1. Field of the Invention
The present invention generally relates to a paper handling apparatus, and more particularly, to a paper handling apparatus coupled to an image forming apparatus for sorting, stapling, and stacking papers discharged from the image forming apparatus.
2. Description of the Related Art
Many kinds of paper handling apparatuses coupled to an image forming apparatus for sorting, stapling, and stacking papers discharged from the image forming apparatus are known in the art. Japanese Laid-Open Patent Applications No. 8-301508 and 9-235069, for example, disclose a paper handling apparatus that can buffer the paper so that the image forming apparatus does not need to wait for the paper handling apparatus to complete the handling of paper.
The paper handling apparatus needs to control the number of buffered sheets, for example, since the printing speed, the number of copies, and processing mode of the image forming apparatus affect the buffering operation. For those purposes, the paper handling apparatus is conventionally provided with many dedicated paper detection sensors, and requires a complicatedly shaped guide plate to hold the paper detections sensors.
For example, when the paper needs to be stapled, the paper is temporarily stored on a processing tray, and is sent to the next stage in response to a signal from a paper detection sensor. If only a few pages are to be stapled, however, the paper detection sensor fails to detect the paper in time. In such a case, excessive paper may be stacked on the paper to be stapled. As described above, the number of sheets to be buffered needs to be controlled based on the speed of printing, the number of sheets, and the processing mode of the image forming apparatus. In addition, as the speed of printing of the image forming apparatus increases, the paper handling apparatus needs to handle the paper quickly enough so as not to keep the image forming apparatus waiting.
In addition, when a preceding sheet of paper that is set aside is re-transported, the deviation between the preceding sheet and a following sheet affects the accuracy of alignment performed in the processing tray. The deviation is preferably fixed in order to maintain the accuracy of alignment at a high level. When the paper transported at high speed is stopped in a short time, the paper may not stop at a desired position.
Accordingly, it is a general object of the present invention to provide a novel and useful paper handling apparatus in which at least one of the above problems is eliminated.
Another and more specific object of the present invention is to provide a paper handling apparatus that buffers the paper discharged from the image forming apparatus sheet by sheet and outputs buffered multiple sheets of paper in response to a signal from a single paper detection sensor provided therein.
To achieve at least one of the above objects, a paper handling apparatus according to the present invention, comprises:
a first path that guides paper to a processing tray;
a second path in which the paper is set aside, said second path branching from said first path,
a transportation unit that transports the paper in one of a first direction toward the processing tray and a second direction opposite to the first direction;
a branching unit that, when the paper is transported in the second direction, leads the paper to the second path;
a paper detection unit provided in a more upstream position than the branching unit; and
a control unit that determines timing in which the paper is transported in the second direction based on an output of the paper detection unit, and causes the transportation unit to transport the paper to the second path,
wherein
the paper handling apparatus sets aside a preceding sheet of the paper in the second path, and transports the set-aside preceding sheet of the paper with a following sheet of the paper.
Accordingly, the preceding sheet of paper can be set aside in the second path, and re-transported together with the following sheet superposed on the preceding sheet.
Other objects, features, and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
The preferred embodiments of the present invention are described in detail below with reference to the drawings.
<Entire Configuration>
As shown in
As described above, the paper is guided to the staple processing tray F via the paths A and D, and is aligned and stapled. Then, the paper is transported to either the path C or a path H. When the paper is transported to the path C, the paper is guided by a branching guide plate 54 and a movable guide 55, and discharged onto the shift tray 202. When the paper is transported to the path H, the paper may be further processed in a processing tray G, and then, is discharged onto a lower tray 203. The processing tray G (which hereinafter may be referred to as a folding processing tray) may, for example, fold the paper.
A branching nail 17 is provided in the path D, and is kept in a state as shown in
The path A is located at an upstream side of the paths B, C, and D. The following elements are provided along the path A in that order: an entrance sensor 301, an entrance roller 1, the punch unit 100, a punch trash hopper 101, the transportation roller 2, the branching nail 15, and the branching nail 16. The branching nails 15 and 16 are kept in a state as shown in
When the solenoid (not shown) corresponding to the branching nail 15 is turned off, the branching nail 15 is kept as shown in
The paper handling apparatus according to the present embodiment has the following functions: punching (by the punch unit 100), aligning and corner stapling (by a jogger fence 53 and the corner stapler S1), aligning and center stapling (by the jogger fence 53 and a center stapler S2), sorting (by shift tray 202), and center folding (by the folding plate 74 and folding roller 81), for example.
