Pixel driver circuit with load-balance in current mirror circuit

Information

  • Patent Grant
  • 9472138
  • Patent Number
    9,472,138
  • Date Filed
    Tuesday, July 2, 2013
    11 years ago
  • Date Issued
    Tuesday, October 18, 2016
    8 years ago
Abstract
A pixel circuit for use in a display comprising a plurality of pixels is provided. The load-balanced current mirror pixel circuit can compensate for device degradation and/or mismatch, and changing environmental factors like temperature and mechanical strain. The pixel circuit comprises a pixel drive circuit comprising, switching circuitry, a current mirror having a reference transistor and a drive transistor, the reference transistor and the drive transistor each having a first and second node and a gate, the gate of the reference transistor being connected to the gate of the drive transistor; and a capacitor connected between the gate of the reference transistor and a ground potential, and a load connected between the current mirror and a ground potential, the load having a first load element and a second load element, the first load element being connected to the first node of the reference transistor and the second load element being connected to the first node of the drive transistor.
Description
FIELD OF INVENTION
Background of the Invention

OLED based displays have gained significant interest recently for many display applications because of their faster response times, larger viewing angles, higher contrast, lighter weight, lower power, and amenability to flexible substrates, as compared to liquid crystal displays (LCDs).


The simplest way of addressing an OLED display is to use a passive matrix format. Although passive matrix addressed OLED displays are already in the marketplace, they do not support the resolution needed for next generation displays, which use high information content (HIC) formats. HIC formats are only possible with an active matrix addressing scheme.


Active matrix addressing involves a layer of backplane electronics, based on thin-film transistors (TFTs). These thin film transistors provide the bias voltage and drive current needed in each OLED pixel and may be fabricated using amorphous silicon (a-Si:H), polycrystalline silicon (poly-Si), organic, polymer, or other transistor technologies. When compared to passive matrix addressing, active matrix addressing uses a lower voltage on each pixel and the current throughout the entire frame period is a low constant value. Thus, active matrix addressing avoids the excessive peak driving and leakage currents associated with passive matrix addressing. This increases the lifetime of the OLED.


LCDs are electric field driven devices. OLEDs, on the other hand, are current driven devices. Thus, the brightness and stability of the light emitted by a given OLED used in a display is dependent on the operation of the TFTs in the current drive circuit. Thus AMOLED displays are far more sensitive to TFT instabilities including, spatial and temporal variations in transistor threshold voltage, mobility instability, and mismatch issues. These instabilities need to be addressed for widespread use of OLED based displays.



FIG. 1 presents a graph of threshold voltage shift vs. stress voltage for various times for amorphous silicon based TFTs. It is readily apparent from FIG. 1 that the threshold voltage of the transistors varies over time. If these transistors were used in a display, the variation in threshold voltage would likely result in variation in the brightness of the OLED across the array and/or a decrease in brightness over time, both of which are unacceptable.


A simple pixel driver circuit is shown in FIG. 2. This “2T” circuit is a voltage programmed circuit. Such a circuit is not practical for OLED displays as such a circuit cannot compensate for variations in transistor threshold voltage. One solution to this variation in threshold voltage is to use a current programmed circuit to drive the OLED of the pixels. Current programming is a good method for driving AMOLED displays since the OLED is a current driven device, and its brightness is approximately linearly dependent upon the current flowing through it.


One such current programmed circuit is presented in FIG. 3. This circuit incorporates a current-mirror which compensates for any shift or mismatch in the threshold voltage of the drive transistor T4 which ensures that the brightness of the OLED does not decrease over time. This feature of the circuit allows its drive characteristics to be much improved as compared to the 2T circuit of FIG. 2.


When programming the circuit of FIG. 3, VADDRESS is high and a current IDATA is applied. This current initially flows through transistor T1 and charges capacitor Cs. As the capacitor voltage rises, T3 begins to turn on and IDATA starts to flow through T2 and T3 to ground. The capacitor voltage stabilizes at the point when all of IDATA flows through T2 and T3, and none through T1. This process is independent of the threshold voltage VT of transistors T3 and T4.


The gates of T3 and T4 are connected, so the current flowing through T3 is mirrored in T4. This topology allows us to have on-pixel current gain or attenuation depending on the sizing of T3 and T4, so that the respective data current can be proportionately smaller or larger than the OLED current. In an active matrix array, pixels are scanned and programmed in a row-by-row fashion. The time taken to scan all rows (one frame) is called the frame time. During array operation, the switching TFTs (T1 and T2) are ON only once in the frame time.


However, existing current programmed circuits do not adequately address long-term stability in the OLED drive current due to differential Vt-shift and other bias, temperature, or mechanical stress related degradations and mismatches in the current mirror.


SUMMARY OF THE INVENTION

The present invention relates to a circuit for driving light emitting elements in a display and more particularly relates to a current drive circuit that implements a current mirror wherein each transistor of the current mirror is connected to a load.


It is an object of the invention to provide improved AMOLED Display Backplanes and Pixel Driver Circuits.


Accordingly, it is an object of the present invention to provide pixel current driver circuits for active matrix organic light emitting displays (AMOLED), capable of providing stable and predictable drive currents, in the presence of device degradation and/or mismatch, and changing environmental factors like temperature and mechanical strain. The latter is particularly important for mechanically flexible AMOLED displays.


According to an aspect of the invention a pixel circuit for use in a display comprising a plurality of pixels is provided. The pixel circuit comprises a pixel drive circuit comprising, switching circuitry, a current mirror having a reference transistor and a drive transistor, the reference transistor and the drive transistor each having a first and second node and a gate, the gate of the reference transistor being connected to the gate of the drive transistor; and a capacitor connected between the gate of the reference transistor and a ground potential, and a load connected between the current mirror and a ground potential, the load having a first load element and a second load element, the first load element being connected to the first node of the reference transistor and the second load element being connected to the first node of the drive transistor.


According to another aspect of the invention a pixel circuit for use in a display comprising a plurality of pixels is provided. The pixel circuit comprises a pixel drive circuit comprising, switching circuitry, a current mirror having a reference transistor and a drive transistor, the reference transistor and the drive transistor each having a first and second node and a gate, the gate of the reference transistor being connected to the gate of the drive transistor, the second node of the reference and drive transistors connected to a ground potential, and a capacitor connected between the gate of the reference transistor and a ground potential, and a load connected between the current mirror and a potential.


