PIKFYVE antagonism as a therapy for C9ORF72-ALS/FTD

Information

  • Research Project
  • 9461838
  • ApplicationId
    9461838
  • Core Project Number
    R44NS105156
  • Full Project Number
    1R44NS105156-01
  • Serial Number
    105156
  • FOA Number
    PA-16-302
  • Sub Project Id
  • Project Start Date
    5/1/2018 - 6 years ago
  • Project End Date
    4/30/2020 - 4 years ago
  • Program Officer Name
    FERTIG, STEPHANIE
  • Budget Start Date
    5/1/2018 - 6 years ago
  • Budget End Date
    4/30/2019 - 5 years ago
  • Fiscal Year
    2018
  • Support Year
    01
  • Suffix
  • Award Notice Date
    4/26/2018 - 6 years ago
Organizations

PIKFYVE antagonism as a therapy for C9ORF72-ALS/FTD

Optimization and validation of PIKFYVE antagonism as a therapy for C9ORF72-ALS/FTD Project Summary / Abstract The C9ORF72 repeat expansion mutation is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), accounting for over 50% of ALS cases in northern Europe and 10% of cases worldwide, making it a critical target for therapeutic intervention. Using patient-specific stem cell-based disease models, animal models, and postmortem tissue analysis, we have identified a new therapeutic target for C9ORF72 ?ALS/FTD, the lipid kinase PIKFYVE. We find that inhibition of PIKFYVE rescues the endosomal trafficking defects in ?C9ORF72 motor neurons and restores normal motor neuron survival. PIKFYVE functions in a manner that opposes FIG4, a phosphatase for which a loss-of-function mutation causes ALS. Antisense oligonucleotide-mediated knockdown of PIKFYVE rescues ?C9?-ALS motor neuron survival, without exhibiting any toxicity toward control motor neurons. This combined functional and genetic evidence strongly indicate that small molecule inhibition of PIKFYVE kinase is a viable therapeutic target for ?C9?-ALS/FTD. We have found that Apilimod reverses survival and other functional defects and is an effective PIKFYVE small molecule inhibitor. Apilimod has been tested in the clinic where target engagement without patient toxicity was observed, and we?ve determined it to be well tolerated in mice. We have begun execution of a two-pronged strategy to generate novel inhibitors of PIKFYVE. The first approach focuses on rescaffolding Apilimod to create a small molecule that can cross the BBB and can be patented. As a backup, our second approach employs virtual screening to identify new, patentable chemotypes which inhibit PIKFYVE. To this end, we have constructed 3D homology protein models for human PIKFYVE which we?ve used productively in rescaffolding to generate several Apilimod analogs. We employed the PIKFYVE homology models and the Small Molecule Drug Discovery Suite from Schrodinger and screened over 8 million compounds available virtually from the Icagen and E-molecule electronic compound collections. To develop structure activity relationships (SAR) for this program, we have established a biochemical PIKFYVE kinase assay as the primary assay for all compound evaluations. The goal of this Fast Track project is to identify a potent PIKFYVE inhibitor that is blood-brain-barrier penetrating. In phase I, we will use Apilimod, the 6 analogs from Table 1 and the 3 most promising leads from the ?in silico screen to test our entire funnel, including ?in vivo assays. In Phase II we will use these assays to optimize and validate a development candidate. Our specific aims are (Phase I) 1) Validation of primary and secondary ?in vitro ?assays; 2) Validation of tertiary assays; 3) Validation of proof of concept assays; (Phase II) 1) Compound optimization in primary and secondary ?assays; 2) Optimize of compound safety and administration through tertiary assays; 3) Establish ?in vivo ?proof of concept in ?C9ORF72 ?ALS/FTD.

IC Name
NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
  • Activity
    R44
  • Administering IC
    NS
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    433105
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    853
  • Ed Inst. Type
  • Funding ICs
    NINDS:433105\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    ACURASTEM, INC.
  • Organization Department
  • Organization DUNS
    080188418
  • Organization City
    Monrovia
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    910166353
  • Organization District
    UNITED STATES