The image forming apparatus PR included in the image forming system according to an embodiment is an image forming apparatus using electrophotography that receives input image data, forms a latent image on a photosensitive drum, for example, based on the received input image data, develops the formed latent image with toner, and transfers the developed toner image to paper, for example. Since the image forming apparatus PR is known in the art, its description is omitted.
According to another embodiment, the image forming apparatus PR may be a printer such as an ink jet printer and a laser printer, or any system including such a printer.
<Stapling Processing Tray>
The paper guided to the processing tray F by the staple discharge roller 11 is stacked on the face of the processing tray F in which the paper is aligned and stapled. The paper is aligned in the vertical direction (the direction in which the paper is transported) by a tapping roller 12, and is aligned in the horizontal direction (the direction perpendicular to the direction in which the paper is transported) by the jogger fence 53. Then, when the last sheet of the paper that is printed as a job is stacked on the processing tray F, the corner stapler S1 is activated to staple the paper printed as the job. Then, the paper printed as the job is transported to a shift discharging roller 6 by a discharging belt 52, and discharged onto the shift tray 202 set at a receiving position. The discharged paper is put close to the lower end of the shift tray 202 by a roller 13.
A discharging belt home position (HP) sensor 311 is configured to detect the home position of a discharging nail 52a. The discharging belt HP sensor 311 is turned on and off by the discharging nail 52a provided on the discharging belt 52. Two discharging nails 52a are provided on the outer surface of the discharging belt 52 at opposite positions. The discharging nails 52a transport the paper batch stored on the processing tray F alternately. If necessary, the discharging belt 52 may be rotated in the opposite direction so that the head (the end in the direction in which the paper is transported) of the paper stored in the processing tray F is aligned by the back of the discharging nail 52a opposite the discharging nail 52a that is going to discharge the paper.
The discharging belt 52 is driven by a discharging motor (not shown). The discharging belt 52 and a driving pulley are positioned on a driving shaft of the motor at the center in the directions of the width of the paper. A discharging roller 56 is provided at an opposite position. The rotational speed of the discharging roller 56 at its perimeter (linear velocity) is set greater than that of the discharging belt 52. The tapping roller 12 is swung by a tapping SOL (not shown) around a fulcrum 12a. The tapping roller 12 taps the paper stored in the staple processing tray F at regular intervals, and pushes the paper toward a back-end fence 51. The tapping roller 12 rotates in the counter-clock wise direction. The jogger fence 53 is driven via a timing belt by a jogger motor (not shown) that can rotate forward and reverse, and moves back and forth in the paper width directions.
The corner stapler S1 is driven via a timing belt by a stapler moving motor (not shown) that can rotate bidirectionally, and is moved to a corner position of the paper in the paper width directions so that the stapler S1 staples the paper at the corner. A stapler moving HP sensor is provided at an end of the moving range of the stapler S1. The stapler moving HP sensor detects the home position of the corner stapler S1. The position at which the paper is stapled is controlled based on the moving distance of the corner stapler S1 from the home position.
Two center staplers S2 are provided at positions symmetric to the alignment center in the paper width directions. The center staplers S2 are positioned so that the distance between the back-end fence 51 and the stapling position of the center stapler S2 becomes one half or more of the maximum length of the paper in its transportation direction that the center staple S2 can staple. The center stapler S2 includes a needle unit, and is divided into a stitcher (driver) unit that stitches the paper with needles and a clincher unit that clinches the needles. The stitcher unit S21 (not shown) is positioned at the transportation path D side of the processing tray F. The reference numeral 310 in
The batch of paper that is center-stapled in the staple processing tray F is folded at the center. The folding is performed in a center folding processing tray G. The stapled batch of paper needs to be transported to the center folding processing tray G. According to the present embodiment, a redirecting mechanism is provided at a downstream side of the staple processing tray F. The redirecting mechanism transports the batch of paper to the center folding processing tray G.
The redirecting mechanism includes a branching guide plate 54 and a movable guide 55. The branching guide plate 54 is provided swingably around a fulcrum 54a in the vertical directions. A rotatable pressure roller 57 is provided at the downstream side of the branching guide plate 54. The rotatable pressure roller 57 is forced by a spring toward the discharging roller 56. The branching guide plate 54 is driven by a cam. The movable guide plate 55 is driven by a link.