This summary of the invention does not necessarily describe all features of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:



FIG. 1 shows a graph of threshold voltage shift v. gate stress voltage for various times for thin film transistors made from amorphous silicon;



FIG. 2 shows a schematic diagram of a 2T voltage-programmed pixel driver circuit;



FIG. 3 shows a schematic diagram of a 4T current-programmed driver circuit;



FIG. 4 shows a block diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 5A shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 5B shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 5C shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 6A shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 6B shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 6C shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 7A shows a block diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 7B shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 7C shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention;



FIG. 7D shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention; and



FIG. 7E shows a schematic diagram of a current-programmed driver circuit according to an embodiment of the invention.





The above objects and features of the present invention will become more apparent by the following description of the preferred embodiments with reference to the attached drawings.


DETAILED DESCRIPTION

It has been found that the long-term stability of the OLED drive current can be addressed by providing a load to each transistor of the current mirror of a current based drive circuit.


A block diagram of a pixel driver circuit according to one aspect of the invention is shown in FIG. 4. The driver circuit can generally be considered to include a switching circuit 22, a current mirror 24 and a load 26. Of particular note is that the load 26 is configured, with respect to the current mirror 24, such that the two transistors of the current mirror 24 have a load connected to them. In the configuration shown in FIG. 4 the load 26 is connected between the current mirror 24 and ground with connections 28 and 30. Where the connections 28 and 30 are each connected to a node of a transistor of the current mirror and the load 26. This architecture provides for a balancing of the load between the transistors of the current mirror. Embodiments of the invention that implement this architecture will now be presented.


In the embodiment presented in FIG. 4 the switching circuit 22 is connected to two select lines, namely V-sel1 and V-sel2. The embodiments presented in FIGS. 5A-5C, 6A-6C and 7A-7E likewise have two select lines. The switching circuit 22 is further connected to a single data line, I-data.


The circuits presented in FIGS. 5A to 5C have the same basic architecture as the circuit presented in FIG. 4, i.e. both transistors of the current mirror are connected to the load 26. The circuits of FIGS. 5A to 5C present type and configuration variations for the load 26.


In FIG. 5A the current mirror 24 includes a reference transistor 31, a drive transistor 33. The transistors 31 and 33 are thin film transistors which have an amorphous silicon channel. A storage capacitor 25 is included in the current mirror 24. The gates of the transistor 31 and the transistor 33 are tied together and both connected to a plate of the storage capacitor 25. The other plate of the storage capacitor Cs is connected to ground. The source of the reference transistor 31 is connected to potential Vc and the drain is connected to the switching circuit 22. Connecting the source to the potential Vc allows the two sides of the current mirror to be balanced with proper biasing. The source of the drive transistor 33 is connected to a light emitting diode 32 and the drain is connected to VDD. In this embodiment the light emitting diode 32 is an organic light emitting diode (OLED).



FIG. 5B is a schematic diagram of a pixel driver circuit according to another embodiment of the invention. In this embodiment the source of the reference transistor 31 and the drive transistor 33 are connected to light emitting diodes 36 and 32, respectively.



FIG. 5C presents the currently preferred configuration for the load 26. The transistors 31 and 33 are tied together using a connection 37. In FIG. 5C the connection 37 is pictorially located within the load 26. The current embodiment is not limited by this representation. A single OLED 37 is connected to the common connection 37.



FIGS. 6A to 6C present embodiments of the invention wherein the current mirror 24 and the load 26 are the same as the embodiment presented in FIG. 5C while various configurations of the switching circuitry are provided. The switching circuits presented in FIGS. 6A to 6C each have a feedback transistor 44 and a switch transistor 46.


In the circuit presented in FIG. 6A one terminal of the feedback transistor 44 and one terminal of the switch transistor 46 are connected to data line I-data. The second terminal of the feedback transistor 44 is connected to the drain of reference transistor 31 while the second terminal of the switch transistor 46 is connected to the gate of the reference and drive transistors 31 and 33, respectively. Finally, the gate of the feedback transistor 44 and switch transistor 46 is connected to the select line V-sel1 and select line V-sel2, respectively.


In the embodiment presented in FIG. 6B the first terminal of the switch transistor 46 is connected to the data line I-data while the first terminal of the feedback transistor 44 is connected to the second terminal of the switch transistor 46 which is connected to the gate of the reference and drive transistors 31 and 33, respectively. The second terminal of the feedback transistor 44 is connected to the drain of the reference transistor 31. Finally, the gate of the feedback transistor 44 and switch transistor 46 is connected to the select line V-sel2 and select line V-sel1, respectively.


In the embodiment presented in FIG. 6C the first terminal of the switch transistor 46 is connected to the data line I-data while the first terminal of the feedback transistor 44 is connected to the second terminal of the switch transistor 46 which is connected to the drain of the reference transistor 31. The second terminal of the feedback transistor 44 is connected to the gate of the reference and drive transistors 31 and 33, respectively. Finally, the gate of the switch transistor 46 and feedback transistor 44 is connected to the select line V-sel1 and select line V-sel2, respectively.


The circuits that have been considered are embodiments of the circuit presented as a block diagram in FIG. 4. An alternative embodiment of the circuit architecture of FIG. 4 is presented in FIG. 7A. The organization of the switching circuit 22 and the current mirror 24 is the same as the embodiment presented in FIG. 4. In this embodiment the load 26 is arranged such that it is between the potential VDD and the current mirror 24. FIGS. 7B-7E present embodiments of the invention based on the block diagram of FIG. 7A. These embodiments implement the same circuit for the current mirror 24 while the configuration of the load 26 varies.


In the embodiment presented in FIG. 7B the load 26 includes light emitting diodes 40 and 42. The diodes 40 and 42 are connected between the potential VDD and the drain of reference transistor 31 and drive transistor 33, respectively. The sources of the reference transistor 31 and the drive transistor 33 are connected to ground. The gates of the reference transistor 31 and the drive transistor 33 are tied together and connected to both the switching circuit 22 and a plate of the storage capacitor 25. In the embodiment presented in FIG. 7C the light emitting diode 40 is connected to a potential Vc and the diode 42 is connected to the potential VDD. The embodiments presented in FIGS. 7D and 7E differ from the embodiments of FIGS. 7B and 7C, respectively, in that the light emitting diode 40 is replaced with a transistor 47. The gate of transistor 47 is connected to a third select line V-sel3, a first terminalis connected to a potential and a second terminal is connected to the source terminal of reference transistor 31.


