is not ideal for the separation of spaces, the three (3) dimensional plot of FIG. 7 illustrates that higher dimensions of space increase the separation between defined probe off 704 and probe on 702 regions. Thus, in an oximeter having eight (8) wavelengths of emitted light, a probe off and probe on space may be defined using as many as seven (7) dimensions (the eighth being used for normalization). Such increased dimensional analysis may advantageously provide ever increasing separation between defined probe off and probe on regions.



FIG. 8 illustrates a simplified exemplary block diagram of a probe off detector 802, according to an embodiment of the disclosure. As shown in FIG. 8, the probe off detector 802 includes inputs of data channels 804 corresponding to two (2) or more wavelengths of emitted light, probe off data 806, and in some embodiments, probe on data 806. Comparison of characteristics of the data channels, such as, for example, ratio data, can be compared to multidimensional probe off and/or probe on space to determine and output 808 of a probe off indication.



FIG. 9 illustrates an exemplary probe off determination process 900, according to an embodiment of the disclosure. The process 900 includes block 902 where probe off data is collected from, for example, clinical trials, mathematical models, extrapolated data, non-probe on data, or the like. In block 904, the collected probe off (and, in some embodiments, probe on data) may be reviewed to determine characteristics that reduce crossover between probe off and probe on space. For example, characteristics may be chosen that decouple the probe off determinations from measurement determinations. For example, when the characteristics comprise ratio data, or normalized data channels responsive to intensity data channels from the sensor, the ratio data corresponding to particular wavelengths may indicate a greater separation between valid parameter data (probe on conditions) and probe off conditions. In some embodiments, increasing the dimensions may advantageously cause further separation between valid and invalid conditions.


In block 906, the probe off data (and in some embodiments, probe on data) is stored in memory on a patient monitor. In an embodiment, such probe on or off data may be updated through upgrading tools, network connectivity such as the internet, smartcards, or other memory devices or network computing. In block 908, the patient monitor acquires data from a measurement site. The acquisition may be at or near a start of data acquisition, periodically throughout acquisition, randomly, in response to particular conditions or changes in conditions, combinations of the same or the like. In block 910, the DSP compares characteristics of the acquired data to the characteristics stored as probe on and off data. Block 912 determines whether a probe off exists by determining whether the characteristics fall within one of the probe off or probe on spaces. When the acquired data falls within the probe off space, a probe off condition is determined to exist and in block 914, the DSP triggers a probe off indicator. The probe off indicator may be an audible sound, such as a constant or varying tone or beep, a visual indicator, such as a flashing and/or colored display or display element(s), combinations of the same or the like. The probe off indicator may comprise help screens or training indicia to guide a caregiver on how to properly attach the probe. The probe off indicator may continue to activate until the probe is properly positioned. In the case of a probe off condition, the process 900 returns to block 908 and acquires data from the measurement site. When a probe off condition does not exist at block 912, block 914 determines parameter measurements according to probe on operation of the patient monitor.


While the probe off indicator has been described in certain embodiments herein, other embodiments of the present disclosure will be known to those of skill in the art from the descriptions herein. Moreover, the described embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Moreover, those of skill in the art understand that information and signals can be represented using a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that can be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.


Those of skill in the art further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.


The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein can be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, microcontroller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The steps of a method or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or other form of storage medium known in the art. A storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal, physiological monitor and/or sensor. The processor and the storage medium can reside as discrete components in a user terminal, physiological monitor and/or sensor.


Although the foregoing disclosure has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Moreover, it is contemplated that various aspects and features of the disclosure described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the disclosure. Furthermore, the systems described above need not include all of the modules and functions described in the preferred embodiments. Accordingly, the present disclosure is not intended to be limited by the recitation of the preferred embodiments, but is to be defined by reference to the appended claims.


Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A method of providing a health monitor configured to determine that a wrist-worn optical probe is not properly positioned with respect to a measurement site on a user, the health monitor including one or more processors and a memory, the optical probe including a plurality of emitters and at least one detector, wherein the optical probe communicates with at least one of the processors to determine measurement values for at least one of the user's pulse rate and oxygen saturation, the method comprising: activating the emitters when the optical probe is predetermined to be in a misaligned position with respect to a wrist of the user, at least one of the emitters emitting light at a wavelength different than at least another of the emitters;for each emitted wavelength during the misaligned position, generating a channel of invalid data;activating the emitters when the optical probe is predetermined to be in a proper position with respect to the wrist;for each emitted wavelength during the proper position, generating a channel of likely valid data responsive to light at that wavelength attenuated by tissue at said wrist;selecting channels of the invalid data to generate an invalid, multi-dimensional data space;selecting channels of the likely valid data to generate a likely valid multi-dimensional data space, wherein the selection of the channels of the invalid data and the selection of the channels of the likely valid data is controlled to decouple the invalid multi-dimensional data space from the likely valid multi-dimensional data space;when portions of the invalid multi-dimensional data space overlap with portions of the likely valid multi-dimensional data space, adding at least one additional channel of one or more of the invalid data and likely valid data to the respective invalid multi-dimensional data space or respective likely valid multi-dimensional data space, the added one or more channels controlled to increase separation between the likely valid multi-dimensional data space and the invalid multi-dimensional data space;storing the likely valid multi-dimensional data space and the invalid multi-dimensional data space on the memory of the health monitor; andstoring one or more applications in the memory of the health monitor, the applications configured to collectively: activate the emitters,receive signals responsive to light,process the signals;compare at least ones of the processed signals to the invalid multi-dimensional data space;when the at least ones of the processed signals fall within the invalid multi-dimensional data space, trigger a misalignment indicator;compare at least ones of the processed signals to the likely valid multi-dimensional data space; andwhen the at least ones of the processed signals fall within the likely valid multi-dimensional data space, calculate the measurement values of at least one of the pulse rate and oxygen saturation of the user, and display indicia responsive to the measurement values.
  • 2. The method of claim 1, comprising wirelessly communicating with a processing device remote from the health monitor.
  • 3. The method of claim 2, wherein said communicating comprises communicating according to a Bluetooth standard.
  • 4. The method of claim 1, wherein said trigging the misalignment indicator comprises displaying training indicia to guide a proper positioning of the optical probe.
  • 5. The method of claim 1, wherein said trigging the misalignment indicator comprises activating the indicator until the optical probe is properly positioned.
  • 6. The method of claim 1, wherein said trigging the misalignment indicator comprises at least one of an audible and visual alert.
  • 7. The method of claim 1, wherein activating the emitters comprises activating emitters to emit light centered within at least two of the following wavelength ranges: from about 605 nm to about 614 nm,from about 615 nm to about 624 nm,from about 625 nm to about 635 nm,from about 655 nm to about 665 nm,from about 690 nm to about 710 nm,from about 720 nm to about 740 nm,from about 785 nm to about 825 nm, andfrom 875 nm to about 935 nm.
  • 8. The method of claim 1, wherein activating the emitters comprises activating emitters to emit light centered around at least two of the following wavelengths about 610 nm, about 620 nm, about 630 nm, about 660 nm, about 700 nm, about 730 nm, about 800 nm and about 905 nm.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

The present application claims priority benefit under 35 U.S.C. § 120 to, and is a continuation of U.S. patent application Ser. No. 15/187,719, filed Jun. 20, 2016 entitled “Oximeter Probe Off Indicator Defining Probe Off Space” (Attorney Docket No. MASCER.233C2), which is a continuation of U.S. patent application Ser. No. 13/610,610, filed Sep. 11, 2012 entitled “Oximeter Probe Off Indicator Defining Probe Off Space”, now U.S. Pat. No. 9,370,326 (Attorney Docket No. MASCER.233C1), which is a continuation of U.S. patent application Ser. No. 11/871,690, filed Oct. 12, 2007 entitled “Oximeter Probe Off Indicator Defining Probe Off Space”, now U.S. Pat. No. 8,265,723 (Attorney Docket No. MASCER.233A), which claims priority benefit under 35 U.S.C. § 119(e) from U.S. Provisional Application No. 60/851,448, filed Oct. 12, 2006, entitled “Oximeter Probe Off Indicator Defining Probe Off Space” (Attorney Docket No. MASCER.233PR). The present application also incorporates the foregoing disclosures herein by reference. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. The present disclosure is related to U.S. Pat. No. 6,526,300 (Attorney Docket No. MASIMO.172A), U.S. Pat. No. 6,654,624 (Attorney Docket No. MASIMO.173C1), and the continuation, continuation-in-part, and divisional applications thereof. The foregoing disclosures are incorporated herein by reference and included in the present provisional filing.

US Referenced Citations (844)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspar et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5685299 Diab et al. Nov 1997 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marra et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430437 Marra Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al- Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Ai-Ah et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-All et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
20040097797 Porges May 2004 A1
20060161054 Reuss et al. Jul 2006 A1
20060211925 Lamego Sep 2006 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150366507 Blank Dec 2015 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
Related Publications (1)
Number Date Country
20190192076 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
60851448 Oct 2006 US
Continuations (3)
Number Date Country
Parent 15187719 Jun 2016 US
Child 16292194 US
Parent 13610610 Sep 2012 US
Child 15187719 US
Parent 11871690 Oct 2007 US
Child 13610610 US