<Center Folding Processing Tray>
The center folding processing tray G includes a lower guide plate 91 and a upper guide plate 92 positioned in the vertical directions. A folding plate 74 is provided at a folding position. The folding plate 74 moves back and forth in directions perpendicular to the guide plates 91 and 92. The folding position depends on paper size. A movable back-end fence 73 is provided on the lower guide plate 91. The movable back-end fence 73 holds the paper so that the center of the paper opposes the folding plate 74. Transportation rollers 71 and 72 transport the batch of paper in the guide plates 91 and 92. The batch of paper is center folded by the folding plate 74 and a folding roller 81. The folded batch of paper passes through the transportation path H, and is discharged onto the lower tray 203 by a discharging roller 83.
As shown in
The CPU 360 controls the following elements based on input signals: a tray elevating motor for elevating the shift tray 202, a discharging guide plate opening motor for opening and closing an opening guide plate, a shift motor for moving the shift tray 202, a tapping roller motor for driving the tapping roller 12, solenoids such as the tapping SOL, transportation motors for driving the transportation rollers, discharging motors for driving the discharging rollers, the discharging motor for driving the discharging belt 52, the stapler moving motor for moving the corner stapler S1, a slanting motor for slanting the corner stapler S1, and the jogger motor for moving the jogger fence 53, for example. A motor staple discharging roller is driven by a stapler transporting motor (not shown). The pulse signal output by the staple transporting motor is input to the CPU 360 and counted. The tapping SOL and the jogger motor are controlled based on the count. The CPU 360 controls the punch unit 100 by controlling a clutch and a motor.
The CPU 360 controls the paper handling apparatus PD by executing computer programs stored in ROM (not shown) using RAM (not shown) as a working area. The computer programs may be downloaded to, or updated in a recording medium of a hard disk drive (not shown), for example, from a server via a network or from a recording medium such as a CD-ROM and a SD memory card via a recording medium driving apparatus.
<Operations>
The punch unit 100 of
The transportation rollers R3, R4, and R5 can transport the paper that has been transported from the path A to the path D to the reverse direction. That is, the paper is transported toward the entrance from the image forming apparatus PR. This motion of the paper may be referred to “reverse stream”. The second transportation motor M2 (not shown) is reversely rotated so that the paper is moved in the reverse stream. The second transportation motor M2 is not shown in
The branching nail 17 is provided in the path D. When the paper is moved in the reverse stream, the branching nail 17 guides the paper to the pre-stacking path E. Multiple sheets of paper are stacked in the pre-stacking path E, and the stacked sheets of paper are discharged into the staple processing tray F. The number of sheets of paper to be stacked in the pre-stacking path E is controlled by information (control signal, for example) provided by the image forming apparatus PR.
The paper output by the image forming apparatus PR is input to the paper handling apparatus PD. The paper is transported by the transportation rollers R1 and R2 driven by the first transportation motor M1 (not shown). The paper pushes the branching nail 17 counterclockwise and forms the path D. The paper passes through the path D, and is further transported by the transportation rollers R4 and R5 to the staple processing tray F (the direction indicated by an arrow “a”).
When transported to the staple processing tray F, the paper falls down in the direction indicated by an arrow “b”. The paper is aligned by the back-end fence 51 in the transportation direction. When the estimated time required for aligning the paper in the transportation direction has passed after the back end of the paper is detected by the entrance sensor 301, the paper is aligned by the jogger fence 53 in the direction perpendicular to the transportation direction. The back-end fence 51 and the jogger fence 53 repeat the same action to align the paper sheet by sheet.
After being aligned, the paper (the batch of paper) is stapled by the stapler S1. The discharging belt 52 in the staple processing tray F rotates in a direction indicated by an arrow “c”. The discharging nail 52a fixed on the discharging belt 52 pushes the lower end of the batch of paper. As a result, the paper is discharged from the staple processing tray F in a direction indicated by an arrow “d”. The batch of paper is discharged to the shift tray 202 by a discharging roller 6a and a passive roller 6b, and is stacked on the shift tray 202.