In the schematic diagram of FIGS. 5B, 7B, and 7C there are two OLEDs in each pixel. Such a double OLED structure is formed by partitioning the bottom electrode of the OLED of each pixel into two electrodes. Partitioning of the electrode provide for the formation of two OLEDs in each pixel. One of the OLEDs is connected to the drive transistor and the other is connected to the reference transistor. Therefore the load of reference and drive transistors is the same, resulting in a minimization of mismatches between these two transistors. It is noted that the ratio between the areas of the two OLEDs and the gain of the current mirror can be engineered to achieve desired circuit performance.


According to an alternative embodiment of the invention the transistors can be any appropriate material for the fabrication of thin film transistors including polycrystalline silicon, polymer and organic materials. In particular this embodiment considers appropriate changes for including p-type TFTs that are relevant to persons skilled in the art.


According to another alternative embodiment of the invention the pixel drive circuits do not include the capacitor Cs.


According to another alternative embodiment of the invention the switching circuit 22 is appropriate for the use with a single select line.


According to another alternative embodiment of the invention the transistors of the pixel driver circuits may have more than one gate. In particular the transistors may be dual gate transistors.


According to another alternative embodiment of the invention there is more than one driver circuit for a given pixel. In particular there may be three pixel driver circuits as would be appropriate for pixels in an RGB or colour display.


The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

Claims
  • 1. A pixel driver circuit for use in a display, comprising: switching circuitry for providing a reference current input, the switching circuitry including: a switch transistor having a gate connected to a first select line, a first terminal connected to a data line, anda feedback transistor having a gate connected to a second select line, a first terminal connected to a second terminal of the switch transistor;a light emitting device having a first terminal and a second terminal, the second terminal being connected to a first potential; anda current mirror for providing a drive current to the light emitting device based on the reference current, the current mirror including: a drive transistor for conveying the drive current through the light emitting device and having a first node;a reference transistor for receiving the reference current, the reference transistor having a gate connected to a gate of the drive transistor, the reference transistor having a drain terminal connected either to a second terminal of the feedback transistor or to a second terminal of the switch transistor, wherein the first terminal of the light emitting device is connected to the first node and to a source terminal of the reference transistor; anda capacitor for storing a program voltage independent of a transistor threshold voltage, the program voltage settling on the capacitor while the reference current is conveyed through the reference transistor, the capacitor having a first terminal connected to both the gate of the drive transistor and the gate of the reference transistor, the capacitor having a second terminal connected to the first potential.
  • 2. The pixel driver circuit according to claim 1, wherein the drain terminal of the reference transistor is connected to the second terminal of the feedback and a source terminal of the reference transistor is connected to a first terminal of the light emitting device.
  • 3. The pixel driver circuit according to claim 2, wherein a second terminal of the light emitting device is connected to a ground potential.
  • 4. The pixel driver circuit according to claim 1, wherein the drain terminal of the reference transistor is connected to the second terminal of the switch transistor and a source terminal of the reference transistor is connected to a first terminal of the light emitting device.
  • 5. The pixel driver circuit according to claim 4, wherein a second terminal of the light emitting device is connected to a ground potential.
  • 6. The pixel driver circuit according to claim 1, wherein the light emitting device is a light emitting diode.
  • 7. The pixel driver circuit according to claim 6, wherein the first potential is a ground potential.
  • 8. The pixel driver circuit according to claim 1, wherein the first potential is a ground potential.
  • 9. The pixel driver circuit according to claim 1, wherein the reference and drive transistors are thin film transistors.
  • 10. The pixel driver circuit according to claim 9, wherein the thin film transistors are amorphous silicon or polycrystalline silicon or organic.
  • 11. The pixel driver circuit according to claim 10, wherein the reference and drive transistors are p-type.
  • 12. The pixel driver circuit according to claim 1, wherein a first terminal of the drive transistor is connected to a supply voltage, and a second terminal of the drive transistor is connected to the light emitting device.
  • 13. The pixel driver circuit according to claim 1, incorporated in an active matrix organic light emitting display (AMOLED).
Priority Claims (1)
Number Date Country Kind
2443206 Sep 2003 CA national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of pending U.S. application Ser. No. 10/554,795, filed Jun. 15, 2006, now allowed, which is a U.S. National Stage of International Application No. PCT/CA2004/001741, filed Sep. 23, 2004, which claims the benefit of Canadian Patent Application No. 2,443,206, filed Sep. 23, 2003, all of which are incorporated herein by reference in their entireties.

US Referenced Citations (558)
Number Name Date Kind
3506851 Polkinghorn et al. Apr 1970 A
3774055 Bapat et al. Nov 1973 A
4090096 Nagami May 1978 A
4160934 Kirsch Jul 1979 A
4354162 Wright Oct 1982 A
4758831 Kasahara et al. Jul 1988 A
4847524 Van Rooy Jul 1989 A
4943956 Noro Jul 1990 A
4963860 Stewart Oct 1990 A
4975691 Lee Dec 1990 A
4996523 Bell et al. Feb 1991 A
5051739 Hayashida et al. Sep 1991 A
5153420 Hack et al. Oct 1992 A
5198803 Shie et al. Mar 1993 A
5204661 Hack et al. Apr 1993 A
5222082 Plus Jun 1993 A
5266515 Robb et al. Nov 1993 A
5451977 Kusuda Sep 1995 A
5489918 Mosier Feb 1996 A
5498880 Lee et al. Mar 1996 A
5572444 Lentz et al. Nov 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara et al. Jul 1997 A
5657097 Schultz Aug 1997 A
5670973 Bassetti et al. Sep 1997 A
5686935 Weisbrod Nov 1997 A
5691783 Numao et al. Nov 1997 A
5712653 Katoh et al. Jan 1998 A
5714968 Ikeda Feb 1998 A
5723950 Wei et al. Mar 1998 A
5744824 Kousai et al. Apr 1998 A
5745660 Kolpatzik et al. Apr 1998 A
5747928 Shanks et al. May 1998 A
5748160 Shieh et al. May 1998 A
5784042 Ono et al. Jul 1998 A
5790234 Matsuyama Aug 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov et al. Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows et al. Jun 1999 A
5923794 McGrath et al. Jul 1999 A
5945972 Okumura et al. Aug 1999 A
5949398 Kim Sep 1999 A
5952789 Stewart et al. Sep 1999 A
5952991 Akiyama et al. Sep 1999 A
5982104 Sasaki et al. Nov 1999 A
5990629 Yamada et al. Nov 1999 A
6023259 Howard et al. Feb 2000 A
6069365 Chow et al. May 2000 A
6091203 Kawashima et al. Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6177915 Beeteson et al. Jan 2001 B1
6229506 Dawson et al. May 2001 B1
6229508 Kane May 2001 B1
6232939 Saito et al. May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano et al. Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6262589 Tamukai Jul 2001 B1
6271825 Greene et al. Aug 2001 B1
6274887 Yamazaki et al. Aug 2001 B1
6288696 Holloman Sep 2001 B1
6300928 Kim Oct 2001 B1
6303963 Ohtani et al. Oct 2001 B1
6304039 Appelberg et al. Oct 2001 B1
6306694 Yamazaki et al. Oct 2001 B1
6307322 Dawson et al. Oct 2001 B1
6310962 Chung et al. Oct 2001 B1
6316786 Mueller et al. Nov 2001 B1
6320325 Cok et al. Nov 2001 B1
6323631 Juang Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6345085 Yeo et al. Feb 2002 B1
6356029 Hunter Mar 2002 B1
6365917 Yamazaki Apr 2002 B1
6373453 Yudasaka Apr 2002 B1
6373454 Knapp et al. Apr 2002 B1
6384427 Yamazaki et al. May 2002 B1
6392617 Gleason May 2002 B1
6399988 Yamazaki Jun 2002 B1
6414661 Shen et al. Jul 2002 B1
6417825 Stewart et al. Jul 2002 B1
6420758 Nakajima Jul 2002 B1
6420834 Yamazaki et al. Jul 2002 B2
6420988 Azami et al. Jul 2002 B1
6433488 Bu Aug 2002 B1
6437106 Stoner et al. Aug 2002 B1
6445369 Yang et al. Sep 2002 B1
6445376 Parrish Sep 2002 B2
6468638 Jacobsen et al. Oct 2002 B2
6475845 Kimura Nov 2002 B2
6489952 Tanaka et al. Dec 2002 B1
6501098 Yamazaki Dec 2002 B2
6501466 Yamagashi et al. Dec 2002 B1
6512271 Yamazaki et al. Jan 2003 B1
6518594 Nakajima et al. Feb 2003 B1
6522315 Ozawa et al. Feb 2003 B2
6524895 Yamazaki et al. Feb 2003 B2
6525683 Gu Feb 2003 B1
6531713 Yamazaki Mar 2003 B1
6531827 Kawashima Mar 2003 B2
6542138 Shannon et al. Apr 2003 B1
6559594 Fukunaga et al. May 2003 B2
6573195 Yamazaki et al. Jun 2003 B1
6573584 Nagakari et al. Jun 2003 B1
6576926 Yamazaki et al. Jun 2003 B1
6580063 Okamoto Jun 2003 B1
6580408 Bae et al. Jun 2003 B1
6580657 Sanford et al. Jun 2003 B2
6583398 Harkin Jun 2003 B2
6583775 Sekiya et al. Jun 2003 B1
6583776 Yamazaki et al. Jun 2003 B2
6587086 Koyama Jul 2003 B1
6593691 Nishi et al. Jul 2003 B2
6594606 Everitt Jul 2003 B2
6597203 Forbes Jul 2003 B2
6611108 Kimura Aug 2003 B2
6617644 Yamazaki et al. Sep 2003 B1
6618030 Kane et al. Sep 2003 B2
6639244 Yamazaki et al. Oct 2003 B1
6641933 Yamazaki et al. Nov 2003 B1
6661180 Koyama Dec 2003 B2
6661397 Mikami et al. Dec 2003 B2
6668645 Gilmour et al. Dec 2003 B1
6670637 Yamazaki et al. Dec 2003 B2
6677713 Sung Jan 2004 B1
6680577 Inukai et al. Jan 2004 B1
6680580 Sung Jan 2004 B1
6687266 Ma et al. Feb 2004 B1
6690000 Muramatsu et al. Feb 2004 B1
6690344 Takeuchi et al. Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon et al. Feb 2004 B2
6697057 Koyama et al. Feb 2004 B2
6720942 Lee et al. Apr 2004 B2
6724151 Yoo Apr 2004 B2
6734636 Sanford et al. May 2004 B2
6738034 Kaneko et al. May 2004 B2
6738035 Fan May 2004 B1
6747417 Meade Jun 2004 B2
6753655 Shih et al. Jun 2004 B2
6753834 Mikami et al. Jun 2004 B2
6756741 Li Jun 2004 B2
6756952 Decaux et al. Jun 2004 B1
6756985 Hirotsune et al. Jun 2004 B1
6771028 Winters Aug 2004 B1
6777712 Sanford et al. Aug 2004 B2
6777888 Kondo Aug 2004 B2
6780687 Nakajima et al. Aug 2004 B2
6781567 Kimura Aug 2004 B2
6806497 Jo Oct 2004 B2
6806638 Lih et al. Oct 2004 B2
6806857 Sempel et al. Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6815975 Nara et al. Nov 2004 B2
6828950 Koyama Dec 2004 B2
6833869 Okamoto Dec 2004 B1
6853371 Miyajima et al. Feb 2005 B2
6859193 Yumoto Feb 2005 B1
6861670 Ohtani et al. Mar 2005 B1
6873117 Ishizuka Mar 2005 B2
6873320 Nakamura Mar 2005 B2
6876346 Anzai et al. Apr 2005 B2
6878968 Ohnuma Apr 2005 B1
6885356 Hashimoto Apr 2005 B2
6900485 Lee May 2005 B2
6903734 Eu Jun 2005 B2
6909114 Yamazaki Jun 2005 B1
6909243 Inukai Jun 2005 B2
6909419 Zavracky et al. Jun 2005 B2
6911960 Yokoyama Jun 2005 B1
6911964 Lee et al. Jun 2005 B2
6914448 Jinno Jul 2005 B2
6919871 Kwon Jul 2005 B2
6924602 Komiya Aug 2005 B2
6937215 Lo Aug 2005 B2
6937220 Kitaura et al. Aug 2005 B2
6940214 Komiya et al. Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6947022 McCartney Sep 2005 B2
6954194 Matsumoto et al. Oct 2005 B2
6956547 Bae et al. Oct 2005 B2
6972526 Abe Dec 2005 B2