The shift tray 202 is provided with a mechanism that elevates the shift tray 202 depending on the number of batches to be stacked. The passive roller 6b is provided on a transportation guide plate 6c in a rotatable manner. The transportation guide plate 6c is supported swingably around a fulcrum 6d as the center so that the transportation guide plate 6c can affect the same transportation force even if the thickness of the batch of paper changes. The transportation guide plate 6c presses the batch of paper toward the discharging roller 6a using its own weight. The operation in the case of one batch of paper being discharged has thus been described.
According to the present embodiment, the branching nail 17 is activated to open the pre-stacking path E, and the paper can be guided into the pre-stacking path E by reversely rotating the transportation roller R3, R4, and R5. The detection by the entrance sensor 301 of the front end of the paper input from the image forming apparatus PR is used as a reference to determined when the paper stored in the pre-stacking path E is transported again. The detection by the entrance sensor 301 of the back end of the paper is used as a reference to determined when the paper is reversed into the pre-stacking path E.
A preceding sheet of paper sent from the image forming apparatus PR is temporarily stored in the pre-stacking path E, and a following sheet of paper is stacked on the preceding sheet of paper, and then, transported to the staple processing tray F. In this case, as shown in
A following sheet of paper P2 is sent from the image forming apparatus PR by the transportation rollers R1 and R2 rotating in the forward rotative direction. As shown in
As described above, the sheets of paper are overlapped with each other using the pre-stacking path E, and are sent together. This operation is performed when the paper printed as a first copy is completed and the paper printed as a second copy starts. While the paper printed as the first copy is stapled in the staple processing tray E, the first sheet of paper belonging to the paper printed as the second copy needs to be delayed.
The image forming apparatus PR may wait until the staple processing in the staple processing tray F is completed. In this case, however, the efficiency of the image forming apparatus PR is degraded. Hence, it is preferable that the image forming apparatus PR be able to print the last sheet of paper belonging to the paper printed as the first copy and the first sheet of paper belonging to the paper printed as the second copy in the manner in which the image forming apparatus PR prints sheets of paper printed as the same copy. The image forming apparatus PR outputs the last sheet belonging to the paper printed as the first copy and the first sheet belonging to the paper printed as the second copy continuously in the same manner. The image forming apparatus PR sends signals to the paper handling apparatus PD. The signals include information such as the number of sheets of paper to be transported, the speed of transportation, and a processing mode. Receiving the signals from the image forming apparatus PR, the paper handling apparatus PD determines the number of sheets of paper to be set aside in the pre-stacking path E, the timing in which the transportation rollers R1, R2, R3, R4, and R5 are accelerated, their linear speed, the timing in which the transportation rollers R1, R2, R3, R4, and R5 are reversed, and their reversed linear speed.
The operation described above is summarized as below. The transportation rollers R1 and R2 rotate in the rotative direction indicated by the arrow (forward rotative direction), and the first sheet of the second copy is transported. The first sheet P1 is accelerated based on the detection by the entrance sensor 301. The timing at which the first sheet P1 is reversed is determined based on a pulse count or time period measured by a timer in response to the detection of the back end of the first sheet P1 by the entrance sensor 301. If it is determined, based on the signals from the image forming apparatus PR, that the sheet P1 needs to be reversed, the transportation rollers R3, R4, and R5 rotate in the reverse rotative direction. The sheet P1 is transported in the opposite direction through the branching nail 17, and is decelerated and stopped at a predetermined timing. Then, the second paper P2 is transported in the forward direction by the transportation rollers R1 and R2. The transportation rollers R3, R4, and R5 rotate in the forward rotative direction, and the first sheet P1 and the second sheet P2 are overlapped and transported together. If the number of sheets of paper set aside is less than the number of sheets of paper indicated in the signal from the image forming apparatus PR, the same operation as the first sheet is repeated until the number of sheets of paper actually set aside reaches the number indicated in the signal from the image forming apparatus PR. Then the paper set aside is discharged in the staple processing tray F.
The pre-stacking operation is not required for the first copy. When the sheets of paper printed as the first copy are completely transported to the staple processing tray F, the paper handling apparatus PD receives information indicating paper size and the number of sheets from the image forming apparatus PR (step S101). In this step S101, the number of sheets to be set aside in the pre-stacking path E and the number of pulses (switch back pulse P4) until the second transportation motor M2 is reversed are determined based on the size information received from the image forming apparatus PR. Since the first and second transportation motors M1 and M2 are configured by pulse motors, for example, their rotation (that is, the distance the paper is transported) is controllable with the number of pulses.