6975142 Azami et al. Dec 2005 B2
6975332 Arnold et al. Dec 2005 B2
6995510 Murakami et al. Feb 2006 B2
6995519 Arnold et al. Feb 2006 B2
7022556 Adachi Apr 2006 B1
7023408 Chen et al. Apr 2006 B2
7027015 Booth, Jr. et al. Apr 2006 B2
7027078 Reihl Apr 2006 B2
7034793 Sekiya et al. Apr 2006 B2
7038392 Libsch et al. May 2006 B2
7057359 Hung et al. Jun 2006 B2
7061451 Kimura Jun 2006 B2
7064733 Cok et al. Jun 2006 B2
7071932 Libsch et al. Jul 2006 B2
7088051 Cok Aug 2006 B1
7088052 Kimura Aug 2006 B2
7102378 Kuo et al. Sep 2006 B2
7105855 Winters Sep 2006 B2
7106285 Naugler Sep 2006 B2
7112820 Change et al. Sep 2006 B2
7116058 Lo et al. Oct 2006 B2
7119493 Fryer et al. Oct 2006 B2
7122835 Ikeda et al. Oct 2006 B1
7127380 Iverson et al. Oct 2006 B1
7129914 Knapp et al. Oct 2006 B2
7129917 Yamazaki et al. Oct 2006 B2
7141821 Yamazaki et al. Nov 2006 B1
7164417 Cok Jan 2007 B2
7193589 Yoshida et al. Mar 2007 B2
7199516 Seo et al. Apr 2007 B2
7220997 Nakata May 2007 B2
7224332 Cok May 2007 B2
7227519 Kawase et al. Jun 2007 B1
7235810 Yamazaki et al. Jun 2007 B1
7245277 Ishizuka Jul 2007 B2
7248236 Nathan et al. Jul 2007 B2
7262753 Tanghe et al. Aug 2007 B2
7264979 Yamagata et al. Sep 2007 B2
7274345 Imamura et al. Sep 2007 B2
7274363 Ishizuka et al. Sep 2007 B2
7279711 Yamazaki et al. Oct 2007 B1
7304621 Oomori et al. Dec 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7319465 Mikami et al. Jan 2008 B2
7321348 Cok et al. Jan 2008 B2
7339560 Sun Mar 2008 B2
7339636 Voloschenko et al. Mar 2008 B2
7355574 Leon et al. Apr 2008 B1
7358941 Ono et al. Apr 2008 B2
7368868 Sakamoto May 2008 B2
7402467 Kadono et al. Jul 2008 B1
7411571 Huh Aug 2008 B2
7414600 Nathan et al. Aug 2008 B2
7423617 Giraldo et al. Sep 2008 B2
7432885 Asano et al. Oct 2008 B2
7474285 Kimura Jan 2009 B2
7485478 Yamagata et al. Feb 2009 B2
7502000 Yuki et al. Mar 2009 B2
7525119 Koyama Apr 2009 B2
7528812 Tsuge et al. May 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan et al. Aug 2009 B2
7576718 Miyazawa Aug 2009 B2
7580012 Kim et al. Aug 2009 B2
7589707 Chou Sep 2009 B2
7609239 Chang Oct 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan et al. Nov 2009 B2
7633470 Kane Dec 2009 B2
7656370 Schneider et al. Feb 2010 B2
7697052 Yamazaki et al. Apr 2010 B1
7750281 Asaba Jul 2010 B2
7777698 Takahara Aug 2010 B2
7800558 Routley et al. Sep 2010 B2
7825419 Yamagata et al. Nov 2010 B2
7847764 Cok et al. Dec 2010 B2
7859492 Kohno Dec 2010 B2
7864143 Kimura Jan 2011 B2
7868859 Tomida et al. Jan 2011 B2
7876294 Sasaki et al. Jan 2011 B2
7924249 Nathan et al. Apr 2011 B2
7932883 Klompenhouwer et al. Apr 2011 B2
7948170 Striakhilev et al. May 2011 B2
7969390 Yoshida Jun 2011 B2
7978187 Nathan et al. Jul 2011 B2
7994712 Sung et al. Aug 2011 B2
7995010 Yamazaki et al. Aug 2011 B2
8026876 Nathan et al. Sep 2011 B2
8044893 Nathan et al. Oct 2011 B2
8049420 Tamura et al. Nov 2011 B2
8077123 Naugler, Jr. Dec 2011 B2
8115707 Nathan et al. Feb 2012 B2
8223177 Nathan et al. Jul 2012 B2
8232939 Nathan et al. Jul 2012 B2
8259044 Nathan et al. Sep 2012 B2
8264431 Bulovic et al. Sep 2012 B2
8279143 Nathan et al. Oct 2012 B2
8339386 Leon et al. Dec 2012 B2
8493295 Yamazaki et al. Jul 2013 B2
8497525 Yamagata et al. Jul 2013 B2
8519392 Yamazaki Aug 2013 B2
8599109 Kimura Dec 2013 B2
8664644 Nathan Mar 2014 B2
20010002703 Koyama Jun 2001 A1
20010004190 Nishi et al. Jun 2001 A1
20010009283 Arao et al. Jul 2001 A1
20010020926 Kujik Sep 2001 A1
20010024181 Kubota Sep 2001 A1
20010024186 Kane et al. Sep 2001 A1
20010026127 Yoneda et al. Oct 2001 A1
20010026179 Saeki Oct 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010038098 Yamazaki et al. Nov 2001 A1
20010040541 Yoneda et al. Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache Nov 2001 A1
20010052606 Sempel et al. Dec 2001 A1
20010052898 Osame et al. Dec 2001 A1
20010052940 Hagihara et al. Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020011981 Kujik Jan 2002 A1
20020012057 Kimura Jan 2002 A1
20020014851 Tai et al. Feb 2002 A1
20020015031 Fujita et al. Feb 2002 A1
20020015032 Koyama et al. Feb 2002 A1
20020018034 Ohki et al. Feb 2002 A1
20020030190 Ohtani et al. Mar 2002 A1
20020030528 Matsumoto et al. Mar 2002 A1
20020030647 Hack et al. Mar 2002 A1
20020036463 Yoneda et al. Mar 2002 A1
20020047565 Nara et al. Apr 2002 A1
20020047852 Inukai et al. Apr 2002 A1
20020048829 Yamazaki et al. Apr 2002 A1
20020050795 Imura May 2002 A1
20020052086 Maeda May 2002 A1
20020053401 Ishikawa et al. May 2002 A1
20020067134 Kawashima Jun 2002 A1
20020070909 Asano et al. Jun 2002 A1
20020080108 Wang Jun 2002 A1
20020084463 Sanford et al. Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020101433 McKnight Aug 2002 A1
20020105279 Kimura Aug 2002 A1
20020113248 Yamagata et al. Aug 2002 A1
20020117722 Osada et al. Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020130686 Forbes Sep 2002 A1
20020154084 Tanaka et al. Oct 2002 A1
20020158587 Komiya Oct 2002 A1
20020158666 Azami et al. Oct 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020163314 Yamazaki et al. Nov 2002 A1
20020167474 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura et al. Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190332 Lee et al. Dec 2002 A1
20020190924 Asano et al. Dec 2002 A1
20020190971 Nakamura et al. Dec 2002 A1
20020195967 Kim et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030043088 Booth et al. Mar 2003 A1
20030057895 Kimura Mar 2003 A1
20030058226 Bertram et al. Mar 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura et al. Apr 2003 A1
20030071821 Sundahl et al. Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090445 Chen et al. May 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030095087 Libsch May 2003 A1
20030107560 Yumoto et al. Jun 2003 A1
20030111966 Mikami et al. Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030122813 Ishizuki et al. Jul 2003 A1
20030140958 Yang et al. Jul 2003 A1
20030142088 LeChevalier Jul 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030156101 Le Chevalier Aug 2003 A1
20030169219 LeChevalier Sep 2003 A1
20030174152 Noguchi Sep 2003 A1
20030179626 Sanford et al. Sep 2003 A1
20030197663 Lee et al. Oct 2003 A1
20030210256 Mori et al. Nov 2003 A1
20030230141 Gilmour et al. Dec 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20030231148 Lin et al. Dec 2003 A1
20040027063 Nishikawa Feb 2004 A1
20040032382 Cok et al. Feb 2004 A1
20040056604 Shih et al. Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano et al. Apr 2004 A1
20040070565 Nayar et al. Apr 2004 A1
20040080262 Park et al. Apr 2004 A1
20040080470 Yamazaki et al. Apr 2004 A1
20040090400 Yoo May 2004 A1
20040095297 Libsch et al. May 2004 A1
20040100427 Miyazawa May 2004 A1
20040108518 Jo Jun 2004 A1
20040113903 Mikami et al. Jun 2004 A1
20040129933 Nathan et al. Jul 2004 A1
20040130516 Nathan et al. Jul 2004 A1
20040135749 Kondakov et al. Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi et al. Aug 2004 A1
20040150594 Koyama et al. Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun et al. Sep 2004 A1
20040174349 Libsch Sep 2004 A1
20040174354 Ono et al. Sep 2004 A1
20040178743 Miller et al. Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040189627 Shirasaki et al. Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040201554 Satoh Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040239596 Ono et al. Dec 2004 A1
20040252089 Ono et al. Dec 2004 A1
20040257313 Kawashima et al. Dec 2004 A1
20040257353 Imamura et al. Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20040263444 Kimura Dec 2004 A1
20040263445 Inukai et al. Dec 2004 A1
20040263541 Takeuchi et al. Dec 2004 A1
20050007355 Miura Jan 2005 A1
20050007357 Yamashita et al. Jan 2005 A1
20050017650 Fryer et al. Jan 2005 A1
20050024081 Kuo et al. Feb 2005 A1
20050024393 Kondo et al. Feb 2005 A1
20050030267 Tanghe et al. Feb 2005 A1
20050035709 Furuie et al. Feb 2005 A1
20050057580 Yamano et al. Mar 2005 A1
20050067970 Libsch et al. Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050068275 Kane Mar 2005 A1
20050073264 Matsumoto Apr 2005 A1
20050083323 Suzuki et al. Apr 2005 A1
20050088103 Kageyama et al. Apr 2005 A1
20050110420 Arnold et al. May 2005 A1
20050110807 Chang May 2005 A1
20050117096 Voloschenko et al. Jun 2005 A1
20050140598 Kim et al. Jun 2005 A1
20050140610 Smith et al. Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki et al. Jul 2005 A1
20050168416 Hashimoto et al. Aug 2005 A1
20050179626 Yuki et al. Aug 2005 A1
20050179628 Kimura Aug 2005 A1
20050185200 Tobol Aug 2005 A1
20050200575 Kim et al. Sep 2005 A1
20050206590 Sasaki et al. Sep 2005 A1
20050219184 Zehner et al. Oct 2005 A1
20050225686 Brummack et al. Oct 2005 A1
20050248515 Naugler et al. Nov 2005 A1
20050260777 Brabec et al. Nov 2005 A1
20050269959 Uchino et al. Dec 2005 A1
20050269960 Ono et al. Dec 2005 A1
20050280615 Cok et al. Dec 2005 A1
20050280766 Johnson et al. Dec 2005 A1
20050285822 Reddy et al. Dec 2005 A1
20050285825 Eom et al. Dec 2005 A1
20060001613 Routley et al. Jan 2006 A1
20060007072 Choi et al. Jan 2006 A1
20060012310 Chen et al. Jan 2006 A1
20060012311 Ogawa Jan 2006 A1
20060027807 Nathan et al. Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038758 Routley et al. Feb 2006 A1
20060038762 Chou Feb 2006 A1
20060066527 Chou Mar 2006 A1
20060066533 Sato et al. Mar 2006 A1
20060077135 Cok et al. Apr 2006 A1
20060082523 Guo et al. Apr 2006 A1
20060092185 Jo et al. May 2006 A1
20060097628 Suh et al. May 2006 A1
20060097631 Lee May 2006 A1
20060103611 Choi May 2006 A1
20060149493 Sambandan et al. Jul 2006 A1
20060170623 Naugler, Jr. et al. Aug 2006 A1
20060176250 Nathan et al. Aug 2006 A1
20060208961 Nathan et al. Sep 2006 A1
20060232522 Roy et al. Oct 2006 A1
20060244697 Lee et al. Nov 2006 A1
20060250331 Sempel Nov 2006 A1
20060261841 Fish Nov 2006 A1
20060264143 Lee et al. Nov 2006 A1
20060273997 Nathan et al. Dec 2006 A1
20060284801 Yoon et al. Dec 2006 A1
20060284895 Marcu et al. Dec 2006 A1
20060290618 Goto Dec 2006 A1
20070001937 Park et al. Jan 2007 A1
20070001939 Hashimoto et al. Jan 2007 A1
20070008268 Park et al. Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070057873 Uchino et al. Mar 2007 A1
20070069998 Naugler et al. Mar 2007 A1
20070075727 Nakano et al. Apr 2007 A1
20070076226 Klompenhouwer et al. Apr 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan et al. Apr 2007 A1
20070080918 Kawachi et al. Apr 2007 A1
20070097038 Yamazaki et al. May 2007 A1
20070097041 Park et al. May 2007 A1
20070103419 Uchino et al. May 2007 A1
20070115221 Buchhauser et al. May 2007 A1
20070182671 Nathan et al. Aug 2007 A1
20070236517 Kimpe Oct 2007 A1
20070241999 Lin Oct 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070290958 Cok Dec 2007 A1
20070296672 Kim et al. Dec 2007 A1
20080001525 Chao et al. Jan 2008 A1
20080001544 Murakami et al. Jan 2008 A1
20080036708 Shirasaki Feb 2008 A1
20080042942 Takahashi Feb 2008 A1
20080042948 Yamashita et al. Feb 2008 A1
20080048951 Naugler, Jr. et al. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan et al. Apr 2008 A1
20080088648 Nathan et al. Apr 2008 A1
20080117144 Nakano et al. May 2008 A1
20080150847 Kim et al. Jun 2008 A1
20080231558 Naugler Sep 2008 A1
20080231562 Kwon Sep 2008 A1
20080252571 Hente et al. Oct 2008 A1
20080290805 Yamada et al. Nov 2008 A1
20080297055 Miyake et al. Dec 2008 A1
20090032807 Shinohara et al. Feb 2009 A1
20090058772 Lee Mar 2009 A1
20090160743 Tomida et al. Jun 2009 A1
20090174628 Wang et al. Jul 2009 A1
20090184901 Kwon Jul 2009 A1
20090195483 Naugler, Jr. et al. Aug 2009 A1
20090201281 Routley et al. Aug 2009 A1