When the entrance sensor 301 detects the front end of the paper and outputs an ON signal (YES in step S102), a determination is made of whether the entrance motor M that activates the transportation roller 1 and the first transportation motor M1 that activates the transportation roller R1 and R2 (corresponding to the transportation rollers 2 and 7 in
If the motors M and M1 are in an OFF state (NO in step S103), the motors M and M1 are turned ON, and the transportation rollers 1, R1, and R2 start transporting the paper at a transportation speed V1 (step S 104). The rotation of the first transportation motor M1 is counted by a pulse counter 1 (step S 105). The pulse counter 1 counts driving pulses output to the first transportation motor M1 (stepping motor) by the CPU 360 provided in a control unit 350 shown in
In step S105, when the count value of the pulse counter 1 reaches “P1”, a predetermined value unique to the model of the image forming system regardless of paper size (YES in step S105), a determination is made of whether the second transportation motor M2 is in an ON state (step S106) If the second transportation motor M2 is in the OFF state, the second transportation motor M2 is turned on, and the transportation rollers R3, R4, and R5 start transporting at a transportation speed V1 (step S107). A pulse counter 2 counts the rotation of the second transportation motor M2 (step S108). As shown in the flowchart of
In step S108, when the count value of the pulse counter 2 reaches P2, the first transportation motor M2 is accelerated (|V2|>|V1|) in step S109. A determination is made of whether the accelerated paper needs to be set aside in the pre-stacking path E (step S110). Whether the accelerated paper needs to be set aside is determined based on information sent from the image forming apparatus PR in the previous step S101. If the accelerated paper needs to be set aside, the count value of the pulse counter 3 is compared with a predetermined count value P3 (step S111). When the count value of the pulse counter 3 reaches P3, the second transportation motor M2 is stopped (step S112), and then, is reversed (step S113). As the transportation motor M2 reversely rotates, the transporting rollers R3, R4, and R5 reversely rotate at a higher speed V3 than the initial transportation speed V1 (|V3|>|V1|). Then, the number of pulses since the transportation motor M2 starts reversely rotating is counted by a pulse counter 4 (step S114). The count value of the pulse counter 4 and the switchback pulse P4 determined in step S101 are compared. When the count value of the pulse counter 4 reaches the switchback pulse P4 (YES in step S114), the transportation motor M2 is stopped (step S115). Steps S101 through S115 correspond to the operation shown in
On the other hand, if a determination is made that the accelerated paper does not need to be set aside in step S110, a determination is made of whether there is a next sheet of paper in step S116. If there is the next sheet of paper, when the count value of the pulse counter 5 reaches a predetermined count value P5 (YES in step S117), the second transportation motor M2 is decelerated (in step S118). The next sheet of paper is superposed on the paper set aside in the pre-stacking path E, and is discharged to the staple processing tray F.
If there is not another sheet of paper in step S116, when the count value reaches a predetermined count value P6 (YES in step S119), the second transportation motor M2 is stopped (step S120). The predetermined count value P6 is the count value between the back end of the paper passing through the entrance sensor 301 and the paper being discharged in the staple processing tray F.
Two counters, that is, the first counter for counting driving pulses of the first transport motor M1 and the second counter for counting driving pulses of the second transport motor M2, are enough. The first counter functions as the pulse counters 1, 2, 3, 5, 6 described above, and the second counter functions as the pulse counter 4 described above. The pulse counters 2, 3, and 6 are configured to use the detection by the entrance sensor 301 of the back end of the paper as a reference (
According to another embodiment, the entrance sensor 301 may be provided with the following counters: a first counter that uses the back end of the paper as a reference (back-end reference counter in
According to yet another embodiment, respective six pulse counters 1-6 may be provided, and be controlled as shown in
The pulse count values P1, P2, P3, P5, and P6 are predetermined depending on the model of the paper handling apparatus PD regardless of paper size. The pulse count value P4 is predetermined depending on paper size. However, the pulse count value P4 can be changed based on input data and paper information from an operations panel of the image forming apparatus PR, for example.