20090213046 Nam Aug 2009 A1
20100004891 Ahlers et al. Jan 2010 A1
20100026725 Smith Feb 2010 A1
20100060911 Marcu et al. Mar 2010 A1
20100079711 Tanaka Apr 2010 A1
20100165002 Ahn Jul 2010 A1
20100194670 Cok Aug 2010 A1
20100207960 Kimpe et al. Aug 2010 A1
20100277400 Jeong Nov 2010 A1
20100315319 Cok et al. Dec 2010 A1
20100328294 Sasaki et al. Dec 2010 A1
20110069051 Nakamura et al. Mar 2011 A1
20110069089 Kopf et al. Mar 2011 A1
20110074750 Leon et al. Mar 2011 A1
20110090210 Sasaki et al. Apr 2011 A1
20110149166 Botzas et al. Jun 2011 A1
20110227964 Chaji et al. Sep 2011 A1
20110293480 Mueller Dec 2011 A1
20120056558 Toshiya et al. Mar 2012 A1
20120062565 Fuchs et al. Mar 2012 A1
20120299978 Chaji Nov 2012 A1
20130027381 Nathan et al. Jan 2013 A1
20130057595 Nathan et al. Mar 2013 A1
Foreign Referenced Citations (126)
Number Date Country
1 294 034 Jan 1992 CA
2 109 951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 432 530 Jul 2002 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 483 645 Dec 2003 CA
2 463 653 Jan 2004 CA
2 498 136 Mar 2004 CA
2 522 396 Nov 2004 CA
2 443 206 Mar 2005 CA
2 472 671 Dec 2005 CA
2 567 076 Jan 2006 CA
2 526 782 Apr 2006 CA
2 550 102 Apr 2008 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1760945 Apr 2006 CN
20 2006 005427 Jun 2006 DE
0 158 366 Oct 1985 EP
0 940 796 Sep 1999 EP
1 028 471 Aug 2000 EP
1 103 947 May 2001 EP
1 111 577 Jun 2001 EP
1 130 565 Sep 2001 EP
1 184 833 Mar 2002 EP
1 194 013 Apr 2002 EP
1 310 939 May 2003 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
1 439 520 Jul 2004 EP
1 465 143 Oct 2004 EP
1 467 408 Oct 2004 EP
1 469 448 Oct 2004 EP
1 517 290 Mar 2005 EP
1 521 203 Apr 2005 EP
1 594 347 Nov 2005 EP
1 784 055 May 2007 EP
1 879 169 Jan 2008 EP
1 879 172 Jan 2008 EP
2 205 431 Dec 1988 GB
2 389 951 Dec 2003 GB
1 272 298 Oct 1989 JP
4-042619 Feb 1992 JP
6-314977 Nov 1994 JP
8-340243 Dec 1996 JP
09 090405 Apr 1997 JP
10-153759 Jun 1998 JP
10-254410 Sep 1998 JP
11-202295 Jul 1999 JP
11-219146 Aug 1999 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000056847 Feb 2000 JP
2000-077192 Mar 2000 JP
2000-81607 Mar 2000 JP
2000-089198 Mar 2000 JP
2000-352941 Dec 2000 JP
2001-134217 May 2001 JP
2001-195014 Jul 2001 JP
2002-055654 Feb 2002 JP
2002-91376 Mar 2002 JP
2002-514320 May 2002 JP
2002-268576 Sep 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-022035 Jan 2003 JP
2003-076331 Mar 2003 JP
2003-124519 Apr 2003 JP
2003-150082 May 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2003-317944 Nov 2003 JP
2004-145197 May 2004 JP
2004-287345 Oct 2004 JP
2005-057217 Mar 2005 JP
4-158570 Oct 2008 JP
2004-0100887 Dec 2004 KR
342486 Oct 1998 TW
473622 Jan 2002 TW
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
569173 Jan 2004 TW
1221268 Sep 2004 TW
200727247 Jul 2007 TW
WO 9425954 Nov 1994 WO
WO 9848403 Oct 1998 WO
WO 9948079 Sep 1999 WO
WO 0106484 Jan 2001 WO
WO 0127910 Apr 2001 WO
WO 02067327 Aug 2002 WO
WO 03001496 Jan 2003 WO
WO 03034389 Apr 2003 WO
WO 03058594 Jul 2003 WO
WO 03063124 Jul 2003 WO
WO 03077231 Sep 2003 WO
WO 03105117 Dec 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004025615 Mar 2004 WO
WO 2004034364 Apr 2004 WO
WO 2004047058 Jun 2004 WO
WO 2004104975 Dec 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005022500 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005029456 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006000101 Jan 2006 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006084360 Aug 2006 WO
WO 2006137337 Dec 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2007120849 Oct 2007 WO
WO 2009055920 May 2009 WO
WO 2010023270 Mar 2010 WO
WO 2011041224 Apr 2011 WO
Non-Patent Literature Citations (124)
Entry
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009 (3 pages).
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report and Written Opinion for Application No. 08 86 5338 mailed Nov. 2, 2011 (7 pages).
European Search Report for EP Application No. EP 10 16 6143, dated Sep. 3, 2010 (2 pages).
European Search Report for European Application No. 11739485.8-1904 dated Aug. 6, 2013, (14 pages).
European Search Report for European Application No. EP 011 12 2313 dated Sep. 14, 2005 (4 pages).
European Search Report for European Application No. EP 04 78 6661 dated Mar. 9, 2009.
European Search Report for European Application No. EP 05 75 9141 dated Oct. 30, 2009.
European Search Report for European Application No. EP 05 81 9617 dated Jan. 30, 2009.
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages).
European Search Report for European Application No. EP 06 70 5133 dated Jul. 18, 2008.
European Search Report for European Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages).
European Search Report for European Application No. EP 07 71 9579 dated May 20, 2009.
European Search Report for European Application No. EP 07 81 5784 dated Jul. 20, 2010 (2 pages).
European Search Report for European Application No. EP 07710608.6 dated Mar. 19, 2010 (7 pages).
European Search Report mailed Mar. 26, 2012 in corresponding European Patent Application No. 10000421.7 (6 pages).
European Search Report, Application No. 10834294.0-1903, dated Apr. 8, 2013, (9 pages).
European Supplementary Search Report corresponding to European Application No. EP 04786662 dated Jan. 19, 2007 (2 pages).
Extended European Search Report mailed Apr. 27, 2011 issued during prosecution of European patent application No. 09733076.5 (13 pages).
Extended European Search Report mailed Aug. 6, 2013, issued in European Patent Application No. 11739485.8 (14 page).
Extended European Search Report mailed Jul. 11, 2012 which issued in corresponding European Patent Application No. 11191641.7 (14 pages).
Extended European Search Report mailed Nov. 29, 2012, issued in European Patent Application No. 11168677.0 (13 page).