As shown in the flowchart of
In
As described above, a paper handling apparatus according to the embodiment determines timing in which the paper set aside is transported and timing the paper is reversely transported using the paper detection unit provided at the entrance of the paper handling apparatus PD. The above timing can be easily adjusted based on the thickness of the paper, the curl of the paper, and the number of set-aside sheets of paper. The paper handling apparatus can handle a batch of paper at high quality. Since the paper detection unit and the shape of the guide plate can be made simple, the cost of the paper handling apparatus can be reduced.
As shown in
If the transportation roller R3 is removed, the paper cannot be reversely transported to a position as distant from the transportation roller 4 as the paper is in the first embodiment. This problem is caused by the fact that, when the paper moves out of the nip of the transportation roller 4, the transportation roller 4 cannot apply transportation force to the paper. In addition, if the back end of the paper becomes lower than the front end of the paper as it is in the first embodiment, the paper cannot return to the transportation roller 4 due to the gravity. Accordingly, in the second embodiment, the pre-stacking path E is formed in such a manner that it slantly extends to the right upper direction from the swing edge of the branching nail 17 as shown in
The paper handling apparatus PD according to the second embodiment can set aside a sheet of paper output from the image forming apparatus PR in the pre-stacking path E, and transport the set-aside sheet of paper superposing it with a next sheet of paper output from the image forming apparatus PR to the staple processing tray F. The operation is described below with reference to
While the sheet P1 is in the set-aside state, a following sheet P2 is output from the image forming apparatus PR, and is transported by the transportation rollers R1 and R2 rotating in the forward direction. When the front end of the following sheet P2 comes to the position of the front end of the preceding sheet P1, and both sheets P1 and P2 superpose as shown in
If more sheets of paper need to be superposed and transported together, the transportation rollers R4 and R5 are rotated in the reverse direction at the same timing as shown in FIG. 13. The two superposed sheets P1 and P2 are transported to the pre-stacking path E, and stop. When a third sheet comes to the position in which the third sheet superposes the two superposing sheets P1 and P2, the three sheets of paper are sent to the staple processing tray F.
The other portions that have not been described explicitly are configured in the same manner as the first embodiment. The paper handling apparatus according to the second embodiment operates in the same manner as the first embodiment does as described with reference to the flowcharts shown in
In the case of the second embodiment, when the sheet P1 is in the set-aside state, the sheet P1 is not nipped by the transportation roller R4. While the sheet P1 is in the set-aside state, the sheet P1 may remain nipped by the transportation roller R4 in the third embodiment.
In the set-aside state, the sheet P1 is nipped by the transportation roller R4 with its front end protruding from the transportation roller R4 to the downstream direction. When the following sheet P2 comes to the nip of the transportation roller R4, the two sheets P1 and P2 are transported together as shown in
The third embodiment has been described in which a preceding sheet P1 and a following sheet P2 are superposed, and are transported together. If a third sheet needs to be superposed and transported together, the sheets P1 and P2 are nipped by the transportation roller 4 even in the set-aside state.
The paper handling apparatus according to the third embodiment operates in the same manner as shown in the flowcharts of
Other portions that have not been explicitly explained are configured in the same manner as those of the first and second embodiments.
According to the first through third embodiments, timing in which the paper is transported or reversely transported is determined based on the output of the entrance sensor 301 (paper detection unit) provided at the input unit of the paper handling apparatus PD. It is easy to adjust the control of the paper handling apparatus based on various changes in state such as the thickness of the paper, the curl of the paper, and the number of set-aside sheets of paper. A high quality paper handling apparatus can be provided. The paper detection unit and the shape of the guide plates can be made simpler, and as a result, the cost of the paper handling apparatus can be reduced.
As described above, according to the above embodiments of the present invention, the paper detection unit (the entrance sensor 301 in the illustrated embodiment) is provided at a more upstream position than the branching nail 17 that guides the paper to the pre-stacking path E. Timing in which the set-aside paper is transported from the pre-stacking path E is determined based on the detection of the front end of the following sheet of paper. Additionally, timing in which the paper is reversely transported to the pre-stacking path E is determined based on the detection of the back end of the sheet of paper. The pre-stacking operation does not require additional paper detection units. As a result, the cost of the paper handling apparatus can be reduced, since those timings can be adjusted based on the state of the paper.
The above embodiments can be applied to various applications since they are applicable to cases in which more than two sheets of paper are superposed.
Since the timing in which the paper is transported out of the pre-stacking path E and the timing in which the set-aside paper is transported again can be adjusted based on the state of the paper, the paper detection unit and the shape of the guide plate can be made simple, and as a result, the cost of the paper handling apparatus can be reduced.
Since the timing in which the paper is transported out of the pre-stacking path E and the timing in which the set-aside paper is transported again can be adjusted based on the number of sheets of paper set aside in the pre-stacking path E, the paper detection unit and the shape of the guide plate can be made simple, and as a result, the cost of the paper handling apparatus can be reduced.
The processing tray corresponds to the staple processing tray F. The first and second paths correspond to the path D and the pre-stacking path E, respectively. The transportation unit corresponds to the transportation rollers 2, 7, 8, 9, 10, 11 (R1, R2, R3, R4, and R5), and the first and second transportation motors M1 and M2. The branching unit corresponds to the branching nail 17. The paper detection unit corresponds to the entrance sensor 301. The control unit corresponds to the CPU 360. The first and second transportation roller pairs correspond to the transportation rollers 8 (R3) and 9 (R4), respectively. The paper handling apparatus corresponds to the paper handling apparatus PD, and the image forming apparatus corresponds to the image forming apparatus PR.
The preferred embodiments of the present invention are described above. The present invention is not limited to these embodiments, but variations and modifications may be made without departing from the scope of the present invention.
This patent application is based on Japanese Priority Patent Applications No. 2003-202411 filed on Jul. 28, 2003, and No. 2004-142129 filed on May 12, 2004, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2003-202411 | Jul 2003 | JP | national |
2004-142129 | May 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5112034 | Uto et al. | May 1992 | A |
5263697 | Yamazaki et al. | Nov 1993 | A |
5508798 | Yamada | Apr 1996 | A |
5762328 | Yamada et al. | Jun 1998 | A |
5765824 | Kawano et al. | Jun 1998 | A |
6145825 | Kunihiro et al. | Nov 2000 | A |
6176480 | Yonenuma et al. | Jan 2001 | B1 |
6199853 | Andoh et al. | Mar 2001 | B1 |
6231045 | Yamada et al. | May 2001 | B1 |
6264191 | Suzuki et al. | Jul 2001 | B1 |
6296247 | Tamura et al. | Oct 2001 | B1 |
6322070 | Yamada et al. | Nov 2001 | B2 |
6343785 | Yamada et al. | Feb 2002 | B1 |
6394448 | Suzuki et al. | May 2002 | B2 |
6416052 | Yamada et al. | Jul 2002 | B2 |
6494449 | Tamura et al. | Dec 2002 | B2 |
6494453 | Yamada et al. | Dec 2002 | B1 |
6527269 | Yamada et al. | Mar 2003 | B2 |
6549734 | Yamada et al. | Apr 2003 | B2 |
6631896 | Yamada et al. | Oct 2003 | B2 |
6698744 | Yamada et al. | Mar 2004 | B2 |
6783124 | Tamura et al. | Aug 2004 | B2 |
20020063380 | Tamura et al. | May 2002 | A1 |
20020079642 | Tamura et al. | Jun 2002 | A1 |
20020135119 | Suzuki et al. | Sep 2002 | A1 |
20020158405 | Nagasako et al. | Oct 2002 | A1 |
20030006543 | Tamura et al. | Jan 2003 | A1 |
20030057641 | Yamada et al. | Mar 2003 | A1 |
20030151187 | Suzuki et al. | Aug 2003 | A1 |
20030160376 | Yamada et al. | Aug 2003 | A1 |
20030215275 | Tamura et al. | Nov 2003 | A1 |
20030219295 | Saitoh et al. | Nov 2003 | A1 |
20030234487 | Tamura et al. | Dec 2003 | A1 |
20040051238 | Yamada et al. | Mar 2004 | A1 |
20040070133 | Yamada et al. | Apr 2004 | A1 |
20040104525 | Suzuki et al. | Jun 2004 | A1 |
20050067777 | Iida et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
63-272748 | Nov 1988 | JP |
1-127556 | May 1989 | JP |
5-147372 | Jun 1993 | JP |
5-238622 | Sep 1993 | JP |
5-254704 | Oct 1993 | JP |
6-16323 | Jan 1994 | JP |
6-87554 | Mar 1994 | JP |
8-301508 | Nov 1996 | JP |
9-48545 | Feb 1997 | JP |
9-235069 | Sep 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20050067777 A1 | Mar 2005 | US |