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages).
Goh et al., “A New a-Si:H Thin Film Transistor Pixel Circul for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, 4 pages.
International Preliminary Report on Patentability for International Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages.
International Search Report corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages).
International Search Report corresponding to International Application No. PCTIB2011/050502, dated Jun. 27, 2011 (6 pages).
International Search Report corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages).
International Search Report corresponding to International Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages.
International Search Report corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 5 pages.
International Search Report for International Application No. PCT/CA02/00180 dated Jul. 31, 2002 (3 pages).
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages).
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
International Search Report for International Application No. PCT/CA2008/002307, mailed Apr. 28, 2009 (3 pages).
International Search Report for International Application No. PCT/CA2006/000177 dated Jun. 2, 2006.
International Search Report for PCT Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages).
International Search Report mailed Dec. 3, 2002, issued in International Patent Application No. PCT/JP02/09668 (4 pages).
International Search Report mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages).
International Search Report mailed Mar. 21, 2006 issued in International Patent Application No. PCT/CA2005/001897 (2 pages).
International Search Report, PCT/IB2012/052372, mailed Sep. 12, 2012 (3 pages).
International Searching Authority Search Report, PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages.
International Searching Authority Search Report, PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages.
International Written Opinion corresponding International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages).
International Written Opinion corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages).
International Written Opinion corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Written Opinion for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 8 pages.
International Written Opinion for International Application No. PCT/CA2009/000501 mailed Jul. 30, 2009 (6 pages).
International Written Opinion mailed Mar. 21, 2006 corresponding to International Patent Application No. PCT/CA2005/001897 (4 pages).
International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages).
International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages.
International Written Opinion, PCT/IB2012/052372, mailed Sep. 12, 2012 (5 pages).
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Kanicki, J., et al. “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318).
Karim, K. S., et al. “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208).
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages).
Machine English translation of JP 2002-333862, 49 pages.
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Mendes E., et al. “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721).
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages).
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan et al.: “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”, dated 2006 (4 pages).
Nathan et al.: “Thin film imaging technology on glass and plastic” ICM 2000, Proceedings of the 12th International Conference on Microelectronics, (IEEE Cat. No. 00EX453), Tehran Iran; dated Oct. 31-Nov. 2, 2000, pp. 11-14, ISBN: 964-360-057-2, p. 13, col. 1, line 11-48; (4 pages).
Office Action in Japanese patent application No. 2006-527247 dated Mar. 15, 2010. (8 pages).
Office Action in Japanese patent application No. 2007-545796 dated Sep. 5, 2011. (8 pages).
Office Action issued in Chinese Patent Application 2009-10246264.4 Dated Jul. 5, 2013; 8 pages.
Partial European Search Report mailed Mar. 20, 2012 which issued in corresponding European Patent Application No. 11191641.7 (8 pages).
Partial European Search Report mailed Sep. 22, 2011 corresponding to European Patent Application No. 11168677.0 (5 pages).
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999, 10 pages.
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Sanford, James L., et al., “4.2 TFT AMOLED Pixel Circuits and Driving Methods”, SID 03 Digest, ISSN/0003, 2003, pp. 10-13.
Search Report for Taiwan Invention Patent Application No. 093128894 dated May 1, 2012. (1 page).
Search Report for Taiwan Invention Patent Application No. 94144535 dated Nov. 1, 2012. (1 page).
Spindler et al., System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48.
Stewart M. et al., “Polysilicon TFT technology for active matrix oled displays” IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages).
Tatsuya Sasaoka et al., 24.4L; Late-News Paper: A 13.0-inch AM-Oled Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC), SID 01 Digest, (2001), pp. 384-387.
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Written Opinion mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (6 pages).
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
Yu, Jennifer: “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages).
Zhiguo Meng et al; “24.3: Active-Matrix Organic Light-Emitting Diode Display implemented Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors”, SID 01Digest, (2001), pp. 380-383.
Related Publications (1)
Number Date Country
20130334979 A1 Dec 2013 US
Continuations (1)
Number Date Country
Parent 10554795 US
Child 13933554 US